首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

4.
N-body simulations of the Magellanic stream   总被引:1,自引:0,他引:1  
A suite of high-resolution N -body simulations of the Magellanic Clouds–Milky Way system are presented and compared directly with newly available data from the H  i Parkes All-Sky Survey (HIPASS). We show that the interaction between Small Magellanic Clouds (SMC) and Large Magellanic Clouds results in both a spatial and kinematical bifurcation of both the stream and the leading arm. The spatial bifurcation of the stream is readily apparent in the HIPASS data, and the kinematical bifurcation is also tentatively identified. This bifurcation provides strong support for the tidal disruption origin for the Magellanic stream. A fiducial model for the Magellanic Clouds (MCs) is presented upon completion of an extensive parameter survey of the potential orbital configurations of the MCs and the viable initial boundary conditions for the disc of the SMC. The impact of the choice of these critical parameters upon the final configurations of the stream and leading arm is detailed.  相似文献   

5.
We present an analysis of the spatial distribution of various stellar populations within the Large Magellanic Cloud (LMC). We combine mid-infrared selected young stellar objects, optically selected samples with mean ages between ∼9 and ∼1000 Myr and existing stellar cluster catalogues to investigate how stellar structures form and evolve within the LMC. For the analysis we use Fractured Minimum Spanning Trees, the statistical Q parameter and the two-point correlation function. Restricting our analysis to young massive (OB) stars, we confirm our results obtained for M33, namely that the luminosity function of the groups is well described by a power law with index −2, and that there is no characteristic length-scale of star-forming regions. We find that stars in the LMC are born with a large amount of substructure, consistent with a two-dimensional fractal distribution with dimension     and evolve towards a uniform distribution on a time-scale of ∼175 Myr. This is comparable to the crossing time of the galaxy, and we suggest that stellar structure, regardless of spatial scale, will be eliminated in a crossing time. This may explain the smooth distribution of stars in massive/dense young clusters in the Galaxy, while other, less massive, clusters still display large amounts of structure at similar ages. By comparing the stellar and star cluster distributions and evolving time-scales, we show that infant mortality of clusters (or 'popping clusters') has a negligible influence on the galactic structure. Finally, we quantify the influence of the elongation, differential extinction and contamination of a population on the measured Q value.  相似文献   

6.
We present a new analysis of the deepest pure-ultraviolet (UV) observations with the highest angular resolution ever performed. A set of 12 exposures with the Hubble Space Telescope ( HST ) WFPC2 and F160BW filter obtained in parallel observing mode, which cover ∼12 arcmin2 in the Large Magellanic Cloud (LMC), north of the bar and in the 'general field' region of the LMC, contain stars with far-UV monochromatic magnitudes as faint as 22 mag. The 198 detected UV sources represent an accumulated exposure of  ≥ 2 × 104 s  and reveal stars as faint as   m UV≃ 20 mag  . We combine these observations with deep UBVI charge-coupled device (CCD) imaging of the same region reaching as faint as   V ≃ 26 mag  , and reselect probable optical counterparts for the UV sources. After a two-stage search-and-analysis process, we detect robust counterparts for 129 stars. These are mostly upper main-sequence stars, from early B to early A spectral classes, with several F stars. We point out the lack of blue supergiants, which could have been easily detected in our survey. We measure a foreground extinction   E ( B − V ) ≃ 0.08 mag  by Galactic dust and a surface density of star formation rate twice the average Galactic value. These observations indicate that relatively recent star formation took place even off the bar of the LMC.  相似文献   

7.
8.
9.
We present multicolour images of the hosts of three z  = 2 QSOs previously detected in the R band by our group. The luminosities, colours and sizes of the hosts overlap with those of actively star-forming galaxies in the nearby Universe. Surface brightness radial profiles over the outer resolved areas roughly follow either an r 1/4 or an exponential law. These properties give support to the young host galaxy interpretation of the extended light around QSOs at high redshift. The rest-frame UV and UV–optical colours are inconsistent with the hypothesis of a scattered halo of light from the active nucleus by a simple optically thin scattering process produced by dust or hot electrons. If the UV light is indeed stellar, star formation rates of hundreds of solar masses per year are implied, an order of magnitude larger than in field galaxies at similar redshifts and above. This might indicate that the QSO phenomenon (at least the high-luminosity one) is preferentially accompanied by enhanced galactic activity at high redshifts.  相似文献   

