首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The attempts at unified model fitting to explain the spectral variations in Cyg X-3 suggest equally probable fits with a combination of an absorbed blackbody and a separately absorbed power law with an exponential cut-off or a composite of absorbed free-free emission with a power law hard X-ray component apart from the iron emission line. These seemingly ordinary but ad hoc mixtures of simple X-ray emission mechanisms have a profound implication about the geometry of the X-ray source. While the first set suggests a black-hole nature of the compact object, the second combination is consistent with a neutron star binary picture. The spectral variability at hard X-ray energies above 30 keV can provide crucial input for the unified picture. In this paper, we present spectral observations of Cyg X-3, made in our on-going survey of galactic and extragalactic X-ray sources in the 20–200 keV energy region, using Large Area Scintillation counter Experiment. The data show a clear power-law photon spectrum of the form dN/dE ∼ E−2.8 in the 20 to 130 keV energy range. A comparison with earlier data suggests that the total number of X-ray photons in the entire 2–500 keV energy band is conserved at all time for a given luminosity level irrespective of the state. We propose that this behaviour can be explained by a simple geometry in which a thermal X-ray source is embedded in a hot plasma formed by winds from the accretion disk within a cold shell. The high/soft and low/hard X-ray states of the source are simply the manifestation of the extent of the surrounding scattering medium in which the seed photons are Comptonized and hot plasma can be maintained by either the X-ray driven winds or the magneto-centrifugal winds.  相似文献   

2.
We report the observation of nearest quasar 3C273 made with LASE instrument on November 20th, 1998 as a part of our continuing programme of balloon borne hard X-ray observations in the 20–200 keV band using high sensitivity Large Area Scintillation counter Experiment. Our data clearly show a steep spectrum in the 20–200 keV with power law spectral indexα = 2.26 ± 0.07. This is in complete contrast to the reported data from OSSE and BeppoSAX which suggest the value of 1.3 to 1.6 for the power law index in the X-ray energy band, but is quite consistent with the value derived for the high energy gamma ray data. A single power law fit in the X-ray and gamma ray energy bands points to a common origin of these photons and the absence of spectral break around 1 MeV as suggested in literature. We have reanalyzed the available data to study the temporal variability of the spectrum in the hard X-ray band. Our analysis reveals that 50 keV flux from the source, shows a strong modulation with a period of about 13.5 years. The analysis of the optical light curve of the source also supports the 5000 day period. We discuss the emission mechanism and the possible sites for X-ray photons along with the implications of the long term periodicity with respect to source geometry.  相似文献   

3.
We compute Fourier-resolved X-ray spectra of the Seyfert 1 Markarian 766 to study the shape of the variable components contributing to the 0.3–10 keV energy spectrum and their time-scale dependence. The fractional variability spectra peak at 1–3 keV, as in other Seyfert 1 galaxies, consistent with either a constant contribution from a soft excess component below 1 keV and Compton reflection component above 2 keV or variable warm absorption enhancing the variability in the 1–3 keV range. The rms spectra, which show the shape of the variable components only, are well described by a single power law with an absorption feature around 0.7 keV, which gives it an apparent soft excess. This spectral shape can be produced by a power law varying in normalization, affected by an approximately constant (within each orbit) warm absorber, with parameters similar to those found by Turner et al. for the warm-absorber layer covering all spectral components in their scattering scenario  [ N H∼ 3 × 1021 cm−2, log(ξ) ∼ 1]  . The total soft excess in the average spectrum can therefore be produced by a combination of constant warm absorption on the power-law plus an additional less variable component. On shorter time-scales, the rms spectrum hardens and this evolution is well described by a change in power-law slope, while the absorption parameters remain the same. The frequency dependence of the rms spectra can be interpreted as variability arising from propagating fluctuations through an extended emitting region, whose emitted spectrum is a power law that hardens towards the centre. This scenario reduces the short time-scale variability of lower energy bands making the variable spectrum harder on shorter time-scales and at the same time explains the hard lags found in these data by Markowitz et al.  相似文献   

4.
Lin  R. P. 《Solar physics》1987,113(1-2):217-220

We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (≲1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting ∼3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to ≳100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically ∼102 kV compared to ∼10 kV for auroral substorms.

