首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Mount Etna is an open conduit volcano, characterised by persistent activity, consisting of degassing and explosive phenomena at summit craters, frequent flank eruptions, and more rarely, eccentric eruptions. All eruption typologies can give rise to lava flows, which represent the greatest hazard by the volcano to the inhabited areas. Historical documents and scientific papers related to the 20th century effusive activity have been examined in detail, and volcanological parameters have been compiled in a database. The cumulative curve of emitted lava volume highlights the presence of two main eruptive periods: (a) the 1900–1971 interval, characterised by a moderate slope of the curve, amounting to 436 × 106 m3 of lava with average effusion rate of 0.2 m3/s and (b) the 1971–1999 period, in which a significant increase in eruption frequency is associated with a large issued lava volume (767 × 106 m3) and a higher effusion rate (0.8 m3/s). The collected data have been plotted to highlight different eruptive behaviour as a function of eruptive periods and summit vs. flank eruptions. The latter have been further subdivided into two categories: eruptions characterised by high effusion rates and short duration, and eruptions dominated by low effusion rate, long duration and larger volume of erupted lava. Circular zones around the summit area have been drawn for summit eruptions based on the maximum lava flow length; flank eruptions have been considered by taking into account the eruptive fracture elevation and combining them with lava flow lengths of 4 and 6 km. This work highlights that the greatest lava flow hazard at Etna is on the south and east sectors of the volcano. This should be properly considered in future land-use planning by local authorities.  相似文献   

2.
The formation of compound lava fields is a common feature of basaltic volcanic areas such as Mount Etna and Hawaii. It is generally promoted by a breakin-slope which results into a decrease of the mean flow velocity and the rapid adjustment to new rheological conditions. In fact, on a steep slope the flow is generally focused into long-lived lava tubes or channels. On the contrary, in correspondence of a flat ground the propagation of a lava field is guaranteed by the continuos opening of new ephemeral vents, and by the overlapping of lava lobes or tongues the length of which is order of 10−1−102 m. At Mount Etna these flow units show a complex structure which reflects the existence of a central plug zone and lateral shear zones, and an internal structure characterized by a succession of lava layers separated by gas-rich layers which occur in correspondence of vesicle alignments. Such internal structure insulates the active moving core and preserves high lava temperatures, favoring the advancement of the flow units. The evolution of a compound lava field may be thus envisaged as a spatial and temporal succession of lava tubes. An example of this situation may be found in the 1983 and 1991–93 Etnean eruptions, where the propagation of long-lived compound lava fields through a great number of small subarterial flow units gave origin to a source of natural hazards for some of the communities living on the flanks of the volcano. The detailed study of the structure of the described lava flows helps understand their emplacement dynamics and evaluate the associated volcanic, hazard.  相似文献   

3.
We have investigated the effect of undercooling and deformation on the evolution of the texture and the crystallization kinetics of remelted basaltic material from Stromboli (pumice from the March 15, 2007 paroxysmal eruption) and Etna (1992 lava flow). Isothermal crystallization experiments were conducted at different degrees of undercooling and different applied strain rate (T = 1,157–1,187 °C and $ \dot{\gamma }_{i} $ γ · i  = 4.26 s?1 for Stromboli; T = 1,131–1,182 °C and $ \dot{\gamma }_{i} $ γ · i  = 0.53 s?1 for Etna). Melt viscosity increased due to the decrease in temperature and the increase in crystal content. The mineralogical assemblage comprises Sp + Plg (dominant) ± Cpx with an overall crystal fraction (?) between 0.06 and 0.27, increasing with undercooling and flow conditions. Both degree of undercooling and deformation rate deeply affect the kinetics of the crystallization process. Plagioclase nucleation incubation time strongly decreases with increasing ΔT and flow, while slow diffusion-limited growth characterizes low ΔT—low deformation rate experiments. Both Stromboli (high strain rate) and Etna (low strain rate) plagioclase growth rates (G) display relative small variations with Stromboli showing higher values (4.8 ± 1.9 × 10?9 m s?1) compared to Etna (2.1 ± 1.6 × 10?9 m s?1). Plagioclase average nucleation rates J continuously increase with undercooling from 1.4 × 106 to 6.7 × 106 m?3 s?1 for Stromboli and from 3.6 × 104 to 4.0 × 106 m?3 s?1 for Etna. The extremely low value of 3.6 × 104 m?3 s?1 recorded at the lowest undercooling experiment for Etna (ΔT = 20 °C) indicates that the crystallization process is growth-dominated and that possible effects of textural coarsening occur. G values obtained in this paper are generally one or two orders of magnitude higher compared to those obtained in the literature for equivalent undercooling conditions. Stirring of the melt, simulating magma flow or convective conditions, facilitates nucleation and growth of crystals via mechanical transportation of matter, resulting in the higher J and G observed. Any modeling pertaining to magma dynamics in the conduit (e.g., ascent rate) and lava flow emplacement (e.g., flow rate, pāhoehoe–‘a‘ā transition) should therefore take the effects of dynamic crystallization into account.  相似文献   

