首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
乌兰图嘎超大型锗矿床含锗煤的矿物学   总被引:2,自引:0,他引:2  
内蒙古乌兰图嘎锗矿是我国近年来发现的产在煤层中的超大型锗矿床,锗金属储量达1600 t。以乌兰图嘎超大型锗矿床的含锗煤为研究对象,利用X射线衍射(XRD)、带能谱的扫描电镜(SEM-EDX)和电子探针(EPMA)详细研究了乌兰图嘎含锗煤及其同时代的红旗煤矿无矿煤的矿物学特征。分析结果表明,乌兰图嘎含锗煤中的主要矿物包括石英、蒙脱石;次要矿物包括长石、高岭石、伊利石;另含少量三水铝石、角闪石、叶蜡石、石膏、绿泥石、锐钛矿、黄铁矿、方解石、白云石和草酸钙石;微量的锆石、闪锌矿、白钨矿、重晶石、黄铜矿、卤化物、磷酸盐以及含Pb、Bi、Cr、As和Sb矿物。未发现含锗矿物。推测含锗煤中的锗可能主要呈有机结合,而Ba、Zn、Ti、W、Pb、Bi、Cr、Fe、As、Zr、Sb、Cu和REE可能主要与矿物相结合。此外,首次在乌兰图嘎含锗煤及红旗煤矿无矿煤中发现含银颗粒或自然银,推测胜利煤田的褐煤可能有相当规模的Ag矿化。  相似文献   

2.
为研究准格尔串草圪旦5号煤微量元素地球化学特征,采用光学显微镜、扫描电子显微镜和X射线衍射(XRD)方法观测煤中矿物组成及形态特征,应用电感耦合等离子质谱morphological feature(ICP-MS)方法测定煤中多种微量元素含量,运用数理统计方法研究微量元素在煤中的赋存特征。结果表明:5号煤中Be、F、U、Hg元素相对富集,含量高于研究区6号煤及华北煤中含量水平。5号煤中F、Se无机亲和性强,Be、As、U为亲有机元素;Hg与硫含量显著正相关。元素在煤中主要以有机结合态、无机结合态和硫化物结合态为主要赋存状态。  相似文献   

3.
为研究准格尔串草圪旦5号煤微量元素地球化学特征,采用光学显微镜、扫面电子显微镜和X射线衍射(XRD)方法观测煤中矿物组成及形态特征,应用电感耦合等离子质谱(ICP MS)方法测定煤中多种微量元素含量,运用数理统计方法研究微量元素在煤中的赋存特征。结果表明:5号煤中Li、Be、F、U、Hg 5种元素相对富集,含量高于研究区6号煤及中国煤中含量水平。5号煤中Li、F、Ga、Se无机亲和性强,Be、As、U为亲有机元素;Hg与硫含量显著正相关。各元素在煤中主要以有机结合态、无机结合态和硫化物结合态赋存。  相似文献   

4.
以河北开滦矿区晚古生代煤及其洗选产品为例,运用电感耦合等离子体质谱 (ICP-MS)和冷原子吸收光谱 (CV-AAS)方法对煤中主要微量有害元素 (包括 Be、 Cr、 Co、 Ni、 Cu、 Zn、 Ga、 As、 Se、 Mo、 Tl、 Pb、 Th、 U和 Hg)的含量及其在洗选过程中的迁移和分配特征进行了研究.通过对开滦矿区 10个矿井 47个煤层刻槽样品主要有害微量元素含量的统计,发现开滦矿区晚古生代煤中 Cr、 Ni、 Cu、 Zn、 Pb和 As富集.通过对原煤精煤中煤尾煤煤泥两套系列样品的分析,发现主要有害微量元素在精煤中都有不同程度的脱除,中煤中相对富集的元素有 Se和 Th,明显被脱除的元素有 Co和 Tl.除 Tl以外,尾煤中主要微量有害元素均有不同程度的富集,以 As的富集率最高,可达 34.4%, Hg的富集率最低,为 1.1%.煤泥中所有微量有害元素均相对富集,以 Hg的相对富集率最高,达 78.4%.因此,如果对尾煤和煤泥加以利用,需要特别关注 As和 Hg等微量有害元素对环境的影响.主要微量有害元素在洗选过程中的分配行为主要受控于它在煤中的赋存状态.  相似文献   

