首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Barite occurrences related to the Cenozoic (Late Alpine) low-temperature hydrothermal activity are present in the continental Ohře (Eger) Rift area. A specific, Ra-bearing type of barite has been known under the name “radiobarite” from this area since 1904. Revision of 12 localities revealed the presence of alleged radiobarite only in the Teplice (Lahošť–Jeníkov) and Karlovy Vary areas. Barite from other localities is radium-poor. Barite crystals showing concentric oscillation colour zoning totally prevail. Isomorphous substitution of Sr (X×10−1 to X×wt%), Ca (X×10−2 wt%) and Fe (X×10−1 wt%) for Ba was proved. Average SrO contents of 0.4 wt% are markedly exceeded in some samples from Lahošť–Jeníkov (max. 3.2 wt%) and Karlovy Vary (max. 4.9 wt%). Besides inclusions of stoichiometric iron disulphide, the same samples also contain iron disulphides with unusual high contents of Co (max. 12.2 wt%) and Ni (max. to 8.4 wt%). Specific activity of 238U in the studied barites is very low while that of 226Ra reaches 8 Bq/g in several samples. Therefore, 226Ra is not in equilibrium with its parent uranium. These “radiobarites” or their parts must be therefore relatively young, not older than 10–15 ka. Very low uranium contents (<0.4 ppm) were also confirmed by neutron activation analyses of barite samples.

Unit-cell dimensions refined from X-ray powder diffraction data do not show any systematic variation with the measured chemical composition. Their values agree with the data given in the literature. Reflection half-widths, however, seem to correlate with chemistry. Peaks are wider in samples from Lahošť–Jeníkov and Karlovy Vary.

Sulphur and oxygen stable isotope compositions of the Cenozoic barite mineralization of Teplice area are very uniform (δ34S values between 3.9‰ and 7.1‰ CDT, and δ18O values between 6.1‰ and 7.7‰ SMOW), while the barites of Děc˘ín area show more variable sulphur sources. Sulphate derived from sediments of the Tertiary Most Basin seems to dominate for the Teplice area, while Cretaceous sediments are a more probable sulphur source in the Děc˘ín area. Calculation of oxygen isotope composition of hydrothermal fluids based on fluid inclusion homogenization temperatures and barite δ18O data shows δ18Ofluid values in the range of meteoric waters or δ18O – shifted deep circulating meteoric or basinal waters.  相似文献   


2.
The Berriedale Limestone formed at about 80°S paleolatitude and contains many glacial dropstones. It formed during a period of major Gondwana deglaciation.

The Berriedale Limestone contains mostly bryozoans, brachiopods and bivalves, with some intraclasts and rare pellets. The faunal diversity is low and the fauna are similar to the modern cold-water foramol faunal assemblage. Micrite, microspar and spar occur as equant to well developed rhombs of calcite. The coarse spar cements are bored and are ruptured by dropstones, indicating submarine origin of low-Mg calcite at water-temperatures of around 3°C. The mixing zone cementation was preceded by erosion of early formed crystals. The eroded crystals occur as inclusions in mixing zone cements.

The fauna are characterized by heavy δ13C and light δ18O. The whole-rock field of δ18O-δ13C falls at the edge of “Normal Marine Limestone” and deviates to lighter δ18O values (down to −16.7‰ PDB). Lightest δ18O values ( −22‰ PDB) of fresh-water sparry calcite cement are similar to those in the Early Permian continental tillites, suggesting that the Permian sea was diluted by isotopically light melt waters. Micrite δ18O values (−9.2 to −12.6‰ PDB) are within the range of whole-rock values. The δ18O values of calcite in shales are lighter than limestone values.

The δ18O values of the fauna give an unrealistic range of sea-water temperatures because the fauna have equilibrated with variable amounts of melt waters. However, calculated original δ18O values of the fauna indicate temperatures < 4°C. The heaviest δ18O of fauna gives cold temperatures of 9°C (with δw −2.8‰) and −3°C (with δw −6‰). The lightest values of sparry calcite cements (−22‰ PDB) indicate that the limestone reacted with cold melt waters.