4.
The town of Zafferana Etnea, located on the southeastern slope of Mt. Etna volcano (Italy), has been repeatedly threatened by lava flows in recent centuries. The last serious threat occurred during the 1991–1993 eruption, when the lava front came to a halt only 1.7 km from the centre of town. Morphostructural data derived from light detection and ranging (LiDAR) surveys carried out on Etna in 2005 have enabled us to evaluate the risk of lava invasion in a section (16 km2) of the Zafferana Etnea territory. Qualitative and quantitative results are obtained combining the information derived from LiDAR analysis with geological, morphological and structural data using geographic information systems technology (GIS). The study quantifies in unprecedented detail the areal extent and volume of forested and urban areas and its degree of exposure to different levels of hazard from future lava invasion. Nearly 52% of the urban texture fall into areas of moderate to high risk from lava invasion. Future land use planning should take these findings into account and promote new development preferentially in areas of lower risk.  相似文献   

5.
In this study, the hydro-climatic trends (1964–2006) of Tangwang River basin (TRB) were examined using the Kendall’s test. Moreover, the impacts of climate variability and land use change on streamflow in each sub-basin were assessed using the Soil and Water Assessment Tools (SWAT) model. The results indicated that annual mean flow and peak flow showed insignificant decreasing trends (?0.14 m3 s?1 year?1, 1 %; ?8.67 m3 s?1 year?1, 40 %), while annual low flow exhibited a slightly increasing trend (0.02 m3 s?1 year?1, 11 %). Correspondingly, the annual precipitation for the entire basin decreased by 0.02 mm year?2, while the annual means of daily mean, maximum and minimum temperature increased significantly by 0.07, 0.10 and 0.02 °C year?1, respectively. On the other hand, with the implementation of “Natural Forest Protection Project” and “Grain for Green Project”, the forests in TRB totally increased by 744.5 km2 (4.00 %) from 1980 to 2000. Meanwhile, the grasslands and the farmlands decreased by 378.0 km2 (?1.98 %) and 311.9 km2 (?1.63 %), respectively. Overall, land use changes played a more important role for the streamflow reduction than climate change for SUB1, SUB2 and SUB3, in which the primary conversions were from grassland, farmland and bare land to forests. Conversely, in SUB4, the influence of climate variability was predominant. The results obtained could be a reference for water resources planning and management under changing environment.  相似文献   