5.
基于采自鄂尔多斯盆地北缘—晋北区 16个原煤样中 43种元素的测试分析 ,通过因子分析、聚类分析研究了这些元素的赋存状态 ,并据 4个洗煤厂精煤样与两个模拟洗选实验精煤样的分析 ,探讨了煤中相对富集的有害元素的洗选洁净潜势。结果表明 :1Br与 Ba有较强的有机亲和性 ,Cd、Cs、Zn、Pb与 Hg部分与有机质有关 ,其他元素主要与矿物有关。元素 Mo、P、Pb、Zn、Cs及硫与两种主因子正相关 ,反映其赋存状态的复杂性。有些在其他岩类中被认为彼此关系不大的元素 ( Be与 S,Sb与碳酸盐矿物 ) ,在煤中却紧密共生。 2多数煤样中矿物主要由粘土矿…  相似文献   

6.
微量元素在煤中的赋存状态   总被引:6,自引:0,他引:6  
煤中微量元素的赋存状态决定了元素在煤加工利用和在表生条件下的地球化学行为,但煤中同一种元素可以有不同形式的赋存状态,不同的元素也可以拥有同一种赋存状态。煤中如黄铁矿、方铅矿等各种硫化物中含有的环境有害元素最多,在我国西南地区一些煤田的煤层中部分元素如Ge,As和S等则具有较高的有机亲合性,增加了洗选去除的难度,环境效应也更大。  相似文献   

7.
对猫岭-王家葳子金矿区矿石中伴生的微量元素研究表明,猫岭金矿的As,Cd,B,Be,Sn,Bi,Pb,Sb明显偏高,其中As,Cd,B高度富集,Bi,Sb,Sn,Be,Pb中度富集;王家崴子金矿Pb,Cr,Cd,Zn,Be,Sn,As明显偏高,其中Cd,Bi,As,Pb,Sn高度富集,Cu为中度富集。矿石中As,Bi,B含量较高与赋矿围岩中该元素高的原始富集有关。岩矿显微鉴定和多种数理统计分析综合研究表明,Pb,Zn,Cu主要以方铅矿、闪锌矿、黄铜矿和黝铜矿等独立矿物形式存在,部分呈类质同像形式分布于黄铁矿、毒砂等硫化物中。As以毒砂形式存在,部分以类质同像形式存在于黄铁矿、雌黄铁矿、白铁矿和黝铜矿中:Sb,Bi以固溶体混入物形式分布于黄铁矿、毒砂和黝铜矿中;Sn,B以独立矿物形式赋存于黄铁矿、方铅矿和黝铜矿中;Cd与方铅矿和闪锌矿、黝铜矿有关;部分Cr,Be,B与云母和粘土矿物有关。  相似文献   

8.
张岳  颜丹平  赵非  李旭拓  邱亮  张翼西 《岩石学报》2016,32(11):3252-3268
贵州开阳磷矿地区出露较为完整的下寒武统黑色岩系层序,这套黑色岩系中富含多种金属元素,但目前对岩系中主要低温成矿元素As、Sb、Au、Ag的地球化学背景异常与分布规律了解极少,对其形成背景与赋存状态无法进行深入讨论。本文以开阳磷矿地区下寒武统牛蹄塘组黑色岩系剖面作为研究对象,通过详细的野外地质调查、系统采样并进行地球化学分析、全岩硫同位素分析及黄铁矿电子探针分析,划分了详细的牛蹄塘组地层层序,对主要低温成矿元素(As、Sb、Au、Ag)的丰度异常、富集特征及赋存状态进行了研究,结果表明,黑色岩系中普遍富集As、Sb、Ag三种主要低温成矿元素,Au也在大部分层位富集。四种元素具有层控性的特点,在牛蹄塘组下部有机质含量较高的黑色白云质粉砂质页岩和黑色页岩层位中具有较高的元素丰度异常,在泥岩和粉砂岩混合层位元素丰度异常较低,钙质成分含量较高的层位元素含量较低。黄铁矿是黑色页岩中金的主要赋存矿物,也是Sb的重要赋存矿物,同时是Ag和As的次要赋存矿物;不同类型的黄铁矿,元素富集规律也不相同:As、Ag更容易富集在不规则集合体和草莓状黄铁矿中,Sb和Au则在散布的单颗粒黄铁矿中富集系数最高。  相似文献   