  相似文献   

5.
We present XMM–Newton /EPIC spectra for the Laor et al. sample of Palomar Green (PG) quasars. We find that a power law provides a reasonable fit to the 2–5 keV region of the spectra. Excess soft X-ray emission below 2 keV is present for all objects, with the exception of those known to contain a warm absorber. However, a single power law is a poor fit to the 0.3–10.0 keV spectrum and instead we find that a simple model, consisting of a broken power law (plus an iron line), provides a reasonable fit in most cases. The equivalent width of the emission line is constrained in just 12 objects but with low (<2σ) significance in most cases. For the sources whose spectra are well fitted by the broken-power-law model, we find that various optical and X-ray line and continuum parameters are well correlated; in particular, the power-law photon index is well correlated with the FWHM of the Hβ line and the photon indices of the low- and high-energy components of the broken power law are well correlated with each other. These results suggest that the 0.3–10 keV X-ray emission shares a common (presumably non-thermal) origin, as opposed to suggestions that the soft excess is directly produced by thermal disc emission or via an additional spectral component. We present XMM–Newton Optical Monitor (OM) data, which we combine with the X-ray spectra so as to produce broad-band spectral energy distributions (SEDs), free from uncertainties due to long-term variability in non-simultaneous data. Fitting these optical–UV spectra with a Comptonized disc model indicates that the soft X-ray excess is independent of the accretion disc, confirming our interpretation of the tight correlation between the hard and soft X-ray spectra.  相似文献   

6.
Results of ASCA and ROSAT observations of the Seyfert 1 galaxy RX J0437.4−4711 are presented. The X-ray continuum spectrum can be described by the sum of a power law with photon index 2.15 ± 0.04 and a soft emission component characterized by a blackbody with temperature 29 ± 2 eV. The total luminosity of the soft component is larger than that of the power-law component if the power law is cut off around a few hundred keV. A weak absorption edge with τ = 0.26 ± 0.13 at the rest-frame energy of E  = 0.83 ± 0.05 keV and an Fe Kα line with EW = 430 ± 220 eV at an energy E  = 6.47 ± 0.15 keV are also detected. The X-ray flux showed a 47 per cent increase between two ASCA observations 4 months apart, but no spectral variability was seen. We argue that reprocessing of the hard X-ray emission cannot produce all the soft X-ray emission, since the total luminosity of the soft component is larger than that of the integrated power-law component. Similarities with some stellar black hole candidates are briefly discussed.  相似文献   

7.
8.
We present simultaneous ASCA and RXTE observations of Ark 564, the brightest known 'narrow-line' Seyfert 1 in the 2–10 keV band. The measured X-ray spectrum is dominated by a steep (Γ≈2.7) power-law continuum extending to at least 20 keV, with imprinted Fe K-line and edge features and an additional 'soft excess' below ∼1.5 keV. The energy of the iron K-edge indicates the presence of highly ionized material, which we identify in terms of reflection from a strongly irradiated accretion disc. The high reflectivity of this putative disc, together with its strong intrinsic O  viii Ly α and O  viii recombination emission, can also explain much of the observed soft excess flux. Furthermore, the same spectral model also provides a reasonable match to the very steep 0.1–2 keV spectrum deduced from ROSAT data. The source is much more rapidly variable than 'normal' Seyfert 1s of comparable luminosity, increasing by a factor of ∼50 per cent in 1.6 h, with no measurable lag between the 0.5–2 keV and 3–12 keV bands, consistent with much of the soft excess flux arising from reprocessing of the primary power-law component in the inner region of the accretion disc. We note, finally, that if the unusually steep power-law component is a result of Compton cooling of a disc corona by an intense soft photon flux, then the implication is that the bulk of these soft photons lie in the unobserved extreme ultraviolet.  相似文献   

