首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Star formation is a fundamental process that dominates the life-cycle of various matters in galaxies: Stars are formed in molecular clouds, and the formed stars often affect the surrounding materials strongly via their UV photons, stellar winds, and supernova explosions. It is therefore revealing the distribution and properties of molecular gas in a galaxy is crucial to investigate the star formation history and galaxy evolution. Recent progress in developing millimeter and sub-millimeter wave receiver systems has enabled us to rapidly increase our knowledge on molecular clouds. In this proceedings, the recent results from the surveys of the molecular clouds in the Milky Way and the Magellanic Clouds as well as the Galactic center as the most active regions in the Milky Way are presented. The high sensitivity with unrivaled high resolution of ALMA will play a key role in detecting denser gas that is tightly connected to star formation.  相似文献   

2.
Two models of molecular cloud in disk galaxies are proposed to investigate the formation of giant molecular clouds (GMCs) under the gravitational instability and random collision using PP(Particle–Particle) simulation. Having analysed simulation outputs of the two models and comparing them with observation, we are able to draw some general conclusions, the most significant ones of which are: 1) Similar to results obtained previously, the gravitational instability can make small clouds form large clouds faster than random collision. 2) The differential rotation in gravitational instability model plays a positive role in agglomeration of molecular clouds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We explore the role of active galactic nuclei (AGN) in establishing and/or maintaining the bimodal colour distribution of galaxies by quenching their star formation and hence, causing their transition from the blue to the red cloud. Important tests for this scenario include (i) the X-ray properties of galaxies in the transition zone between the two clouds and (ii) the incidence of AGN in post-starbursts, i.e. systems observed shortly after (<1 Gyr) the termination of their star formation. We perform these tests by combining deep Chandra observations with multiwavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). Stacking the X-ray photons at the positions of galaxies  (0.4 < z < 0.9)  not individually detected at X-ray wavelengths suggests a population of obscured AGN among sources in the transition zone and in the red cloud. Their mean X-ray and mid-infrared (IR) properties are consistent with moderately obscured low-luminosity AGN, Compton thick sources or a mix of both. Morphologies show that major mergers are unlikely to drive the evolution of this population but minor interactions may play a role. The incidence of obscured AGN in the red cloud (both direct detections and stacking results) suggests that black hole (BH) accretion outlives the termination of the star formation. This is also supported by our finding that post-starburst galaxies at z ≈ 0.8 and AGN are associated, in agreement with recent results at low z . A large fraction of post-starbursts and red cloud galaxies show evidence for at least moderate levels of AGN obscuration. This implies that if AGN outflows cause the colour transformation of galaxies, then some nuclear gas and dust clouds either remain unaffected or relax to the central galaxy regions after quenching their star formation.  相似文献   

4.
It is well known that galaxies accumulating large quantities of gas undergo violent bursts of star formation. This is believed to be due to tidal interactions of galaxies leading to the infall of gas into their central regions. Bursts of star formation in this scenario are transitory phenomena and can be induced only by external sources.However, in some cases there is no direct evidence of tidal interactions in starburst galaxies.We discuss another possibility of bursting phenomena in galaxies connected with nonlinear feedback processes in mass-exchange between components of star-forming region. We consider a three-component model including cold clouds, warm gas and massive stars and take into account the delay processes in the transformation of hot gas ejected by massive stars and evaporated from cold phase, into the warm phase. Self-regulating mechanism of phase transition of small clouds into warm gas due to heating radiation of massive stars is also taken into account.The analysis of stability of the system shows that it could be unstable even in case of a small efficiency in the birth of massive stars. The evolution of unstable nonlinear perturbations leads to the development of self-sustained nonlinear oscillations of star formation.  相似文献   

5.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

6.
We have used the Australia Telescope Compact Array (ATCA) to search for 6.7-GHz methanol maser emission towards 87 galaxies. We chose the target sources using several criteria, including far-IR luminosities and the presence of known OH megamasers. In addition, we searched for methanol masers in the nearby starburst galaxy NGC 253, making a full spectral-line synthesis image. No emission was detected in any of the galaxies, with detection limits ranging from 25 to 75 mJy. This is surprising, given the close association of OH and methanol masers in Galactic star formation regions, and significantly constrains models of OH megamaser emission. This absence of maser emission may be a result of low methanol abundances in molecular clouds in starburst galaxies.  相似文献   

7.
Assuming that a disk galaxy is composed of an ambient pervasive gas, small clouds, molecular clouds and stars, its evolution is studied through examining the interchange processes among them. Main results obtained are: (1) The star formation rate is directed by the formation process of molecular clouds. (2) Depending upon the parameters there may be three or four types of evolution of disk galaxies: the no star formation case, the active in the past and inactive at present star formation case, the burst-like star formation case and the very active in star formation case.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan between 30 September–6 October, 1984.  相似文献   