6.
The Deccan Traps or the basalts of western India are the largest exposure of basic lava flows covering about 500,000 km2. Groundwater occurrence in the Deccan Traps is in phreatic condition in the weathered zone above the hard rock and in semi-confined condition in the fissures, fractures, joints, cooling cracks, lava flow junctions and in the inter-trappean beds between successive lava flows, within the hard rock. Dug wells, dug-cum-bored wells and boreholes or bore wells are commonly used for obtaining groundwater. The yield is small, usually in the range of 1–100 m3/day. The average land holding per farming family is only around 2 ha. Recently, due to the ever increasing number of dug wells and deep bore wells, the water table has been falling in several watersheds, especially in those lying in the semi-arid region of the traps, so that now the emphasis has shifted from development to sustainable management. Issues like climatic change, poverty mitigation in villages, sustainable development, rapid urbanization of the population, and resource pollution have invited the attention of politicians, policy makers, government agencies and non-governmental organizations towards watershed management, forestation, soil and water conservation, recharge augmentation and, above all, the voluntary control of groundwater abstraction in the Deccan Traps terrain.  相似文献   

7.
Monitoring the spatiotemporal changes in wetlands and assessing their causal factors is critical for developing robust strategies for the conservation and restoration of these ecologically important ecosystems. In this study, the spatiotemporal changes in the land cover system within a Himalayan wetland and its catchment were assessed and correlated using a time series of satellite, historical, and field data. Significant changes in the spatial extent, water depth, and the land system of the Hokersar wetland were observed from the spatiotemporal analysis of the data from 1969 to 2008. The wetland area has shrunk from 18.75 km2 in 1969 to 13 km2 in 2008 with drastic reduction in the water depth of the wetland. The marshy lands, habitat of the migratory birds, have shrunk from 16.3 km2 in 1969 to 5.62 km2 in 2008 and have been colonized by various other land cover types. The land system and water extent changes within the wetland were related to the spatiotemporal changes in the land cover and hydrometeorological variables at the catchment scale. Significant changes in the forest cover (88.33–55.78 km2), settlement (4.63–15.35 km2), and water bodies (1.75–0.51 km2) were observed in the catchment. It is concluded that the urbanization, deforestation, changes in the hydrologic and climatic conditions, and other land system changes observed in the catchment are the main causes responsible for the depleting wetland extent, water depth, and biodiversity by adversely influencing the hydrologic erosion and other land surface processes in the catchment. All these causes and effects are manifest in the form of deterioration of the water quality, water quantity, the biodiversity changes, and the decreasing migratory bird population in the wetland.  相似文献   

8.
Land cover and vegetation in Lake Baikal basin (LBB) are considered to be highly susceptible to climate change. However, there is less information on the change trends in both climate and land cover in LBB and thus less understanding of the watershed sensitivity and adaptability to climate change. Here we identified the spatial and temporal patterns of changes in climate (from 1979 to 2016), land cover, and vegetation (from 2000 to 2010) in the LBB. During the past 40 years, there was a little increase in precipitation while air temperature has increased by 1.4 °C. During the past 10 years, land cover has changed significantly. Herein grassland, water bodies, permanent snow, and ice decreased by 485.40 km2, 161.55 km2 and 2.83 km2, respectively. However, forest and wetland increased by 111.40 km2 and 202.90 km2, respectively. About 83.67 km2 area of water bodies has been converted into the wetland. Also, there was a significant change in Normalized Difference Vegetation Index (NDVI), the NDVI maximum value was 1 in 2000, decreased to 0.9 in 2010. Evidently, it was in the mountainous areas and in the river basin that the vegetation shifted. Our findings have implications for predicting the safety of water resources and water eco-environment in LBB under global change.  相似文献   