9.
We present results of the ASCA observation of the Seyfert 2 galaxy NGC 4507. The 0.5–10 keV spectrum is rather complex and consists of several components: (i) a hard X-ray power law heavily absorbed by a column density of about 3-1023 cm−2, (ii) a narrow Fe Kα line at 6.4 keV, (iii) soft continuum emission well above the extrapolation of the absorbed hard power law and (iv) a narrow emission line at ∼0.9 keV. The line energy, consistent with highly ionized neon (Ne IX ), may indicate that the soft X-ray emission is derived from a combination of resonant scattering and fluorescence in a photoionized gas. Some contribution to the soft X-ray spectrum from thermal emission, as a blend of Fe L lines, by a starburst component in the host galaxy cannot be ruled out with the present data.  相似文献   

10.
Results of quasi-simultaneous SWIFT and RTT-150 observations for the X-ray nova SWIFT J174510.8-262411 in May–June 2013 at the decaying phase of its outburst are presented. It is shown that the nova spectrum can be fitted in a very wide energy range (from the infrared z and i bands to hard X-rays) by a single power law attenuated due to absorption but without any traces of the presence of a soft (blackbody) component. The presence of such a component is suggested by the generally accepted models of disk accretion onto a black hole in a binary system. The observation of a single power-law spectrum may imply that synchrotron radiation from the source’s relativistic jets makes a major contribution to its flux or that the accretion disk is everywhere hot, optically thin, and radiates nonthermally.  相似文献   

11.
12.
We have compared microwave imaging data for a small flare with simultaneous hard X-ray spectral observations. The X-ray data suggest that the power-law index of the energy distribution of the radiating electrons is 5.3 (thick-target) which differs significantly from the estimate ( = 1.4) from a homogeneous optically-thin gyrosynchrotron model which fits the radio observations well. In order to reconcile these results, we explore a number of options. We investigate a double power-law energy spectrum for the energetic electrons in the flare, as assumed by other authors: the power law is steep at low energies and much flatter at the higher energies which produce the bulk of the microwaves. The deduced break energy is about 230 keV if we tentatively ignore the X-ray emission from the radio-emitting electrons: however, the emission of soft photons by the flat tail strongly contributes to the observed hard X-ray range and would flatten the spectrum there. A thin-target model for the X-ray emission is also inconsistent with radio data. An inhomogeneous gyrosynchrotron model with a number of free parameters and containing an electron distribution given by the thick-target X-ray model could be made to fit the radio data.  相似文献   

13.
Soft X-ray emission from the X-ray source Per X-1 was observed in the 0.4–2 keV energy interval from a rocket borne X-ray detector. Spectral analysis of the data indicates that in the 0.4–2 keV band the X-ray emission from Per X-1 can be fitted either with a power law of slope-(4.8±1.2) or a thermal bremsstrahlung spectrum with akT value of (0.26 ?0.08 +0.12 ) keV. Such a steep spectrum is inconsistent with the spectrum measured above 2 keV. The measured flux in 0.4–2 keV band corresponds to X-ray luminosity of 3×1045 ergs s?1 for Per X-1.  相似文献   

14.
R. P. Lin 《Solar physics》1982,113(1-2):217-220
We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting 3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to 100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically 102 kV compared to 10 kV for auroral substorms.  相似文献   

15.
We use non-simultaneous Ginga ASCA ROSAT observations to investigate the complex X-ray spectrum of the Seyfert 2 galaxy Mrk 3. We find that the composite spectrum can be well described in terms of a heavily cut-off hard X-ray continuum, iron Kα emission and a soft X-ray excess, with spectral variability confined to changes in the continuum normalization and the flux in the iron line. Previous studies have suggested that the power-law continuum in Mrk 3 is unusually hard. We obtain a canonical value for the energy index of the continuum (i.e., α ≈ 0.7) when a warm absorber (responsible for an absorption edge observed near 8 keV) is included in the spectral model. Alternatively, the inclusion of a reflection component yields a comparable power-law index. The soft-excess flux cannot be modelled solely in terms of pure electron scattering of the underlying power-law continuum. However, a better fit to the spectral data is obtained if we include the effects of both emission and absorption in a partially photoionized scattering medium. In particular, the spectral feature prominent at ∼ 0.9 keV could represent O VIII recombination radiation produced in a hot photoionized medium. We discuss our results in the context of other recent studies of the soft X-ray spectra of Seyfert 2 galaxies.  相似文献   