The δ18O of Permian sea is estimated to be about +1.2‰ and was diluted by melt waters as light as −27‰ SMOW.  相似文献   


3.
Geochemical constraints on the bimodal origin of High Himalayan leucogranites   总被引:19,自引:0,他引:19  
S. Guillot  P. Le Fort 《Lithos》1995,35(3-4):221-234
Major and trace element and Rb-Sr isotope systematics of the Manaslu leucogranite, Central Nepal, have been examined to constrain the role of mineral fractionation and fluids in peraluminous granite petrogenesis. Biotite and tourmaline are, for the most part, mutually exclusive, with a predominance of two-mica leucogranites over tourmaline leucogranites. The 87Sr/86Sr initial isotopic ratios (Sri) indicate that leucogranitic melts were derived from two different sources, the two-mica leucogranites having a metagreywacke origin (with Sri < 0.752 and εNd < −15) and the tourmaline leucogranites a metapelitic one (Sri> 0.752; εNd > − 15). Such a bimodal nature of the source zone does not directly influence the magmatic evolution, except that probably the higher initial boron content in the metapelitic rocks may increase the Na2O/K2O ratio. In contrast, the amount of water present during melting principally controls in part anatectic processes and element behaviour. Water-saturated conditions probably occured during melting of metagreywackeous rocks and favoured crystallization of two-mica leucogranites whereas water-absent conditions prevailed during melting of metapelitic layers and favoured biotite, plagioclase and monazite fractionation in the source zone and tourmaline crystallization in the leucogranite.  相似文献   

4.
There are two types of gneisses, biotite paragneiss and granitic orthogneiss, to be closely associated with UHP eclogite at Shuanghe in the Dabie terrane. Both concentration and isotope composition of bulk carbon in apatite and host gneisses were determined by the EA-MS online technique. Structural carbonate within the apatite was detected by the XRD and FTIR techniques. Significant 13C-depletion was observed in the apatite with δ13C values of −28.6‰ to −22.3‰ and the carbon concentrations of 0.70–4.98 wt.% CO2 despite a large variation in δ18O from −4.3‰ to +10.6‰ for these gneisses. There is significant heterogeneity in both δ13C and δ18O within the gneisses on the scale of several tens meters, pointing to the presence of secondary processes after the UHP metamorphism. Considerable amounts of carbonate carbon occur in some of the gneisses that were also depleted in 13C primarily, but subjected to overprint of 13C-rich CO2-bearing fluid after the UHP metamorphism. The 13C-depleted carbon in the gneisses is interpreted to be inherited from their precursors that suffered meteoric–hydrothermal alteration before plate subduction. Both low δ13C values and structural carbonate in the apatite suggest the presence of 13C-poor CO2 in the UHP metamorphic fluid. The 13C-poor CO2 is undoubtedly derived from oxidation of organic matter in the subsurface fluid during the prograde UHP metamorphism.

Zircons from two samples of the granitic orthogneiss exhibit low δ18O values of −4.1‰ to −1.1‰, demonstrating that its protolith was significantly depleted in 18O prior to magma crystallization. U–Pb discordia datings for the 18O-depleted zircons yield Neoproterozoic ages of 724–768 Ma for the protolith of the granitic orthogneiss, consistent with protolith ages of most eclogites and orthogneisses from the other regions in the Dabie–Sulu orogen. Therefore, the meteoric–hydrothermal alteration is directly dated to occur at mid-Neoproterozoic, and may be correlated with the Rodinia supercontinental breakup and the snowball Earth event. It is thus deduced that the igneous protolith of the granitic orthogneiss and some eclogites would intrude into the older sequences composing the sedimentary protoliths of the biotite paragneiss and some eclogites along the northern margin of the Yangtze plate at mid-Neoproterozoic, and drove local meteoric–hydrothermal circulation systems in which both 13C- and 18O-depleted fluid interacted with the protoliths of these UHP rocks now exposed in the Dabie terrane.  相似文献   


