首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 au such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion on to the protostar occurs in ∼104-yr bursts with ̇ ∼10−5 M yr−1, separated by quiescent intervals lasting ∼105 yr where ̇ ≈10−8 M yr−1. Such bursts could lead to repeated episodes of strong mass outflow in young stellar objects. The transition to this episodic mode of accretion occurs at an early epoch ( t ≪1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum-mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼1 au. The predicted rate of low-mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1–3 au.  相似文献   

2.
I solve analytically the viscous evolution of an irradiated accretion disc, as seen during outbursts of soft X-ray transients. The solutions predict steep power-law X-ray decays L X ∼ (1 + t/tvisc)−4, changing to L X ∼ (1 − t/t'visc)4 at late times, where t visc, t 'visc are viscous time-scales. These forms closely resemble the approximate exponential and linear decays inferred by King and Ritter in these two regimes. The decays are much steeper than for unirradiated discs because the viscosity is a function of the central accretion rate rather than of local conditions in the disc.  相似文献   

3.
Gravitational wave signal characteristics from a binary black hole system in which the companion moves through the accretion disc of the primary are studied. We chose the primary to be a super-massive  ( M = 108 M)  Kerr black hole and the companion to be a massive black hole  ( M = 105 M)  to clearly demonstrate the effects. We show that the drag exerted on the companion by the disc is sufficient to reduce the coalescence time of the binary. The drag is primarily due to the fact that the accretion disc on a black hole deviates from a Keplerian disc and becomes sub-Keplerian due to inner boundary condition on the black hole horizon. We consider two types of accretion rates on to the companion. The companion is deeply immersed inside the disc and it can accrete at the Bondi rate which depends on the instantaneous density of the disc. However, an accretion disc can also form around the smaller black hole and it can accrete at its Eddington rate. Thus, this case is also studied and the results are compared. We find that the effect of the disc will be significant in reducing the coalescence time and one needs to incorporate this while interpreting gravitational wave signals emitted from such a binary system.  相似文献   

4.
We examine the physical processes of radiatively driven mass accretion on to galactic nuclei, owing to intensive radiation from circumnuclear starbursts. The radiation from a starburst not only causes the inner gas disc to contract via radition flux force, but also extracts angular momentum owing to relativistic radiation drag, thereby inducing an avalanche of the surface layer of the disc. To analyse such a mechanism, the radiation–hydrodynamical equations are solved, including the effects of the radiation drag force as well as the radiation flux force. As a result, it is found that the mass accretion rate owing to the radiative avalanche is given by M ˙ ( r )= η ( L */ c 2)( r / R )2 (Δ R / R )(1 −  e −τ) at radius r , where the efficiency η ranges from 0.2 up to 1, L * and R are respectively the bolometric luminosity and the radius of the starburst ring, Δ R is the extent of the emission regions, and τ is the face-on optical depth of the disc. In an optically thick regime, the rate depends upon neither the optical depth nor the surface mass density distribution of the disc. The present radiatively driven mass accretion may provide a physical mechanism which enables mass accretion from 100-pc scales down to ∼ parsec scales, and it may eventually be linked to advection-dominated viscous accretion on to a massive black hole. The radiation–hydrodynamical and self-gravitational instabilities of the disc are briefly discussed. In particular, the radiative acceleration possibly builds up a dusty wall, which 'shades' the nucleus in edge-on views. This provides another version of the model for the formation of an obscuring torus.  相似文献   