8.
A model is proposed for the formation of clouds of the La forest. Earlier calculations have shown that the UV emission from hot stars must play an important role in the reionization of the pregalactic medium (PGM). The formation of galaxies therefore occurred simultaneously with PGM ionization, and the reionization process was nonlinear. With allowance for this fact, the Gunn-Peterson effect, and the fact that galaxies exist at z ≈ 5, which follows from observations, we can conclude that galaxies began to form earlier, perhaps at z ≥ 10. The observed presence of heavy elements in La -forest clouds is evidence that these clouds were formed later than galaxies — from interstellar clouds ejected by galactic wind. The next generation of galaxies might have resulted from an increase in the masses of La -forest clouds due to their merging. Translated from Astrofizika, Vol. 43, No. 1, pp. 5-12, January–March, 2000.  相似文献   

9.
We present illustrative models for the UV to millimetre emission of starburst galaxies which are treated as an ensemble of optically thick giant molecular clouds (GMCs) centrally illuminated by recently formed stars. The models follow the evolution of the GMCs owing to the ionization-induced expansion of the H  ii regions and the evolution of the stellar population within the GMC according to the Bruzual & Charlot stellar population synthesis models. The effect of transiently heated dust grains/PAHs on the radiative transfer, as well as multiple scattering, is taken into account.
The expansion of the H  ii regions and the formation of a narrow neutral shell naturally explain why the emission from PAHs dominates over that from hot dust in the near- to mid-infrared, an emerging characteristic of the infrared spectra of starburst galaxies.
The models allow us to relate the observed properties of a galaxy to its age and star formation history. We find that exponentially decaying 107–108 yr old bursts can explain the IRAS colours of starburst galaxies. The models are also shown to account satisfactorily for the multiwavelength data on the prototypical starburst galaxy M82 and NGC 6090, a starburst galaxy recently observed by ISO . In M82 we find evidence for two bursts separated by 107 yr. In NGC 6090 we find that at least part of the far-infrared excess may be due to the age of the burst (6.4×107 yr). We also make predictions about the evolution of the luminosity of starbursts at different wavelengths which indicate that far-infrared surveys may preferentially detect older starbursts than mid-infrared surveys.  相似文献   

10.
We present subarcsecond-resolution, ground-based, near-infrared images of the central regions of a sample of 12 barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically 1 kpc in diameter. We also present Hubble Space Telescope near-infrared images of 10 of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In seven out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organized into spiral arm fragments, which are accompanied by dust lanes. Near-infrared colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.  相似文献   

11.
We have investigated the central regions of the galaxies in the NGC 3169/NGC 3166/NGC 3156 group with the multipupil fiber spectrograph of the 6-m telescope; the first (central) galaxy in the group is a spiral (Sa) one and the other two galaxies are lenticular ones. The group is known to have an extended HI cloud with a size of more than 100 kpc that is associated in its position, orientation, and rotation with the central galaxy NGC 3169. The mean age of the stellar populations in the centers of all three galaxies has been found to be approximately the same, ~1 Gyr. Since the galaxies are early-type ones and since NGC 3166 and NGC 3156 show no global star formation, we are dealing here with a synchronous star formation burst in the centers of all three galaxies.  相似文献   

12.
Luminous and Ultraluminous infrared galaxies (ULIRGs) contain the most intense regions of star formation in the local universe. Because molecular gas is the fuel for current and future star formation, the physical properties and distribution of the warm, dense molecular gas are key components for understanding the processes and timescales controlling star formation in these merger and merger remnant galaxies. We present new results from a legacy project on the Submillimeter Array which is producing high resolution images of a representative sample of galaxies with log L FIR >11.4 and D<200 Mpc.  相似文献   

13.
The properties of the low metallicity environments of dwarf galaxies are studied through dust observations in conjunction with the FIR fine-structure cooling lines. There is a striking enhancement of the I[CII]/I(CO) in dwarf galaxies that is explained by the decreased attenuation of the UV light in molecular clouds. An important consequence is that a significant mass of the molecular gas mass inventory can be missed through CO observations alone. Modeling the infrared spectral energy distribution into submillimeter wavelengths in dwarf galaxies reveals the presence of very cold (∼ 8K) dust,which accounts for a large fraction of the dust mass, until now missed by models using IRAS observations alone. In spite of the striking defficiency of the mid-infrared aromatic band carriers, cooling in the photodissociation regions, via [CII] line emission is a very efficient process. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

14.
Supernova (SN) explosions inject a considerable amount of energy into the interstellar medium (ISM) in regions with high-to-moderate star formation rates. In order to assess whether the driving of turbulence by supernovae is also important in the outer Galactic disc, where the star formation rates are lower, we study the spatial distribution of molecular cloud (MC) inclinations with respect to the Galactic plane. The latter contains important information on the nature of the mechanism of energy injection into the ISM. We analyse the spatial correlations between the position angles (PAs) of a selected sample of MCs (the largest clouds in the catalogue of the outer Galaxy published by Heyer et al). Our results show that when the PAs of the clouds are all mapped to values into the  [0°, 90°]  interval, there is a significant degree of spatial correlation between the PAs on spatial scales in the range of 100–800 pc. These scales are of the order of the sizes of individual SN shells in low-density environments such as those prevailing in the outer Galaxy and where the metallicity of the ambient gas is of the order of the solar value or smaller. These findings suggest that individual SN explosions, occurring in the outer regions of the Galaxy and in likewise spiral galaxies, albeit at lower rates, continue to play an important role in shaping the structure and dynamics of the ISM in those regions. The SN explosions we postulate here are likely associated with the existence of young stellar clusters in the far outer regions of the Galaxy and the ultraviolet emission and low levels of star formation observed with the Galaxy Evolution Explorer (GALEX) satellite in the outer regions of local galaxies.  相似文献   

