首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
埋地管道地震作用下的破坏因素源于地震引起的永久地面变形(PGD),其中管道-土体间相互作用决定土体位移作用到管体的大小。利用离心机试验技术模拟埋地管道在逆断层大位移下的反应特性,重点讨论断层与管道的交角、断层位移大小、管土相互作用、管径和埋深五个参数对管道破坏的影响水平。实验结果表明:上述参数对管道断层作用的反应均有明显影响,其中断层的位移量、管土相互作用、埋深和管径的影响更为显著。本文的研究结果对于管道经过断层区的抗震设计有十分重要的意义。  相似文献   

2.
地震断层作用下的埋地管道等效分析模型   总被引:2,自引:0,他引:2  
王滨  李昕  周晶 《地震学刊》2009,(1):44-50
地震作用下,活动断层附近的埋地管道易发生强度屈服、局部屈曲或整体失稳等形式的破坏,建立准确、高效的埋地管道在断层作用下的计算模型,对管道的抗震设计和震后安全状态评估具有重要的实用价值。本文采用非线性弹簧模拟远离断层处埋地管道的反应,基于管土之间小变形段管道处于强化阶段,提出一种改进的管土等效分析模型,进一步减小了管土之间大变形段的分析长度,从而提高了有限元分析效率。该模型采用ALA推荐的方法计算管土间的滑动摩擦力,可以考虑土体种类的影响;用Kennedy方法确定管道的计算长度。通过与精确模型比较,验证了管土等效模型的合理性和有效性。  相似文献   

3.
管土相互作用下埋地管道的抗震性能研究   总被引:1,自引:0,他引:1  
管土相互作用是影响埋地管道抗震性能的关键因素之一,分析管土相互作用是城市地下管道建设中面临的突出问题。在应用ADINA软件实现地下管道与土体融合有限元建模的基础上,通过定义管土接触来设定管土相互作用;介绍了管土接触设定、地震荷载加载时间函数、模型参数选择与求解步骤,并依据所建模型计算了埋地管道的变形和应力分布。根据计算结果,分析了管土相互作用对埋地管道抗震性能的影响,并给出了几点工程建议。  相似文献   

4.
基于MIDAS结构分析软件,采用大变形壳有限元方法分析了大口径油气管道在断层位错作用下的应变响应.考虑管道与土体的非线性和管土耦合作用,系统分析了不同断层类型下不同交叉角度对管道应变的影响,得到了断层与管道的交角对管道应变响应的影响规律和变化曲线,并在此基础上,总结得到了不同覆盖土层厚度下管道穿越断层的最佳交叉角度.  相似文献   

5.
地震作用下土体发生液化之后,由于超静孔隙水压力的产生和土体抗剪强度的降低,管道易发生上浮破坏。为研究管道上浮动力反应的影响因素,基于OpenSees有限元软件,通过目标反应谱和谱匹配等方法选取地震波,考虑不同管土特性和地震动特性,对地震作用下管道上浮动力反应进行了二维数值模拟。结果表明:土体相对密度、管径和管道埋深对管道上浮反应的影响较大,分别给出了土体相对密度、管径、管道埋深对管道上浮位移的影响规律及对应拟合公式;长持时地震动作用下,超静孔隙水压力消散较慢,管道上浮位移可达短持时地震动作用下管道上浮位移的2倍左右;近断层脉冲地震动作用下,管道上浮破坏和横向破坏两种破坏模式同时存在,且由于速度脉冲效应,管道横向破坏风险大于上浮破坏风险。  相似文献   

6.
土体沉陷是引起埋地管道破坏的重要原因之一,它会引起穿越该沉陷区域的大口径地下管道屈曲失稳,使管道在没有达到拉伸或剪切强度前便退出工作.将管道与周围土体从半无限土体介质中共同取出,建立沉陷作用下的管土相互作用模型.管道以薄壳单元模拟,土体采用实体单元进行离散,采用特征值屈曲分析方法对沉陷区域埋地管道的屈曲稳定性进行了分析,给出了管道发生屈曲时的屈曲模态及对应的沉降量.研究沉陷区长度、管道埋深、管径、壁厚及场地条件等对管道屈曲反应的影响.在文中所用模型与假设条件下发现地下管线埋深较浅时更易发生屈曲失稳,管道径厚比越大管道越易发生屈曲,场地土体越硬管道越易发生屈曲失稳等结论.  相似文献   