5.
We investigate the properties of circumplanetary discs formed in three-dimensional, self-gravitating radiation hydrodynamical models of gas accretion by protoplanets. We determine disc sizes, scaleheights, and density and temperature profiles for different protoplanet masses, in solar nebulae of differing grain opacities.
We find that the analytical prediction of circumplanetary disc radii in an evacuated gap  ( R Hill/3)  from Quillen & Trilling yields a good estimate for discs formed by high-mass protoplanets. The radial density profiles of the circumplanetary discs may be described by power laws between   r −2  and   r −3/2  . We find no evidence for the ring-like density enhancements that have been found in some previous models of circumplanetary discs. Temperature profiles follow a  ∼ r −7/10  power law regardless of protoplanet mass or nebula grain opacity. The discs invariably have large scaleheights  ( H / r > 0.2)  , making them thick in comparison with their encompassing circumstellar discs, and they show no flaring.  相似文献   

6.
Transonic discs with accretion rates relevant to intrinsically bright Galactic X-ray sources ( L ≈1038–1039 erg s−1) exhibit a time-dependent cyclic behaviour due to the onset of a thermal instability driven by radiation pressure. In this paper we calculate radiation spectra emitted from thermally unstable discs to provide detailed theoretical predictions for observationally relevant quantities. The emergent spectrum has been obtained by solving self-consistently the vertical structure and radiative transfer in the disc atmosphere. We focus on four particular stages of the disc evolution, the maximal evacuation stage and three intermediate stages during the replenishment phase. The disc is found to undergo rather dramatic spectral changes during the evolution, emitting mainly in the 1–10 keV band during outburst and in the 0.1–1 keV band off-outburst. Local spectra, although different in shape from a blackbody at the disc effective temperature, may be characterized in terms of a hardening factor f . We have found that f is more or less constant, both in radius and in time, with a typical value ∼ 1.65.  相似文献   

7.
We find a new two-temperature hot branch of equilibrium solutions for stationary accretion discs around black holes. In units of Eddington accretion rate defined as 10 L Edd c 2, the accretion rates to which these solutions correspond are within the range ̇ 1≲ ̇ ≲1, where ̇ 1 is the critical rate of advection-dominated accretion flow (ADAF). In these solutions, the energy loss rate of the ions by Coulomb energy transfer between the ions and electrons is larger than the viscously heating rate and it is the advective heating together with the viscous dissipation that balances the Coulomb cooling of ions. When ̇ 1≲ ̇ ≲ ̇ 2, where ̇ 2∼5 ̇ 1<1, the accretion flow remains hot throughout the disc. When ̇ 2≲ ̇ ≲1, Coulomb interaction will cool the inner region of the disc within a certain radius ( r tr∼several tens of Schwarzschild radii or larger depending on the accretion rate and the outer boundary condition) and the disc will collapse on to the equatorial plane and form an optically thick cold annulus. Compared with ADAF, these hot solutions are much more luminous because of the high accretion rate and efficiency; therefore, we call them luminous hot accretion discs.  相似文献   

8.
We suggest that an extreme Kerr black hole with a mass ∼106 M, a dimensionless angular momentum     and a marginally stable orbital radius     located in a normal galaxy may produce a γ -ray burst (GRB) by capturing and disrupting a star. During the capture period, a transient accretion disc is formed and a strong transient magnetic field ∼     lasting for     may be produced at the inner boundary of the accretion disc. A large amount of rotational energy of the black hole is extracted and released in an ultrarelativistic jet with a bulk Lorentz factor Γ larger than 103 via the Blandford–Znajek process. The relativistic jet energy can be converted into γ -radiation via an internal shock mechanism. The GRB duration should be the same as the lifetime of the strong transient magnetic field. The maximum number of sub-bursts is estimated to be     because the disc material is likely to break into pieces with a size about the thickness of the disc h at the cusp     The shortest risetime of the burst estimated from this model is ∼     The model GRB density rate is also estimated.  相似文献   