9.
In this study, we performed leaching experiments for timescales of hours-to-months in deionized water on fresh volcanic ash from Mt. Etna (Italy) and Popocatépetl (Mexico) volcanos to monitor Fe release as a function of ash mineral chemistry and size, with the aim of clarifying Fe release mechanisms and eventually evaluating the impact of volcanic ash on marine and lacustrine environments. To define sample mineralogy and Fe speciation, inclusive characterization was obtained by means of XRF, SEM, XRPD, EELS and Mössbauer spectroscopies. For Etna and Popocatépetl samples, glass proportions were quantified at 73 and 40%, Fe2O3 total contents at 11.6–13.2 and 5.8 wt%, and Fe3+/FeTot ratios at 0.33 and 0.23, respectively. Leaching experiments showed that significant amounts of iron, ~?30 to 150 and ~?750 nmol g?1 l?1 for pristine Etna and Popocatépetl samples, respectively, are released within the first 30 min as a function of decreasing particle size (from 1 to 0.125 mm). The Popocatépetl sample showed a very sustained Fe release (up to 10 times Etna samples) all along the first week, with lowest values never below 400 nmol g?1 l?1 and a maximum of 1672 nmol g?1 l?1 recorded after 5 days. This sample, being composed of very small particles (average particle size 0.125 mm) with large surface area, likely accumulated large quantities of Fe-bearing sublimates that quickly dissolved during leaching tests, determining high Fe release and local pH decrease (that contributed to release more Fe from the glass) at short timescale (hours-to-days). The fractional Fe solubility (FeS) was 0.004–0.011 and 0.23% for Etna and Popocatépetl samples, respectively, but no correlation was found between Fe released in solution and either ash Fe content, glass/mineral ratio or mineral assemblage. Results obtained suggest that volcanic ash chemistry, mineralogy and particle size assume a relevant role on Fe release mostly in the medium-to-long timescale, while Fe release in the short timescale is dominated by dissolution of surface sublimates (formed by physicochemical processes occurring within the eruption plume and volcanic cloud) and the effects of such a dissolution on the local pH conditions. For all samples, a moderate to sustained Fe release occurred for leaching times comparable with their residence time within the euphotic zone of marine and lacustrine environments (variable from few minutes to few hours), revealing their possible contribution to increase Fe bioavailability.  相似文献   

10.
Das  Tapas  Jana  Antu  Mandal  Biswajit  Sutradhar  Arindam 《GeoJournal》2021,87(4):765-795

Urbanization produces substantial land use changes by causing the construction of different urban infrastructures in the city region for habitation, transportation, industry, and other reasons. As a result, it has a significant impact on Land Surface Temperature (LST) by disrupting the surface energy balance. The objective of this paper is to assess the impact of land-use/land-cover (LU/LC) dynamics on urban land surface temperature (LST) of Bhubaneswar City in Eastern India during 30 years (1991–2021) using Landsat data (TM, ETM + , and OLI/TIRS) and machine learning algorithms (MLA). The finding reveals that the mean LST over the entire study domain grows significantly between 1991 and, 2021due to urbanization (β coefficient 0.400, 0.195, 0.07, and 0.06 in 1991, 2001, 2011, and 2021 respectively) and loss of green space (β coefficient − 0.295, − 0.025, − 0.125 and − 0.065 in 1991, 2001, 2011 and 2021 respectively). The highest class recorded for agricultural land (49.60 km2, accounting for 33.94% of the total land area) was in 1991 followed by vegetation (41.27 km2, 28.19% of the total land area), and built-up land (27.59 km2, 18.84% of the total land area). The sharp decline of vegetation cover will continue until 2021 due to increasing built-up areas (r = − 0.531, − 0.329, − 0.538, and − 0.063 in the 1991, 2001, 2011 and 2021 respectively). Built-up land (62.60 km2, accounting for 42.76% of the total land area, an increase of 35.01 km2 from 1991) as the highest class followed by water bodies (21.57%, 32.60 km2 of the land area), and agricultural land (31.57 km2, 21.57% of the land area) in 2021. Remote sensing techniques proved to be an important tool to urban planners and policymakers to take adequate steps to promote sustainable development and minimize urbanization influence on LST. Urban green space (UGS) can help improve the overall liveability and environmental sustainability of Bhubaneswar city.