5.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

6.
This paper reports the integrated application of petrographic and Sm–Nd isotopic analyses for studying the provenance of the Neoproterozoic Maricá Formation, southern Brazil. This unit encompasses sedimentary rocks of fluvial and marine affiliations. In the lower fluvial succession, sandstones plot in the “craton interior” and “transitional continental” fields of the QFL diagram. Chemical weathering probably caused the decrease of the 147Sm/144Nd ratios to 0.0826 and 0.0960, consequently lowering originally > 2.0 Ga TDM ages to 1.76 and 1.81 Ga. 143Nd/144Nd ratios are also low (0.511521 to 0.511633), corresponding to negative εNd present-day values (− 21.8 and − 19.6). In the intermediate marine succession, sandstones plot in the “dissected arc” field, reflecting the input of andesitic clasts. Siltstones and shales reveal low 143Nd/144Nd ratios (0.511429 to 0.511710), εNd values of − 18.1 and − 23.6, and TDM ages of 2.16 and 2.37 Ga. Sandstones of the upper fluvial succession have “dissected arc” and “recycled orogen” provenance. 143Nd/144Nd isotopic ratios are also relatively low, from 0.511487 to 0.511560, corresponding to εNd values of − 22.4 and − 21.0 and TDM of 2.07 Ga. A uniform granite–gneissic basement block of Paleoproterozoic age, with subordinate volcanic rocks, is suggested as the main sediment source of the Maricá Formation.  相似文献   

7.
Hydrogen and oxygen isotope studies were carried out on high and ultrahigh pressure metamorphic rocks in the eastern Dabie Mountains, China. The δ18O values of eclogites cover a wide range of −4.2 to +8.8‰, but the δD values of micas from the eclogites fall within a narrow range of −87 to −71‰. Both equilibrium and disequilibrium oxygen isotope fractionations were observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some eclogite samples. The δ18O values of −4 to −1‰ for some of the eclogites represent the oxygen isotope compositions of their protoliths which underwent meteoric water–rock interaction before the high to ultrahigh pressure metamorphism. Heterogeneous δ18O values for the eclogite protoliths implies not only the varying degrees of the water–rock interaction before the metamorphism at different localities, but also the channelized flow of fluids during progressive metamorphism due to rapid plate subduction. Retrograde metamorphism caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions and could be derived from structural hydroxyls dissolved in nominally anhydrous minerals.  相似文献   

8.
Geochemical and isotopic investigation of three small mafic intrusions (Løyning: 1250 × 150 m, Hogstad: 2000 × 200 m, Koldal: 1250 × 500 m) in the marginal zones of the Egersund-Ogna (Løyning, Koldal) and Åna-Sira massif-type anorthosites (Hogstad) (Rogaland Anorthositic Province, south Norway: 930 Ma) provides new insights into the late evolution of anorthositic diapirs. These layered mafic intrusions are essentially of norite, gabbronorite as well as leuconorite and display conspicuous evidence of subsolidus recrystallization. In Løyning and Hogstad, the modal layering is parallel to the subvertical foliation in the enclosing anorthosite. The northern part of the Koldal intrusion cuts across the foliation of the anorthosite, whereas in its southern part the subvertical layering is parallel to the anorthosite's foliation. The regularity of the layered structures suggests that the layering was initially acquired horizontally and later tilted during the final movements of the diapirs.

The least differentiated compositions of plagioclase and orthopyroxene in the three intrusions (An59–En68 in Løyning, An49–En64 in Hogstad and An44–En61 in Koldal) and the REE contents in apatite (Hogstad) indicate that their parent magmas were progressively more differentiated in the sequence Løyning–Hogstad–Koldal. Isotopic data (Løyning: 87Sr/86Sr: 0.70376–0.70457, εNdt: + 6.8 to + 2.7; Hogstad: 87Sr/86Sr: 0.70537–0.70588, εNdt: + 2.1 to − 0.5; Koldal: 87Sr/86Sr: 0.70659–0.70911, εNdt: + 3.5 to − 1.6) also indicate that in this sequence, parent magmas were characterized by a progressively more enriched Sr and Nd isotopic signature. In Løyning, the parent magma was slightly more magnesian and anorthitic than a primitive jotunite; in Hogstad, it is a primitive jotunite; and, in Koldal, an evolved jotunite. Given that plagioclase and orthopyroxene of the three intrusions display more differentiated compositions than the orthopyroxene and plagioclase megacryts of the enclosing anorthosites, it is suggested that the parent magmas of the small intrusions are residual melts after anorthosite formation which were entrained in the anorthositic diapir during its rise from lower crustal chambers.