9.
The α turbulent viscosity formalism for accretion discs must be interpreted as a mean field theory, modelling a steady state only on spatial or time-scales greater than those of the turbulence. The extent of the scale separation determines the relative precision error (RPE) of the predicted luminosity L ν. Turbulence and the use of α implies that (1) field line stretching gives a magnetic pressure  α2/6 of the total pressure generally, and a one-to-one relation between α and the pressure ratio for thin discs, and (2) large turbulent scales in advection-dominated accretion flows (ADAFs) predict a lower L ν precision than thin discs for a given observation duration and central mass. The allowed variability (or RPE) at frequency ν increases with the size of the contributing region. For X-ray binary ADAFs, the RPE ∼ 5 per cent at R  ≤ 1000 Schwarzchild radii ( R s) for averages over  1000 s. However, current data for galaxies like NGC 4258 and M87 give RPEs in L ν of 50–100 per cent even at R  ≤ 100  R S. More data are required, but systematic deviations from ADAF predictions are more significant than random deviations, and may constrain properties of the turbulence, the accretion mode, the assumption of a steady state or the accretion rate.  相似文献   

10.
We present the first of two papers describing an in-depth study of multiwaveband phase-resolved spectroscopy of the unusual dwarf nova WZ Sge. In this paper we present an extensive set of Doppler maps of WZ Sge covering optical and infrared emission lines, and describe a new technique for studying the accretion discs of cataclysmic variables using ratioed Doppler maps. Applying the ratioed Doppler map technique to our WZ Sge data shows that the radial temperature profile of the disc is unlike that predicted for a steady state α disc. Time-averaged spectra of the accretion disc line flux (with the bright spot contribution removed) show evidence in the shapes of the line profiles for the presence of shear broadening in a quiescent non-turbulent accretion disc. From the positions of the bright spots in the Doppler maps of different lines, we conclude that the bright spot region is elongated along the ballistic stream, and that the density of the outer disc is low. The velocity of the outer edge of the accretion disc measured from the H α line is found to be 723±23 km s−1. Assuming that the accretion disc reaches to the 3:1 tidal resonance radius, we derive a value for the primary star mass of 0.82 M. We discuss the implications of our results on the present theories of WZ Sge type dwarf nova outbursts.  相似文献   

11.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

12.
We numerically examine centrifugally supported shock waves in 2D rotating accretion flows around a stellar mass  (10 M)  and a supermassive  (106 M)  black holes over a wide range of input accretion rates of     . The resultant 2D shocks are unstable with time and the luminosities show quasi-periodic oscillations (QPOs) with modulations of a factor of 2–3 and with periods of a tenth of a second to several hours, depending on the black hole masses. The shock oscillation model may explain the intermediate frequency QPOs with 1–10 Hz observed in the stellar mass black hole candidates and also suggest the existence of QPOs with the period of hours in active galactic nuclei. When the accretion rate     is low, the luminosity increases in proportion to the accretion rate. However, when     greatly exceeds the Eddington critical rate     , the luminosity is insensitive to the accretion rate and is kept constantly around  ∼3 L E  . On the other hand, the mass-outflow rate     increases in proportion to     and it amounts to about a few per cent of the input mass-flow rate.  相似文献   

13.
Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at   R ≃ 1 pc  from Sgr A*. In all the simulations performed, the post-collision gas flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments, consistent with the observations. Furthermore, the radial stellar mass distribution is always very steep,  Σ*∝ R −2  , again consistent with the observations. All of our simulations produce discs that are warped by between 30° and 60°, in accordance with the most recent observations. The three-dimensional velocity structure of the stellar distribution is sensitive to initial conditions (e.g. the impact parameter of the clouds) and gas cooling details. For example, the runs in which the inner disc is fed intermittently with material possessing fluctuating angular momentum result in multiple stellar discs with different orbital orientations, contradicting the observed data. In all the cases the amount of gas accreted by our inner boundary condition is large, enough to allow Sgr A* to radiate near its Eddington limit over ∼105 yr. This suggests that a refined model would have physically larger clouds (or a cloud and a disc such as the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 pc as in our simulations.  相似文献   