  相似文献   

11.
The study demonstrates the potential of geographical information system and statistical-based approaches to identify the hydrological processes and demarcate the groundwater prospect zones of the Gangolli basin, Karnataka State, India. The basin is situated in humid tropical climate and influenced by three major rivers viz. Kollur (6th order stream), Chakra (6th order stream) and Haladi (7th order stream) which cover an area of ~1,512 km2 and cumulative length of ~84 km. Various thematic maps—drainage, geomorphology, geology, slope, soil, lineament and lineament density—were prepared using Survey of India topographic maps, Indian remote sensing (IRS-P6) images and other published maps. Hydrogeomorphologic characteristics were correlated with different morphometric parameters to identify the hydrological processes and demarcate the groundwater potential zones of the basin. All the hydrological units and morphometric parameters were assigned suitable weightages according to their relative importance to groundwater potentiality to identify the most deficit/surplus zones of groundwater. Based on hydrological characteristics, integrated thematic maps reveal that ~14 % (~217 km2) of basin area falls under very good, ~32 % (~486 km2) under good, ~23 % (~353 km2) under moderate, and 30 % (~443 km2) under poor zones for groundwater potential. From the sub-basin-wise prioritisation, it has been inferred that SB-III scored highest groundwater potential, followed by SB-X. Result of morphometric analyses with the hydrologic parameters indicates that ~99 % area of SB-III and SB-X are under very good to moderate groundwater potential zone. This study clearly demonstrates that hydrological parameters in relation with morphometric analyses are useful to demarcate the prospect zones of groundwater.  相似文献   

12.
13.
Wular Lake, one of the largest freshwater lakes of Jhelum River Basin, is showing signs of deterioration due to the anthropogenic impact and changes in the land use/land cover (LULC) and hydrometeorological climate of the region. The present study investigated the impacts of temporal changes in LULC and meteorological and hydrological parameters to evaluate the current status of Wular Lake environs using multisensor, multitemporal satellite and observatory data. Satellite images acquired for the years 1992, 2001, 2005, and 2008 were used for determining changes in the LULC in a buffer area of 5 km2 around the Wular Lake. LULC mapping and change analysis using the visual interpretation technique indicated significant changes around the Wular Lake during the last two decades. Reduction in lake area from 24 km2 in 1992 to 9 km2 in 2008 (?62.5 %) affected marshy lands, the habitat of migratory birds, which also exhibited drastic reduction from 85 km2 in 1992 to 5 km2 in 2008 (?94.117 %). Marked development of settlements (642.85 %) in the peripheral area of the Wular Lake adversely affected its varied aquatic flora and fauna. Change in climatic conditions, to a certain extent, is also responsible for the decrease in water level and water spread of the lake as witnessed by decreased discharge in major tributaries (Erin and Madhumati) draining into the Wular Lake.  相似文献   

14.
Watershed degradation due to soil erosion and sedimentation is considered to be one of the major environmental problems in Iran. In order to address the critical conditions of watershed degradation in arid and semiarid regions, a study based on the Modified Pacific Southwest Inter-Agency Committee (MPSIAC) model was carried out at Golestan watershed, northeast of Iran. The model information layers comprising nine effective factors in erosion and sedimentation at the watershed site were obtained by digitalization and spatial interpolation of the basic information data in a GIS program. These factors are geology, soil, climate, runoff, topography, land cover, land use, channel, and upland erosion. The source data for the model were obtained from available records on rainfall and river discharge and sediment, topography, land use, geology, and soil maps as well as field surveys and laboratory analysis. The results of the MPSIAC model indicated that 60.75 % (194.4 km2) and 54.97 % (175.9 km2) of the total watershed area were classified in the heavy sedimentation and erosion classes, and the total basin sediment yield and erosion were calculated as 4,171.1 and 17,813.4 m3 km?2 year?1, respectively. In the sensitivity analysis, it was found that the most sensitive parameters of the model in order of importance were topography (slope), land cover and use, runoff, and channel erosion (R 2?=?0.92–0.94), while geology, climate (rainfall), soil, and upland erosion factors were found to have moderate effect to the model output (R 2?=?0.74–0.59).  相似文献   