Calculated densities of primitive jotunites (2.73–2.74 at FMQ, 0.15% H2O, 200 ppm CO2, 435 ppm F, 1150 °C, 3 kb) and evolved jotunites (2.75–2.76 at FMQ, 0.30% H2O, 400 ppm CO2, 870 ppm F, 1135 °C, 3 kb) demonstrate that they are much denser than the plagioclase of the surrounding anorthositic crystal mush (2.61–2.65). Efficient migration and draining of dense residual melts through the anorthositic crystal mush could have taken place along sloping floors (zones of lesser permeability in the mush), which occur along the margins of the rising anorthositic diapirs. This process takes into account the restricted occurrence of the mafic intrusions in the margins of the massif anorthosites. In a later stage, when the anorthosite was nearly consolidated, the residual melts were more differentiated (evolved jotunites) and could have been extracted into extensional fractures in the cooling and contracting anorthositic body in a similar way as aplitic dikes are emplaced in granitic plutons. As in the Rogaland Anorthositic Province, these dikes are much more abundant than the small mafic intrusions, collection and transport along dikes was probably more efficient than draining through the crystal mush.  相似文献   


9.
Mesozoic alkaline intrusive complexes are widespread in the southern portion of the North China Craton and can provide some important constraints on the evolution of the Mesozoic lithosphere beneath the region. Three selected intrusive complexes (Tongshi, Hongshan, and Longbaoshan) are generally high in alkalis (K2O+Na2O=913 wt.%) and Al2O3 (1421.6 wt.%) and low in CaO and TiO2 (<0.6 wt.%), with high and variable SiO2 contents. Rocks from these complexes are all enriched in LREE and LILE (Cs, Rb, Ba, U, Th), depleted in Nb and Ti, have a highly positive Pb anomaly, and are characterized by lack of a clear Eu anomaly despite trace element abundances and isotopic ratios that vary greatly between complexes. The Tongshi complex has high Cs (2.68.5 ppm) and REE abundances (∑REE=112.6297 ppm, (La/Yb)N=13.130.9) and MORB-like Sr–Nd–Pb isotopic ratios ((87Sr/86Sr)i<0.704; εNd>0; (206Pb/204Pb)i>18). The Hongshan complex has low REE concentrations (∑REE=28.2118.7 ppm, (La/Yb)N=4.614.7) and is moderately enriched as demonstrated by their Sr–Nd isotopic ratios ((87Sr/86Sr)i>0.706; εNd<−7). The Longbaoshan complex is extremely REE enriched (∑REE=211.3392.6 ppm, (La/Yb)N=32.460.9) and has an EM2-like Sr–Nd isotopic character ((87Sr/86Sr)i>0.7078; εNd<−11). We suggest that the Tongshi complex originated from the asthenosphere and the Hongshan complex and the Longbaoshan complex were derived from the partial melting of previously subduction-modified lithospheric mantle, in response to post-collisional lithospheric extension and asthenospheric upwelling. The occurrence of these alkaline intrusive complexes demonstrates that the lithosphere beneath the region must have been considerably thinned at the time of intrusion of these complexes. This study also shed light on the temporal evolution of the Mesozoic lithosphere and the timing of the lithospheric thinning.  相似文献   

10.
The isotopic composition and mass balances of sources and sinks of sulfur are used to constrain the limnological–hydrological evolution of the last glacial Lake Lisan (70–14 ka BP) and the Holocene Dead Sea. Lake Lisan deposited large amounts of primary gypsum during discrete episodes of lake level decline. This gypsum, which appears in massive or laminated forms, displays δ34S values in the range of 14–28‰. In addition, Lake Lisan’s deposits (the Lisan Formation) contain thinly laminated and disseminated gypsum as well as native sulfur which display significantly lower δ34S values (−26 to 1‰ and −20 to −10‰, respectively). The calculated bulk isotopic compositions of sulfur in the sources and sinks of Lake Lisan lacustrine system are similar (δ34S ≈ 10‰), indicating that freshwater sulfate was the main source of sulfur to the lake. The large range in δ34S found within the Lisan Formation (−26 to +28‰) is the result of bacterial sulfate reduction (BSR) within the anoxic lower water body (the monimolimnion) and bottom sediments of the lake.