9.
淮南煤田深部A组煤中有害微量元素地球化学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
以淮南煤田深部A 组煤为研究对象,全层刻槽采集了煤、夹矸和顶底板岩石样品,采用电感耦合等离子质谱仪 (ICP-MS) 测试分析了样品中13 种有害微量元素的含量,对比研究了其分布特征,结合Tessier 五步形态提取法和相关性分 析探讨了煤中有害微量元素的赋存形态。结果表明:(1) 与中国上陆壳中各种微量元素含量均值相比,淮南深部A 组煤中 B,As,Se,Mo,Cd,Pb,Hg 的富集系数均大于1,在A 组煤中表现为富集;A 组煤中B,As,Se,Cd 的含量均高于淮南煤 田上部B 组煤、华北煤以及中国煤中的含量均值;(2) 相关性分析和逐级提取实验结果表明,A 组煤中微量元素主要以残 渣态和铁锰氧化物结合态存在,两者质量分数之和达到55%~98%,其中Ni,Mo,Cd,Hg,Cu,Pb 和Zn 主要赋存于硫化物 矿物中,Mn 主要赋存于碳酸盐矿物中,V,Cr,Se,B 和As 主要赋存于硅铝酸盐等黏土矿物中。(3) B 元素示踪物源及沉 积环境结果显示,淮南煤田深部A 组煤成煤环境为海相咸水沉积环境,稳定的咸水沉积环境以及受海水影响等因素导致A 组煤中微量元素出现不同程度的富集。  相似文献   

10.
煤中硫是多种有害微量元素的重要载体。基于形态硫分析、电感耦合等离子质谱及X射线衍射等方法分析沁水盆地晚古生代煤中硫和有害微量元素的分布规律,探讨了煤中硫对有害微量元素富集的影响,运用带能谱的扫描电镜和光学显微镜划分煤中硫化物的微观赋存特征。结果表明,沁水盆地煤中硫整体上以有机硫为主,平均占全硫的78%,只有在太原组个别高硫煤中以黄铁矿硫为占优势。显微镜和扫描电镜下可识别出煤中黄铁矿的微观赋存状态包括莓球状、薄膜状、晶粒状、结核状、团窝状黄铁矿和细粒黄铁矿集合体,白铁矿的微观赋存特征包括聚片状、板状和矛头状白铁矿,部分白铁矿与黄铁矿共生。沁水盆地煤中有害微量元素含量整体较低,黄铁矿是有害微量元素As、Se和Hg的重要载体,而有机硫决定了煤中U的富集。研究认为,成煤时期海水对泥炭沼泽的影响导致太原组煤中全硫和黄铁矿硫较高,太原组煤中硫的来源具有多样性,煤中黄铁矿具有多阶段演化的特点。  相似文献   

11.
To better understand the formation mechanism of coal-hosted Ge ore deposits, this paper reports on the petrological, mineralogical, and geochemical compositions of the low-Ge coals in the Shengli Coalfield (Inner Mongolia, China), using optical microscopy, field emission-scanning electron microscopy, X-ray fluorescence, X-ray diffraction, and inductively coupled plasma mass spectrometry. The samples in the present study closely neighbor the previously-reported Wulantuga coal-hosted Ge ore deposit (both No. 6 Coal). In comparison with the Wulantuga Ge-rich coals, the low-Ge coals of the Shengli field display higher moisture (27.59% on average) and lower pyritic sulfur contents (0.53%). Both the low-Ge and Ge-rich coals are generally high in inertinite, and have varying but relatively low huminite contents. Preservation of fecal pellets as macrinite is notable in both the low-Ge and Ge-rich coals, and the position of the fecal pellets appears to be within tunnels or chambers within the wood. Quartz, kaolinite, pyrite, and gypsum are the major crystalline phases identified in most of the Ge-rich and low-Ge coals, but the low-Ge coals contain significantly less pyrite and are more abundant in non-mineral Ca and Mg. Ca-oxalate of authigenic origin is observed, generally occurring as cell-fillings in the low-Ge coals. Otherwise mineral-free organic matter in the low-Ge coals would be expected to have an inherent ash yield of around 6%, derived from the inorganic elements (mainly non-mineral Ca and Mg) that occur either in the organic matter or as dissolved ions in the pore water and form the sulfate species in low-temperature (oxygen-plasma) ash residues. The highly-elevated trace elements, including Be, Ge, As, Sb, W, Hg, and Tl, that occur in the Ge-rich coals of the Wulantuga deposit, are significantly depleted in the low-Ge coals. Lateral migration of Ge–W- and As–Hg–Sb–Tl-rich solutions through the original peat swamp for the Wulantuga Ge ore deposit has led to significant enrichment of Ge on the margin of the coal basin but decreasing Ge concentrations toward to the inner part of the basin. Such a migration direction is different to those in the previously-reported for the hydrothermal solutions in the Lincang (Yunnan of China) and Spetzugli (Russian Far East) Ge ore deposits, where the solutions migrated vertically from granite to peat along faults and led to a dome-shaped Ge distribution in the relevant coal seam.  相似文献   