15.
This study presents laser step-heating 40Ar/39Ar age determinations of basaltic lava samples from Tamu Massif, the oldest and largest edifice of the submarine Shatsky Rise in the northwest Pacific and Earth’s proposed largest volcano. The rocks were recovered during Integrated Ocean Drilling Program Expedition 324, which cored 160 m into the igneous basement near the summit of Tamu Massif. The analyzed lavas cover all three major stratigraphic groups penetrated at this site and confirm a Late Jurassic/Early Cretaceous age for the onset of Shatsky Rise volcanism. Lavas analyzed from the lower and middle section of the hole yield plateau ages between 144.4 ± 1.0 and 143.1 ± 3.3 Ma with overlapping analytical errors (2σ), whereas a sample from the uppermost lava group produced a significantly younger age of 133.9 ± 2.3 Ma suggesting a late or rejuvenated phase of volcanism. The new geochronological data infer minimum (average) melt production rates of 0.63–0.84 km3/a over a time interval of 3–4 million years consistent with the presence of a mantle plume.  相似文献   

16.
The main objective of the study was to assess the integrated multiple hydrological hazards and their environmental and socio-economic risks in Himalaya through geographical information system (GIS) and database management system (DBMS). The Dabka Watershed constitutes a part of the Kosi Basin in the Kumaun Lesser Himalaya has been selected for the case illustration. The Dabka DBMS is constituted of three GIS modules, that is, geo-informatics, hydro-informatics and hazard-informatics. Through the integration and superimposing of these modules prepared Hydrological Hazard Index to identify the level of vulnerability for existing hydrological hazards and their socio-economic and environmental risks. The results suggested that geo-environmentally most stressed barren land areas have high rate of runoff, flood magnitude, erosion sediment load and denudation during rainy season particularly in the month of August (i.e., respectively, 84.56 l/s/km2, 871.80 l/s/km2, 78.60 t/km2 and 1.21 mm/year), which accelerates high hazards and their socio-economic and environmental risks, whereas geo-environmentally least stressed dense forest areas experience low rate of stream runoff, flood magnitude, erosion sediment load and denudation in the same season and month (i.e., respectively, 20.67 l/s/km2, 58.12 l/s/km2, 19.50 t/km2 and 0.20 mm/year) comparatively have low hazards and their socio-economic and environmental risks. The other frazzled geo-environment that also found highly vulnerable for natural hazards and their risks is agricultural land due to high stream runoff, flood magnitude, erosion sediment load and denudation rates (i.e., respectively, 53.15 l/s/km2, 217.95 l/s/km2, 90.00 t/km2 and .92 mm/year). This makes it necessary to take up an integrated and comprehensive sustainable land use policy for the entire Himalaya region based on the scientific interpretation of the crucial linkages between land use and hydrological hazards, that is, floods, erosion, landslides during rainy season and drought due to dry-up of natural springs and streams during summer season. The study would help the village, district and state development authority to formulate decision support system for alternate planning and management for the Himalaya region.  相似文献   

17.
Land use/land cover (LU/LC) that are significant elements for the interconnection of human activities and environment monitoring can be useful to find out the deviations of saving a maintainable environment. Remote sensing is a very useful tool for the affair of land use or land cover monitoring, which can be helpful to decide the allocation of land use and land cover. Supervised classification-maximum likelihood algorithm in GIS was applied in this study to detect land use/land cover changes observed in Kan basin using multispectral satellite data obtained from Landsat 5 (TM) and 8 (OLI) for the years 2000 and 2016, respectively. The main aim of this study was to gain a quantitative understanding of land use and land cover changes in Kan basin of Tehran over the period 2000–2016. For this purpose, firstly supervised classification technique was applied to Landsat images acquired in 2000 and 2016. The Kan basin was classified into five major LU/LC classes including: Built up areas, garden, pasture, water and bare-land. Change detection analysis was performed to compare the quantities of land cover class conversions between time intervals. The results revealed both increase and decrease of the different LU/LC classes from 2000 to 2016. The results indicate that during the study period, built-up land, and pastures have increased by 0.2% (76.4 km2) and 0.3% (86.03 km2) while water, garden and bare land have decreased by 0, 0.01% (3.62 km2) and 0.4% (117.168 km2), respectively. Information obtained from change detection of LU/LC can aid in providing optimal solutions for the selection, planning, implementation and monitoring of development schemes to meet the increasing demands of human needs in land management.  相似文献   