10.
11.
12.
Colour–magnitude diagrams (CMDs) are presented for the first time for 10 star clusters projected on to the Small Magellanic Cloud (SMC). The photometry was carried out in the Washington system C and T 1 filters allowing the determination of ages by means of the magnitude difference between the red giant clump and the main-sequence turnoff (MSTO), and metallicities from the red giant branch (RGB) locus. The clusters all have ages in the range 1.5–4 Gyr and metallicities between  −1.3 < [Fe/H] < −0.6  , with respective errors of ∼0.5 Gyr and 0.3 dex. This increases substantially the sample of intermediate-age clusters in the SMC with well-derived parameters. We combine our results with those for other clusters in the literature to derive as large and homogeneous a data base as possible (totalling 26 clusters) in order to study global effects. We find evidence for two peaks in the age distribution of SMC clusters, at ∼6.5 and 2.5 Gyr, in good agreement with previous hints involving smaller samples. The most recent peak occurs at a time that corresponds to a very close encounter between the Large Magellanic Cloud (LMC) and the SMC according to the recent dynamical models of Bekki et al. that they used to explain the enhancement of LMC clusters with this age. It appears cluster formation may have been similarly stimulated in the SMC by this encounter as well. We also find very good agreement between cluster ages and metallicities and the prediction from a bursting model from Pagel and Tautvaišienė with a burst that occurred 3 Gyr ago. These two lines of evidence together favour a bursting cluster formation history as opposed to a continuous one for the SMC.  相似文献   

13.
We present CCD photometry in the Washington system C and T 1 passbands down to   T 1∼ 22  in the fields of L35, L45, L49, L50, L62, L63 and L85, seven poorly studied star clusters in the inner region of the Small Magellanic Cloud (SMC). We measured T 1 magnitudes and   C − T 1  colours for a total of 114 826 stars distributed throughout cluster areas of 13.7 × 13.7 arcmin2 each. Cluster radii were estimated from star counts distributed throughout the entire observed fields. The seven clusters are generally characterized by a relatively small angular size and by a high field star contamination. We performed an in-depth analysis of the field star contamination of the colour–magnitude diagrams (CMDs), and statistically cleaned the cluster CMDs. Based on the best fits of isochrones computed by the Padova group to the  ( T 1,  C − T 1)  CMDs, we derive ages for the sample, assuming Z = 0.004, finding ages between 25 Myr and 1.2 Gyr. We then examined different relationships between positions in the SMC, age and metallicity of a larger sample of clusters including our previous work whose ages and metallicities are on the same scale used in this paper. We confirm previous results in the sense that the further a cluster is from the centre of the galaxy, the older and more metal poor it is, with some dispersion; although clusters associated with the Magellanic Bridge clearly do not obey the general trend. The number of clusters within ∼ 2° of the SMC centre appears to have increased substantially after ∼2.5 Gyr ago, hinting at a burst.  相似文献   

14.
We use high-resolution N -body/smoothed particle hydrodynamics (SPH) simulations to study the hydrodynamical interaction between the Large Magellanic Cloud (LMC) and the hot halo of the Milky Way. We investigate whether ram pressure acting on the satellite's interstellar medium can explain the peculiarities observed in the H  i distribution and the location of the recent star formation activity.
Due to the present nearly edge-on orientation of the disc with respect to the orbital motion, compression at the leading edge can explain the high density region observed in H  i at the south-east border. In the case of a face-on disc (according to Mastropietro the LMC was moving almost face-on before the last perigalactic passage), ram pressure directed perpendicular to the disc produces a clumpy structure characterized by voids and high density filaments that resemble those observed by the Parkes H  i survey. As a consequence of the very recent edge-on motion, the Hα emission is mainly concentrated on the eastern side where 30 Doradus and most of the supergiant shells are located, although some Hα complexes form a patchy distribution on the entire disc. In this scenario, only the youngest stellar complexes show a progression in age along the leading border of the disc.  相似文献   