Precipitation of primary gypsum from the Ca-chloride solution of Lake Lisan is limited by sulfate concentration, which could not exceed 3000 mg/l. The Upper Gypsum Unit, deposited before ca. 17–15 ka, is the thickest gypsum unit in the section and displays the highest δ34S values (25–28‰). Yet, our calculations indicate that no more than a third of this Unit could have precipitated directly from the water column. This implies that during the lake level decline that instigated the precipitation of the Upper Gypsum Unit, significant amounts of dissolved sulfate had to reach the lake from external sources. We propose a mechanism that operated during cycles of high-low stands of the lakes that occupied the Dead Sea basin during the late Pleistocene. During high-stand intervals (i.e., Marine Isotopic Stages 2 and 4), lake brine underwent BSR and infiltrated the lake’s margins and adjacent strata. As lake level dropped, these brines, carrying 34S-enriched sulfate, were flushed back to the shrinking lake and replenished the water column with sulfate, thereby promoting massive gypsum precipitation.

The Holocene Dead Sea precipitated relatively small amounts of primary gypsum, mainly in the form of thin laminae. δ34S values of these laminae and disseminated gypsum are relatively constant (15 ± 0.7‰) and are close to present-day lake composition. This reflects the lower supply of freshwater to the lake and the limited BSR activity during the arid Holocene time and possibly during former arid interglacials in the Levant.  相似文献   


11.
G. Dias  J. Leterrier 《Lithos》1994,32(3-4):207-223
The late tectonic Braga plutonic complex in the “Centro Iberian Zone”, North Portugal, was emplaced during the Hercynian orogeny within a Silurian sedimentary sequence and displays an acid-basic association which consists of three well-defined intrusions: the biotite-dominant Braga granite, minor bodies of gabbro to granodiorite composition and the mildly peraluminous Gonça leucogranite. These three plutonic suites present field relationships indicating a synchronous magmatic emplacement for which a Rb---Sr age of 310±10 Ma is obtained. The distribution of the three plutonic units along regular curves in major and trace element diagrams suggests that the different units can be genetically related. However, the Rb---Sr and Sm---Nd isotopic results do not indicate a unique homogeneous source and a simple fractional crystallization process. The gabbros have chemical characters (high K, Ba, Sr and light rare-earth elements and low Nb, Ti and Zr contents) and isotopic compositions (Sri=0.70497 and εNd=−2.5), which suggest an alkaline magmatic affinity of shoshonitic type. They are probably derived from an enriched mantle source. In contrast, the peraluminous Gonça leucogranite (Sri=0.70933 and εNd=−6.8) is more likely the result of crustal anatexis. The Braga granite and the evolved members of the basic series have an intermediate isotopic composition (Sri=0.70532 to 0.70733 and εNd=−3.0 to −6.2) which can be interpreted in terms of an hybridization process between the two previous end-members. The chemical and Sr---Nd isotopic compositions of the Braga plutonic series can be explained by an assimilation-fractional crystallization (AFC) model between a mantle-derived magma (equivalent to the gabbros) and a crust-derived magma (the Gonça granite).  相似文献   

12.
David R. Nelson 《Lithos》1989,22(4):265-274
Kimberlites which intruded the Sisimiut (formerly Holsteinsborg) region of central west Greenland during the Early Palaeozoic have initial 87Sr/86Sr between 0.7028 and 0.7033 and εNd between + 1.3 and + 3.9. Mid-Proterozoic potassic lamproites from the same region have initial 87Sr/86Sr between 0.7045 and 0.7060, εNd between −13 and −10 and unradiogenic initial Pb isotopic compositions. The isotopic data favour an asthenospheric mantle source for the kimberlite magmas, in common with “basaltic” kimberlites from other localities, whereas the lamproite magma sources evolved in isolation from the convecting mantle for > 1000 Ma, probably within the subcontinental lithospheric mantle of the Greenland craton, prior to emplacement of the lamproites.  相似文献   