7.
动荷载作用下土体累积变形、孔压的发展不仅与动应力幅值有关,还与振动次数密切相关。本文通过GCTS空心圆柱扭剪仪对天津海积软土进行循环三轴试验,研究了多振次不同循环动应力下土体的累积变形与孔压特性。试验结果表明:在多振次循环荷载作用下,临界动应力前后土体累积变形发展趋势不同。动应力幅值小于临界动应力,累积应变呈稳定型发展;动应力幅值大于临界动应力,累积应变呈破坏型发展。按照累积应变发展形态的不同,分段建立考虑动应力幅值影响的长期变形公式。同样根据孔压发展趋势,也相应地分段建立了孔压增长预测公式,拟合值与试验值较为吻合。  相似文献   

8.
埋深是影响地下管道在地震波作用下变形的一个重要因素,土体位移和位移传递系数随埋深的变化而变化。根据已有规范,并结合实验数据研究埋深对地震波作用下埋地管道变形的影响,得出浅埋管道管-土间位移传递系数的范围及其与埋深和单位面积抗力的关系,完善了供水管网的抗震设计理论。  相似文献   

9.
在考虑管道的材料非线性和几何非线性、管土相互作用的非线性和管道接口非线性的基础上,建立了由管体梁单元、三向土弹簧单元和接口单元组成的埋地非连续管道在断层位移作用下的有限元模型,并以美国密歇根大学Junhee等(2010)所做的跨断层水泥管试验为原型进行了模拟分析。有限元结果给出的水泥管最终变形、接口转角、接口位移与实验结果基本一致,表明本文提出的跨断层埋地非连续管道抗震计算的有限元分析方法具有一定的合理性。有限元结果和试验结果都表明,在逆冲断层作用下,水泥管的破坏主要是因为在管道接口处的轴向压力和弯矩的耦合作用,在断层附近的管道接口承受了较大的转动和压缩位移。本文所提出的分析方法可推广到埋地非连续管道在其它永久地面变形作用下的有限元分析。  相似文献   

10.
管土摩擦和管径对埋地管道破坏的影响分析   总被引:8,自引:0,他引:8  
如何分析管土摩擦和管径对埋地管道地震破坏的影响,是城市地下管道建设中面临的突出问题。采用AD INA软件的定义体操作来选择体类型,并应用布尔操作实现了管道与土体和断层之间的融合,得到地下管道破坏分析的几何模型。通过模型参数选择,确定了岩土性质、管道特性、断层等模型参数,定义了管土摩擦、地震荷载时间函数、断层位移荷载。依据计算结果,分析了管土摩擦和管径对地下管道地震破坏的影响,找出了提高埋地管道抵抗破坏能力的摩擦系数和管径最优值,给出了几点工程建议。  相似文献   

11.
Buried pipelines are often constructed in seismic and other geohazard areas, where severe ground deformations may induce severe strains in the pipeline. Calculation of those strains is essential for assessing pipeline integrity, and therefore, the development of efficient models accounting for soil‐pipe interaction is required. The present paper is aiming at developing efficient tools for calculating ground‐induced deformation on buried pipelines, often triggered by earthquake action, in the form of fault rupture, liquefaction‐induced lateral spreading, soil subsidence, or landslide. Soil‐pipe interaction is investigated by using advanced numerical tools, which employ solid elements for the soil, shell elements for the pipe, and account for soil‐pipe interaction, supported by large‐scale experiments. Soil‐pipe interaction in axial and transverse directions is evaluated first, using results from special‐purpose experiments and finite element simulations. The comparison between experimental and numerical results offers valuable information on key material parameters, necessary for accurate simulation of soil‐pipe interaction. Furthermore, reference is made to relevant provisions of design recommendations. Using the finite element models, calibrated from these experiments, pipeline performance at seismic‐fault crossings is analyzed, emphasizing on soil‐pipe interaction effects in the axial direction. The second part refers to full‐scale experiments, performed on a unique testing device. These experiments are modeled with the finite element tools to verify their efficiency in simulating soil‐pipe response under landslide or strike‐slip fault movement. The large‐scale experimental results compare very well with the numerical predictions, verifying the capability of the finite element models for accurate prediction of pipeline response under permanent earthquake‐induced ground deformations.  相似文献   

12.
砂土液化是埋地管道遭受地震破坏的主要原因之一。液化土对管道产生上浮力,使管道发生上浮反应,它是随地震发生时间而变化的动态过程。将地震载荷作用下的液化区埋土管道模拟成两端弹性支承的直梁模型,考虑管-土间的相互作用和管内流体与管道之间的流固耦合作用,采用模态叠加法对液化区埋地管道进行地震响应的动态分析,探讨了管道和液化土参数对管道动态上浮反应的影响。通过数值仿真得到了管内流体的流速、流体压力、流体密度、管截面轴向力,管道黏弹系数、液化土容重和相对弹簧系数、地震加速度幅值等因素对管道上浮位移的影响情况。  相似文献   