15.
With the means of panoramic spectroscopy at the SAO RAS BTA telescope, we investigated the properties of stellar populations in the central regions of five early-type galaxies—the NGC524 group members. The evolution of the central regions of galaxies looks synchronized: the average age of stars in the bulges of all the five galaxies lies in the range of 3–6Gyr.Four of the five galaxies revealed synchronized bursts of star formation in the nuclei 1–2 Gyr ago. The only galaxy, in which the ages of stellar population in the nucleus and in the bulge coincide (i.e. the nuclear burst of star formation did not take place) isNGC502, the farthest from the center of the group of all the galaxies studied.  相似文献   

16.
N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

17.
In order to investigate the differences between the molecular clouds which are associated with the massive star forming regions and those which are not, we have performed the single-dish simultaneous observations of 12CO J=2-1 and J=3-2 lines toward a sample of 59 Spitzer Extended Green Objects (EGOs) as the massive star forming regions in the northern sky. Combining our results with the data of the 12CO J=1-0 observations toward the same sample EGOs in the literature, we have made the statistical comparisons on the intensities and linewidths of multiple 12CO lines between the molecular clouds associated with EGOs (EGO molecular clouds, in brief) and other non-EGO molecular clouds. On this basis, we have discussed the effects of the gas temperature, density, and velocity field distributions on the statistical characteristics of the two kinds of molecular clouds. It is found that both the EGO molecular clouds and non-EGO molecular clouds have similar mass ranges, hence we conclude that for the formation of massive stars, the key-important factor is probably not the total mass of a giant molecular cloud (GMC), but the volume filling factor of the molecular clumps in the GMC (or the compression extent of the molecular gas in the cloud).  相似文献   

18.
Dense molecular medium plays essential roles in galaxies. As demonstrated by the tight and linear correlation between HCN(1–0) and FIR luminosities among star-forming galaxies, from very nearby to high-z ones, the observation of a dense molecular component is indispensable to understand the star formation laws in galaxies. In order to obtain a general picture of the global distributions of dense molecular medium in normal star-forming galaxies, we have conducted an extragalactic CO(3–2) imaging survey of nearby spiral galaxies using the Atacama Submillimeter Telescope Experiment (ASTE). From the survey (ADIoS; ASTE Dense gas Imaging of Star-forming galaxies), CO(3–2) images of M 83 and NGC 986 are presented. Emphasis is placed on the correlation between the CO(3–2)/CO(1–0) ratio and the star formation efficiency in galaxies. In the central regions of some active galaxies, on the other hand, we often find enhanced or overluminous HCN(1–0) emission. The HCN(1–0)/CO(1–0) and HCN(1–0)/HCO+(1–0) intensities are often enhanced up to ∼0.2–0.3 and ∼2–3, respectively. Such elevated ratios have never been observed in the nuclear starburst regions. One possible explanation for these high HCN(1–0)/CO(1–0) and HCN(1–0)/HCO+(1–0) ratios is X-ray induced chemistry in X-ray dominated regions (XDRs), i.e., the overabundance of the HCN molecule in the X-ray irradiated dense molecular tori. If this view is true, the known tight correlation between HCN(1–0) and the star-formation rate breaks in the vicinity of active nuclei. Although the interpretation of these ratios is still an open question, these ratios have a great potential for a new diagnostic tool for the energy sources of dusty galaxies in the ALMA era because these molecular lines are free from dust extinction.  相似文献   

19.
As a result of internal processes or environmental effects like ram-pressure stripping or collisions, galaxies lose a significant part of their stellar and gaseous content. Whereas the impact of such stripping on galaxy evolution has been well studied, much less attention has been given to the fate of the expelled material in the intergalactic or intra cluster medium (IGM/ICM). Observational evidence exists showing that a fraction of the injected matter is actually recycled to form a new generation of galaxies, such as the Tidal Dwarf Galaxies discovered near numerous interacting systems. Using a set of multiwavelength data, we are now able to roughly analyze the processes pertaining to their formation: from an instability in the HI clouds, through the formation of molecular gas, and to the onset of star formation. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
Recent submm observations of dust emission from star forming regions are presented and combined with NIR and IRAS data. The spectra cover the range 0.3 to 1300 m and origin from ZAMS stars, compact Hii regions, low-luminosity objects in dark clouds and external galaxies. The dust emission spectra are interpreted in terms of density and temperature distributions around central heating sources. In addition, general properties like IR luminosity, optical depth, wavelength dependence of dust opacity and, in the case of galaxies, star formation efficiency are discussed.Paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号