12.
This study presents the concentrations and modes of occurrence of trace elements in 81 coal samples from the Çan basin of northwestern Turkey. The concentration of trace elements in coal were determined by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Additionally, traditional coal parameters were studied by proximate, ultimate, X-ray diffraction, and petrographic analyses. Twenty trace elements, including As, B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se Sn, Th, Tl, U, V, and Zn, receive much attention due to their related environmental and human health concerns. The Çan coals investigated in this study are lignite to sub-bituminous coal, with a broad range of ash yields and sulphur contents. The trace element concentrations show variety within the coal seams in the basin, and the affinities vary among locations. The concentrations of B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se, Sn, Tl, and Zn in Çan coals are within the Swaine's worldwide concentration range, with the exception of As, Th, U, and V. On the other hand, compared with world coals, the Çan basin coals have higher contents of As, B, Cu, Co, Mo, Pb, Th, U, V, and Zn. Based on statistical analyses, most of the trace elements, except for U, show an affinity to ash yield. Elements including As, Cd, Hg, Se, Cu, Mo, Ni, and Zn, show a possible association with pyrite; however, the elements Se, B, and Mo can be have both organic and inorganic associations.  相似文献   

13.
The concentration, distribution and modes of occurrence of trace elements in thirty coals, four floors and two roofs from Northern China were studied. The samples were collected from the major coalfields of Shanxi Province, Shaanxi Province, Inner Mongolian Autonomous Region, and Ningxia Hui Autonomous Region. The concentrations of seventeen potential hazardous trace elements, including Hg, As, Se, Pb, Cd, Br, Ni, Cr, Co, Mo, Mn, Be, Sb, Th, V, U, Zn, and five major elements P, Na, Fe, Al, and Ca in coals were determined.Compared with average concentration of trace elements in Chinese coal, the coals from Northern China contain a higher concentration of Hg, Se, Cd, Mn, and Zn. They may be harmful to the environment in the process of combustion and utilization. Vertical variations of trace elements in three coal seams indicated the distributions of most elements in coal seam are heterogeneous. Based on statistical analyses, trace elements including Mo, Cr, Se, Th, Pb, Sb, V, Be and major elements including Al, P shows an affinity to ash content. In contrast, Br is generally associated with organic matter. Elements As, Ni, Be, Mo, and Fe appear to be associated with pyrite. The concentrations of trace elements weakly correlate either to coal rank or to maceral compositions.  相似文献   

14.
Based on the analyses of 43 elements in 16 samples of the raw coal and feed coal collected from the northern Ordos basin and Shanxi Province, the modes of occurrence of these elements were studied using the method of cluster analysis and factor analysis, and the cleaning potential of the hazardous elements relatively enriched in the coals was discussed by analyzing six samples of the cleaned coal from the coal-washing plants and coal cleaning simulation experiments. The results shows that the elements Br and Ba show a strong affinity to the organic matter, Cs, Cd, Pb, Zn and Hg partly to the organic matter, and the other trace elements are mainly associated with the mineral matter. Cs, Mo, P, Pb, Zn and S have positive correlations with the two principal factors, reflecting the complexity of their modes of occurrence. Some elements that were thought to show a faint relationship (Be with S and Sb with carbonates) in other rocks are found to have a strong interrelation in the coals. Clay minerals (mainly k  相似文献   