13.
Structural design of buried pipelines for severe earthquakes   总被引:1,自引:0,他引:1  
In order to realistically assess the seismic risk of a pipeline system, the accurate estimate of the pipe strains which depend upon structural details, pipe material, properties of the surrounding soil, the nature of the propagating wave, etc. is critical. Emphasis in this study, therefore has been placed on the analysis of a structural strain for several types of piping elements unique to the buried pipeline and also the provision of a simplified design formula which can be used practically. The purpose of this study is (a) to define the slippage factor in order to estimate the decrease in pipe strain resulting from the slippage effect, (b) to propose a simplified method to evaluate the plastic deformation of the pipeline for severe earthquakes, and (c) to derive a practical design formula for the structural strains of bent pipes.  相似文献   

14.
钢混凝土组合截面外包薄钢组合管具有良好的防腐蚀性能和力学性能,可用于海洋、水下以及具有腐蚀性环境中的管道运输或结构受力构件中。利用截面分层法设计加工满足受弯承载能力的试验试件,并对其进行拟静力抗震性能试验,研究分析构件几何特征和填充混凝土强度对其耗能减震能力的影响。结果表明:各试验试件的荷载-位移滞回曲线图形均比较饱满,钢混凝土组合截面外包薄钢组合管具有良好的耗能减震能力。通过提高构件"约束效应系数"的方法可优化构件的截面设计。试件几何特征及填充混凝土的强度对试件的力学性能有较大影响,长细比较大的试件在往复加载制度下屈服位移明显减小。  相似文献   

15.
玻璃钢夹砂管在土木水利工程领域得到了愈来愈广泛的应用,但现有的埋地管道地震响应分析模型大多不考虑管-土动力相互作用,且多针对均质材料管道,无法应用于具有明显层状复合材料结构特征的玻璃钢夹砂管。基于玻璃钢夹砂管的层状复合材料结构特征,建立了完整的埋地玻璃钢夹砂管地震响应分析模型,在数值分析模型中,考虑了管-土间复杂的动力相互作用,以及地震散射波从有限域向无限域的传播。算例分析表明,所建立的埋地玻璃钢夹砂管地震响应分析模型可合理地分析埋地玻璃钢夹砂管在地震荷载作用下的动力响应。  相似文献   

16.
This paper deals with seismic wave propagation effects on buried segmented pipelines. A finite element model is developed for estimating the axial pipe strain and relative joint displacement of segmented pipelines. The model accounts for the effects of peak ground strain, shear transfer between soil and pipeline, axial stiffness of the pipeline, joint characteristics of the pipeline, and variability of the joint capacity and stiffness. For engineering applications, simplified analytical equations are developed for estimating the maximum pipe strain and relative joint displacement. The finite element and analytical solutions show that the segmented pipeline is relatively flexible with respect to ground deformation induced by seismic waves and deforms together with the ground. The ground strain within each pipe segmental length is shared by the joint displacement and pipe barrel strain. When the maximum ground strain is higher than 0.001, the pipe barrel strain is relatively small and can be ignored. The relative joint displacement of the segmented pipeline is mainly affected by the variability of the joint pullout capacity and accumulates at locally weak joints.  相似文献   

17.
利用有限元软件ABAQUS,结合用户自定义Python程序,开展地震断层作用下深海管道局部变形和压溃过程的数值模拟。分析均质土体和随机分布土体模型的地震断层位移大小对管道局部变形的影响,并分析断层诱发的局部挤压变形对管道压溃压力的影响。研究表明:相比于断层走向与管道轴线方向垂直的走滑断层,断层走向与管道轴线方向夹角为45°的走滑断层作用下管道的压溃压力较小,且当断层走向为管道轴线方向逆时针旋转45°时,左旋走滑断层作用下管道的压溃压力低于右旋走滑断层作用下的管道压溃压力。断层位移相同时,管道径厚比越大,压溃压力越小。考虑土壤随机性时,由于APIX65钢制管道刚性较大,且管道两侧土体内聚力和摩擦角分散于均质土壤土体参数均值两侧,因此断层作用过程中管道受到的土压力在均质土壤模型中的土压力数值处上下波动。  相似文献   

18.
地震作用下,盾构隧道的抗震变形性能限值是个重要指标。采用盾构区间隧道为原型,设计1/20的相似模型,考虑管片接头以及土体-结构相互作用,采用隧道结构加载试验系统,对盾构管片结构在不同的拼装方式和埋深下的变形行为进行了研究,测得了管片环的内力和位移。通过对6组试验结果进行分析对比,得出结论:埋深和拼装方式对盾构隧道结构变形有影响,对通缝结构的影响大于错缝结构;弹塑性分界点直径变形率限值,对通缝结构为0.56‰~1.00‰,对错缝结构为0.42‰~1.09‰;临界失稳点直径变形率限值,对通缝结构为16.87‰~21.44‰,对错缝结构为15.22‰~19.52‰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号