15.
Increasing evidence suggests that the Galactic halo is lumpy on kpc scales as a result of the accretion of at least a dozen small galaxies [Large and Small Magellanic Clouds (LMC/SMC), Sgr, Fornax, etc.]. Faint stars in such lumpy structures can significantly microlense a background star with an optical depth of 10−7–10−6, which is comparable to the observed value to the LMC. The observed microlensing events towards the LMC can be explained by a tidal debris tail from the progenitor of the Magellanic Clouds and Magellanic Stream. The LMC stars can either lense stars in the debris tail a few kpc behind the LMC, or be lensed by stars in the part of the debris tail in front of the LMC. The models are consistent with an elementary particle dominated Galactic halo without massive compact halo objects (MACHOs). They also differ from Sahu's LMC-self-lensing model by predicting a higher optical depth and event rate and lower concentration of events to the LMC centre.  相似文献   

16.
17.
Recent observational studies of intermediate-age star clusters (SCs) in the Large Magellanic Cloud (LMC) have reported that a significant number of these objects show double main-sequence turn-offs (DMSTOs) in their colour-magnitude diagrams (CMDs). One plausible explanation for the origin of these DMSTOs is that the SCs are composed of two different stellar populations with age differences of ∼300 Myr. Based on analytical methods and numerical simulations, we explore a new scenario in which SCs interact and merge with star-forming giant molecular clouds (GMCs) to form new composite SCs with two distinct component populations. In this new scenario, the possible age differences between the two different stellar populations responsible for the DMSTOs are due largely to secondary star formation within GMCs interacting and merging with already-existing SCs in the LMC disc. The total gas masses being converted into new stars (i.e. the second generation of stars) during GMC-SC interaction and merging can be comparable to or larger than the masses of the original SCs (i.e. the first generation of stars) in this scenario. Our simulations show that the spatial distributions of new stars in composite SCs formed from GMC-SC merging are more compact than those of stars initially in the SCs. We discuss both advantages and disadvantages of the new scenario in explaining fundamental properties of SCs with DMSTOs in the LMC and in the Small Magellanic Cloud (SMC). We also discuss the merits of various alternative scenarios for the origin of the DMSTOs.  相似文献   

18.
Colour–magnitude diagrams in the Washington system are presented for the first time for five star clusters projected on to the outer region of the Small Magellanic Cloud (SMC). The clusters are found to have ages in the range 0.1–1.0 Gyr, as derived from the fit of isochrones with   Z = 0.004  . This sample increases substantially the number of young clusters in the outer SMC – particularly in the south-east quadrant – with well-derived parameters. We combine our results with those for other clusters in the literature to derive as large and homogeneous a data base as possible (totalling 49 clusters) in order to study global effects. We find no conclusive evidence for a dispersion in the cluster ages and metallicities as a function of their distance from the galaxy centre, in the SMC outer region. L 114 and 115, although very distant, are very young clusters, lying in the bridge of the SMC and therefore most likely formed during the interaction which formed this feature. We also find very good agreement between the cluster age–metallicity relation (AMR) and the prediction from a bursting model from Pagel & Tautvaišienė with a burst that occurred 3 Gyr ago. Comparing the present cluster AMR with that derived by Harris & Zaritsky for field stars in the main body of the SMC, we find that field stars and clusters underwent similar chemical enrichment histories during approximately the last couple of Gyr, but their chemical evolution was clearly different between 4 and 10 Gyr ago.  相似文献   

19.
We present a mosaic image of the 1.4-GHz radio continuum emission from the Large Magellanic Cloud (LMC) observed with the Australia Telescope Compact Array (ATCA) and the Parkes Telescope. The mosaic covers     with an angular resolution of 40 arcsec, corresponding to a spatial scale of ∼10 pc in the LMC. The final image is suitable for studying emission on all scales between 40 arcsec and the surveyed area. In this paper, we discuss (i) the characteristics of the LMC's diffuse and compact radio continuum emission, (ii) the fraction of the emission produced by thermal processes and the implied star formation rate in the LMC and (iii) variations in the radio spectral index across the LMC. Two non-standard reduction techniques that we used to process the ATCA visibility data may be of interest for future wide-field radio continuum surveys. The data are open to the astronomical community and should be a rich resource for studies of individual objects such as supernova remnants, H  ii regions and planetary nebulae as well as extended features such as the diffuse emission from synchrotron radiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号