14.
We study the vertical structure of the transition layer between an accretion disc and a corona in the context of the existence of a two-phase medium in thermally unstable regions. The disc is illuminated by hard X-ray radiation, and satisfies the condition of hydrostatic equilibrium. We take into account the energy exchange between the hot, Compton-heated corona (∼108 K) and cool disc (∼104 K) arising from both radiative processes and thermal conduction. In the case including thermal conduction, we perform a local stability analysis, and conclude that thermal conduction does not suppress thermal instability. In spite of the continuous temperature profile T ( τ ) there are regions of strong temperature gradient, in which spontaneous perturbations can lead to cloud condensation in the transition layer. We determine the minimum size λ TC of such a perturbation.  相似文献   

15.
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup (=LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of   K R= 198 ± 5 km s−1  . The rotational velocity of the secondary star in V347 Pup is found to be   v sin  i = 131 ± 5 km s−1  and the system inclination is   i = 840 ± 23  . From these parameters we obtain masses of   M 1= 0.63 ± 0.04 M  for the white dwarf primary and   M 2= 0.52 ± 0.06 M  for the M0.5V secondary star, giving a mass ratio of   q = 0.83 ± 0.05  . On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc.  相似文献   

16.
We present the most complete multiwavelength coverage of any dwarf nova outburst: simultaneous optical, Extreme Ultraviolet Explorer and Rossi X-ray Timing Explorer observations of SS Cygni throughout a narrow asymmetric outburst. Our data show that the high-energy outburst begins in the X-ray waveband 0.9–1.4 d after the beginning of the optical rise and 0.6 d before the extreme-ultraviolet rise. The X-ray flux drops suddenly, immediately before the extreme-ultraviolet flux rise, supporting the view that both components arise in the boundary layer between the accretion disc and white dwarf surface. The early rise of the X-ray flux shows that the propagation time of the outburst heating wave may have been previously overestimated.
The transitions between X-ray and extreme-ultraviolet dominated emission are accompanied by intense variability in the X-ray flux, with time-scales of minutes. As detailed by Mauche & Robinson, dwarf nova oscillations are detected throughout the extreme-ultraviolet outburst, but we find they are absent from the X-ray light curve.
X-ray and extreme-ultraviolet luminosities imply accretion rates of  3 × 1015 g s−1  in quiescence,  1 × 1016 g s−1  when the boundary layer becomes optically thick, and  ∼1018 g s−1  at the peak of the outburst. The quiescent accretion rate is two and a half orders of magnitude higher than predicted by the standard disc instability model, and we suggest this may be because the inner accretion disc in SS Cyg is in a permanent outburst state.  相似文献   

17.
We present a ROSAT and ASCA study of the Einstein source X-9 and its relation to a shock-heated shell-like optical nebula in a tidal arm of the M81 group of interacting galaxies. Our ASCA observation of the source shows a flat and featureless X-ray spectrum well described by a multicolour disc blackbody model. The source most likely represents an optically thick accretion disc around an intermediate-mass black hole  ( M ∼102 M)  in its high/soft state, similar to other variable ultraluminous X-ray sources observed in nearby disc galaxies. Using constraints derived from both the innermost stable orbit around a black hole and the Eddington luminosity, we find that the black hole is fast-rotating and that its mass is between ∼80 M–1.5×102 M. The inferred bolometric luminosity of the accretion disc is ∼(1.1×1040 erg s−1)/(cos  i ). Furthermore, we find that the optical nebula is very energetic and may contain large amounts of hot gas, accounting for a soft X-ray component as indicated by archival ROSAT PSPC data. The nebula is apparently associated with X-9; the latter may be powering the former and/or they could be formed in the same event (e.g. a hypernova). Such a connection, if confirmed, could have strong implications for understanding both the birth of intermediate-mass black holes and the formation of energetic interstellar structures.  相似文献   