15.
The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that a number of elements in the Pernik coals (F, V, As, Pb, Mo, Li, Sr, Ti, Ga, Ni, Ge, Cr, Mn, etc.) reveal mobility in water and could have some environmental concerns.  相似文献   

16.
The ash yield and concentrations of twenty-four minor and trace elements, including twelve potentially hazardous trace elements were determined in Mukah coal from Sarawak, Malaysia. Comparisons made to the Clarke values show that Mukah coal is depleted in Ag, Ba, Be, Cd, Co, Mn, Ni, Se, U, and V. On the other hand, it is enriched in As, Cr, Cu, Pb, Sb, Th, and Zn. Among the trace elements studied, V and Ba are associated predominantly with the clay minerals. Manganese, Cr, Cu, Th, and Ni are mostly bound within the aluminosilicate, sulphide and/or carbonate minerals in varying proportions, though a portion of these elements are also organically bound. Arsenic, Pb and Sb are mostly organically bound, though some of these elements are also associated with the sulphide minerals. Zinc is associated with both the organic and inorganic contents of the coal. Among the potentially hazardous trace elements, Be, Cd, Co, Mn, Ni, Se, and U may be of little or no health and environmental concerns, whereas As, Cr, Pb, Sb and Th require further examination for their potential health and environmental concerns. Of particular concern are the elements As, Pb and Sb, which are mostly organically bound and hence cannot be removed by physical cleaning technologies. They escape during coal combustion, either released as vapours to the atmosphere or are adsorbed onto the fine fly ash particles.  相似文献   

17.
The geochemistry of trace elements in the underground and open-pit mine of the Goze Delchev subbituminous coal deposit have been studied. The coals in both mines are highly enriched in W, Ge and Be, and at less extent in As, Mn and Y as compared with the world-wide Clarkes for subbituminous coals. Ni and Ti are also enhanced in the underground coals, and Zr, Cr and Mo in the open-pit mine coals.Characteristic for the trace element contents in the deposit is a regular variation with depth. The following patterns were distinguished for profile I: a — the element content decreases from the bottom to the top of the bed paralleling ash distribution (Fe, Co, As, Sb, V, Y, Mo, Cs, REE, Hf, Ta, Th, P and Au); b — Ge and W are enriched in the near-bottom and near-top coals; c — in the middle part of the bed the content of K and Rb is maximal, while that of U is slightly enriched; d — Ba content decreases from the top to the bottom of the bed. In profile II, W and Be contents decrease from the bottom to the top. The near-bottom, and especially the near-roof samples of profile IV are highly enriched in Ge, while for W the highest is the content of the near-bottom sample.Ge, Be, As, Mn, Cl and Br are mainly organically associated. The organic affiliation is still strong for Co, B, Sr, Ba, Sb, U, Th, Mo, La, Ce, Sm, Tb and Yb in the underground coals, and Fe, Co, Na, W, Sr, Y and Ag in the coals from the open-pit mine. K, Rb, Ti, Zr, Hf and Ta are of dominant inorganic affinity. The chalcophile and siderophile elements correlate positively with Fe and each other and may be bound partly with pyrite or other sulphides and iron containing minerals.Compared statistically by the t-criteria, the elements Na, Li, Cu, Zn, Pb, Cr, Ni, Co, Mo, Fe and Be are of higher content in the open-pit mine. Tungsten is the only element of higher concentration in the underground mine. The contents of Ge, As, Sr, V, Mn, Y, Zr and P are not statistically different in both mines.It was supposed that there were multiple sources of the trace elements in the deposit. The source of the highly enriched elements (W, Ge, Be, and As) most probably were the thermal waters in the source area. The contemporary mineral springs are of high content of these elements. Another source were the hosting Mesta volcanic rocks, which are enriched in Sb, Mo, Hf, U, Th, As, Li and Rb. Some of the volcanics were hydrothermally altered and enriched or depleted of many elements. Thus, the hydrothermal solutions were also suppliers of elements for the coals. It is obvious that the contents, distribution and paragenesis, of the trace elements in both Goze Delchev coals reflect the geochemical specialization of the source area, including rocks, paleo- and contemporary thermal waters.  相似文献   