18.
Romero  Jorge E.  Moreno  Hugo  Polacci  Margherita  Burton  Mike  Guzmán  Danny 《Landslides》2022,19(6):1321-1338

Antuco (37.4°S, 71.4°W; Chile) is a dominantly basaltic stratovolcano whose original?~?3300 m altitude main cone experienced a catastrophic sector collapse at?~?7.1 cal ka BP, producing a volcanic debris avalanche deposit (VDAD) with hummocky surface and?~?6.4 km3 of volume. We carried out geological studies of its debris avalanche deposit, which was distributed to the W and displays a longitudinal facies transformation from edifice’s megablocks and block to mixed facies in distal areas (up to 25 km from the scar). Our observations support the behavior of the avalanche beginning as a translational slide, and then as plug flow when confined within the Laja River valley. Clay abundance and high content of hydrothermally altered material may suggest active participation of water; flow velocities are estimated to?~100 m s?1. We primarily identify the steep-sided flanks of the cone, and hydrothermal alteration promoted the edifice instability, while basement seismogenic structures may have ultimately triggered the landslide. Subsequent landslide-led events include the transformation of the volcanic activity with explosive eruptions producing a sequence of dilute pyroclastic density currents (PDCs) ending?~3.4 ky BP, and extensive lava effusion rapidly reconstructing the collapsed edifice. Moreover, the Antuco VDAD also blocked the natural output of the Laja Lake, increasing its level by?~200 m and then triggering cataclysmic outburst floods by dam rupture, preserved as high-energy alluvial beds with ages between 2.8 and 1.7 ky BP. The Antuco constitutes an excellent example of a critical chain of events initiated by a stratovolcano lateral collapse and warns for detailed hazard investigations to better comprehend its related impacts.

  相似文献   

19.
Eritrea is a country with rich gold, silver and base-metal deposits and geothermal energy resources associated with all the five volcanoes located within the Danakil graben. Due to low rainfall, the country has to depend on imported food and food imports have crossed >?46% in the recent years. Although the cultivable land is about 16,000 km2, only 5030 km2 land is being cultivated due to insufficient water resources. The per capita water requirement is projected to fall below 1300 m3/year from the present 1470 m3/year. The country’s GDP has fallen from 1.3% in 2013 to 0.3% in 2015. Each geothermal province associated with the active volcanoes can support to generate 445 million m3 of desalinated water from the Red Sea. Providing basic needs like water and energy will boost the country’s economy and lift the socio-economic status of 6 million people in the country.  相似文献   

20.
Coastal plains are amongst the most densely populated areas in the world. Many coastal peatlands are drained to create arable land. This is not without consequences; physical compaction of peat and its degradation by oxidation lead to subsidence, and oxidation also leads to emissions of carbon dioxide (CO2). This study complements existing studies by quantifying total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal peatlands over longer timescales. Results show that the peat volume loss was 19.8 km3, which lowered the Dutch coastal plain by 1.9 m on average, bringing most of it below sea level. At least 66 % of the volume reduction is the result of drainage, and 34 % was caused by the excavation and subsequent combustion of peat. The associated CO2 respiration is equivalent to a global atmospheric CO2 concentration increase of ~0.39 ppmv. Cultivation of coastal peatlands can turn a carbon sink into a carbon source. If the path taken by the Dutch would be followed worldwide, there will be double trouble: globally significant carbon emissions and increased flood risk in a globally important human habitat. The effects would be larger than the historic ones because most of the cumulative Dutch subsidence and peat loss was accomplished with much less efficient techniques than those available now.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号