16.
Gan  W.Q.  Li  Y.P.  Chang  J.  Tiernan  James M. 《Solar physics》2002,207(1):137-147
By changing a dimensionless calculation to a dimensional one, introducing a more accurate bremsstrahlung cross section, and using a more reasonable fitting energy range, we have recalculated the hard X-ray bremsstrahlung produced by a beam of power-law electrons with a lower energy cutoff (E c). The method to deduce E c from the hard X-ray spectral observations has therefore been refined in comparison with our previous one. The universality of this method has been clarified and discussed. We have applied this improved method to the 54 BATSE/Compton Gamma Ray Observatory (CGRO) hard X-ray events. It was found that about 44% of sample hard X-ray spectra can be directly explained by a beam of power-law electrons with a lower energy cutoff. The value of E c, varying from 45 keV to 97 keV, is on average 60 keV. Another 44% of sample hard X-ray spectra might be explained by a beam of power-law electrons with the energy cutoff lower than 45 keV, which is however beyond the availability of BATSE/CGRO. Still another 11% sample hard X-ray spectra cannot be explained by a beam of power-law electrons with a lower energy cutoff. These results, based on the lower energy resolution data, however, should be compared in the future with that based on a higher energy resolution data, like the data from HESSI.  相似文献   

17.
Zhang  J.  Huang  G.L. 《Solar physics》2004,219(1):135-148
Theoretical calculation has shown that the spectrum of the Compton backscattering component in solar hard X-ray flares has a peak around 30 keV for a primary power-law source. Thus the superposition of the Compton backscattering component could cause a photon spectrum received at the Earth to be flattened below the peak energy and steeper above the peak energy. On the other hand, because a thick-target bremsstrahlung photon with a given energy E only could be produced by a nonthermal electron with an energy larger than E, thus if a power-law electron spectrum is cutoff below an energy E c, then the produced photon spectrum will become flattened below E c. In this work we present a calculation of the joint effects of the Compton backscattering and the low-energy cutoff on the spectral characteristics of the received solar hard X-ray in the energy range 10–100 keV. The results show that the flattening caused purely by the Compton backscattering could be comparable with that by the low-energy cutoff for hard spectra. So, it is obvious that the joint effects of the low-energy cutoff and the Compton backscattering could result in the received photon spectra to be much more flattened at lower energies. On the other hand, compared to the primary photon spectrum, the received photon spectral index will increase about 0.15 due to the Compton backscattering at higher energy, which seems independent of the primary spectral index.  相似文献   

18.
We present ten years optical/UV/X-ray observations of 3C 273 performed using XMM–Newton between 2000 and 2009. The short-time scale variability behaviour of the soft and hard X-ray light curves may suggest different origins of the soft/hard X-ray emissions. We fit well the 0.2–10 keV X-ray spectrum with a hard power-law component plus a soft Comptonization component. The lack of Γ???F correlation of the hard power-law component and the weakness of iron K α lines may support dominance of the jet component. The soft X-ray excess correlates much better with ultraviolet than with the hard power-law component, strongly suggesting that soft excess emission originates from inverse Comptonization of UV photons.  相似文献   

19.
We report the spectral measurement of GRS 1915+105 in the hard X-ray energy band of 20–140keV. The observations were made on March 30th, 1997 during a quiescent phase of the source. We discuss the mechanism of emission of hard X-ray photons and the evolution of the spectrum by comparing the data with earlier measurements and an axiomatic model for the X-ray source.  相似文献   

20.
We have investigated with BeppoSAX the long term behaviour of the harder X-ray component of the supposed supermassive binary system η Car along its 5.52 year cycle. We have found that in March 1998 during egress from the last December 1997 eclipse, this component was the same as outside eclipse, but for a large (×3.5) increase of NH h , that can be attributed to the presence or formation of opaque matter in front of the source near periastron. Unexpectedly, at that time the iron 6.7 keV emission line was 40% stronger. BeppoSAX has for the first time found ahard X-ray tail extending to at least 50 keV, that cannot be adequately fitted with an additional hotter thermal component. The 2–100 keV spectrum of η Car is instead well fitted with an absorbed powerlaw spectrum with photon index 2.53, suggesting non-thermal emission as an alternative model for the core source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号