18.
The origin and distribution of twelve potentially Hazardous Air Pollutants (HAPs; As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) identified in the 1990 Clean Air Act Amendments were examined in relation to the maceral composition of the A1 bed (Paleocene, Calvert Bluff Formation, Wilcox Group) of the Calvert mine in east-central Texas. The 3.2 m-thick A1 bed was divided into nine incremental channel samples (7 lignite samples and 2 shaley coal samples) on the basis of megascopic characteristics. Results indicate that As, Cd, Cr, Ni, Pb, Sb, and U are strongly correlated with ash yield and are enriched in the shaley coal samples. We infer that these elements are associated with inorganic constituents in the coal bed and may be derived from a penecontemporaneous stream channel located several kilometers southeast of the mining block. Of the HAPs elements studied, Mn and Hg are the most poorly correlated to ash yield. We infer an organic association for Mn; Hg may be associated with pyrite. The rest of the trace elements (Be, Co, and Se) are weakly correlated with ash yield. Further analytical work is necessary to determine the mode of occurrence for these elements. Overall, concentrations of the HAPs elements are generally similar to or less than those reported in previous studies of lignites of the Wilcox Group, east-central region, Texas. Petrographic analysis indicates the following ranges in composition for the seven lignite samples: liptinites (5–8%), huminites (88–95%), and inertinites (trace amounts to 7%). Samples from the middle portion of the A1 bed contain abundant crypto-eugelinite compared to the rest of the samples; this relationship suggests that the degradation of plant material was an important process during the development of the peat mire. With the exception of Hg and Mn, relatively low levels of the HAPs elements studied are found in the samples containing abundant crypto-eugelinite. We infer that the peat-forming environment for this portion of the coal bed was very wet with minimal detrital input. Relatively high concentrations of crypto-humotelinite were found in samples from the top and base of the coal bed. The presence of abundant crypto-humotefinite in this part of the coal bed suggests the accumulation of wood-rich peat under conditions conducive to a high degree of tissue preservation in the peat mire. Although several of the trace elements (Be, Co, Ni, and Sb) exhibit enrichment in these samples, they are not necessarily chemically associated with humotelinite. We infer that these elements, with the exception of Be, are possibly associated with deposition of the roof and floor rock of the coal bed; however, further analytical work would be necessary to confirm this hypothesis. Beryllium may have an organic origin.  相似文献   

19.
Results of the study of a new Ge-bearing area of the Pavlovka brown coal deposit are presented. Ge is accumulated in bed III2 lying at the bottom of the Late Paleogene-Early Neogene coal-bearing sequence adjacent to the Middle Paleozoic granite basement. The Ge content in coals and coal-bearing rocks varies in different sections from 10 to 200–250 ppm, reaching up to 500–600 ppm in the highest-grade lower part of the bed. The metalliferous area reveals a geochemical zoning: complex Ge-Mo-W anomalies subsequently grades along the depth and strike into Mo-W and W anomalies. Orebodies, like those at many Ge-bearing coal deposits, are concentric in plan and dome-shaped in cross-section. Coals in their central parts, in addition to Ge, W, and Mo, are enriched in U, As, Be, Ag, and Au. Distribution of Ge and other trace elements in the metalliferous sequence and products of gravity separation of Ge-bearing coals is studied. These data indicate that most elements (W, Mo, U, As, Be) concentrated like Ge in the Ge-bearing bed relative to background values are restricted to the organic matter of coals. The electron microscopic study shows that Ge-bearing coals contain native metals and intermetallic compounds in association with carbonates, sulfides, and halogenides. Coal inclusions in the metalliferous and barren areas of the molasse section strongly differ in contents of Ge and associated trace elements. Ge was accumulated in the coals in the course of the interaction of ascending metalliferous solutions with organic matter of the buried peat bogs in Late Miocene. The solutions were presumably represented by N2-bearing thermal waters (contaminated by volcanogenic CO2) that are typical of granite terranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号