18.
We have performed N -body numerical simulations of the exchange of angular momentum between a massive planet and a 3D Keplerian disc of planetesimals. Our interest is directed at the study of the classical analytical expressions of the lineal theory of density waves, as representative of the dynamical friction in discs 'dominated by the planet' and the orbital migration of the planets with regard to this effect. By means of a numerical integration of the equations of motion, we have carried out a set of numerical experiments with a large number of particles  ( N ≥10 000)  , and planets with the mass of Jupiter, Saturn and one core mass of the giant planets in the Solar system  ( M c=10 M)  . The torque, measured in a phase in which a 'steady forcing' is clearly measurable, yields inward migration in a minimum-mass solar disc  (Σ∼10 g cm-2  ), with a characteristic drift time of ∼ a few 106 yr. The planets predate the disc, but the orbital decay rate is not sufficient to allow accretion in a time-scale relevant to the formation of giant planets. We found reductions of the measured torque on the planet, with respect to the linear theory, by a factor of 0.38 for M c, 0.04 for Saturn and 0.01 for Jupiter, due to the increase in the perturbation on the disc. The behaviour of planets whose mass is larger than M c is similar to the one of type II migrators in gaseous discs. Our results suggest that, in a minimum mass, solar planetesimals disc, type I migrations occur for masses smaller than M c, whereas for this mass value it could be a transition zone between the two types of migration.  相似文献   

19.
We consider the effect of a supernova (SN) explosion in a very massive binary that is expected to form in a portion of Population III stars with the mass higher than  100 M  . In a Population III binary system, a more massive star can result in the formation of a black hole (BH) and a surrounding accretion disc. Such BH accretion could be a significant source of the cosmic reionization in the early Universe. However, a less massive companion star evolves belatedly and eventually undergoes a SN explosion, so that the accretion disc around a BH might be blown off in a lifetime of companion star. In this paper, we explore the dynamical impact of a SN explosion on an accretion disc around a massive BH, and elucidate whether the BH accretion disc is totally demolished or not. For the purpose, we perform three-dimensional hydrodynamic simulations of a very massive binary system, where we assume a BH of  103 M  that results from a direct collapse of a very massive star and a companion star of  100 M  that undergoes a SN explosion. We calculate the remaining mass of a BH accretion disc as a function of time. As a result, it is found that a significant portion of gas disc can survive through three-dimensional geometrical effects even after the SN explosion of a companion star. Even if the SN explosion energy is higher by two orders of magnitude than the binding energy of gas disc, about a half of disc can be left over. The results imply that the Population III BH accretion disc can be a long-lived luminous source, and therefore could be an important ionizing source in the early Universe.  相似文献   

20.
The irradiation of protoplanetary discs by central stars is the main heating mechanism for discs, resulting in their flared geometric structure. In a series of papers, we investigate the deep links between two-dimensional self-consistent disc structure and planetary migration in irradiated discs, focusing particularly on those around M stars. In this first paper, we analyse the thermal structure of discs that are irradiated by an M star by solving the radiative transfer equation by means of a Monte Carlo code. Our simulations of irradiated hydrostatic discs are realistic and self-consistent in that they include dust settling with multiple grain sizes  ( N = 15)  , the gravitational force of an embedded planet on the disc and the presence of a dead zone (a region with very low levels of turbulence) within it. We show that dust settling drives the temperature of the mid-plane from an   r −3/5  distribution (well mixed dust models) towards an   r −3/4  . The dead zone, meanwhile, leaves a dusty wall at its outer edge because dust settling in this region is enhanced compared to the active turbulent disc at larger disc radii. The disc heating produced by this irradiated wall provides a positive gradient region of the temperature in the dead zone in front of the wall. This is crucially important for slowing planetary migration because Lindblad torques are inversely proportional to the disc temperature. Furthermore, we show that low turbulence of the dead zone is self-consistently induced by dust settling, resulting in the Kelvin–Helmholtz instability (KHI). We show that the strength of turbulence arising from the KHI in the dead zone is  α= 10−5  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号