13.
Cementation of bryozoan-echinoid-benthic foraminiferal temperate shelf carbonates of the Oligocene Te Kuiti Group, North Island, New Zealand, occurred mainly during subsurface burial. The calcite cements in the limestones are dominated by equant and syntaxial rim spar which typically becomes ferroan (given an iron supply) and, compared to the skeletal material with normal marine δ18O values from +2 to −1‰, more depleted in 18O with depth of burial, the δ18O composition of bulk cement samples ranging from −1 to −7‰. These trends reflect the establishment in pore waters during sediment burial of reducing conditions and gradually increasing temperatures (20–50°C), respectively. The δ13C values (0 to +3‰) of the cements remain the same as the host marine shells, suggesting the source of carbon in the cements was simply redistributed marine carbonate derived from shell dissolution.

Two gradational burial diagenetic environments influenced by marine-derived porewaters are arbitrarily distinguished: shallow burial phase and moderate burial phase. During the shallow burial phase, down to 500–600 m sub-bottom depth, the carbonates lost at least 25% of their original porosity by mechanical compaction and were selectively cemented by non-ferroan or usually ferroan, variably luminescent, slightly 18O-depleted sparry calcite cement (δ18O −2 to −4‰), mainly as syntaxial rims about echinoid grains. These shallow-burial cements form less than about 10% of total cement in the majority of the limestones and their source was probably mainly mild intergranular dissolution of calcitic skeletal fragments accompanying the onset of chemical compaction. During the moderate burial phase, between about 600 and 1100 m sub-bottom depth, porosity loss continued (typically to about 70% of its original value) as a result of pressure-solution of calcitic bioclasts associated with more advanced stages of chemical compaction. This involved development of a wide variety of non-sutured and microstylolitic solution seams, including both single and composite, wispy or continuous, bedding-parallel types and non-parallel reticulate forms. The released carbonate was precipitated as ferroan (or non-ferroan where iron supply was negligible), dull luminescent, strongly 18O-depleted (δ18O −4 to −7‰), mainly equant calcite spar cement, occluding available pore space in the limestones.  相似文献   


14.
The Atesina Volcanic District, the Monte Luco volcanics, and the Cima d'Asta, Bressanone-Chiusa, Ivigna, Monte Croce and Monte Sabion intrusions, in the central-eastern Southern Alps, form a wide calc-alkaline association of Permian age (ca. 280–260 Ma). The magmatism originated during a period of post-orogenic extensional/transtensional faulting which controlled the magma ascent and emplacement. The magmatic products are represented by a continuum spectrum of rock types ranging from basaltic andesites to rhyolites, and from gabbros to monzogranites, with preponderance of the acidic terms. They constitute a metaluminous to weakly peraluminous series showing mineralogical, petrographic and chemical characteristics distinctive of the high-K calc-alkaline suites. In the MORB-normalized trace element diagrams, the most primitive volcanic and plutonic rocks (basaltic andesites and gabbros with Mg No.=66 to 70; Ni=25 to 83 ppm; Cr=248 to 679 ppm) show LILE and LREE enriched patterns with troughs at Nb–Ta and Ti, a distinctive feature of subduction-related magmas. Field, petrographic, geochemical and isotopic evidence (initial 87Sr/86Sr ratios from 0.7057 to 0.7114; εNd values from −2.7 to −7.4; ∂18O values between 7.6 and 9.5‰) support a hybrid nature for both volcanic and plutonic rocks, originating through complex interactions between mantle-derived magmas and crustal materials. Only the scanty andalusite–cordierite and orthopyroxene–cordierite bearing peraluminous granites in the Cima d'Asta and Bressanone-Chiusa intrusive complexes can be interpreted as purely crustal melts (initial 87Sr/86Sr=0.7143–0.7167; initial εNd values between −7.9 and −9.6, close to average composition of the granulitic metasedimentary crust from the Ivrea Zone in the western Southern Alps). Although the Permian magmatism shows geochemical characteristics similar to those of arc-related suites, palaeogeographic restorations, and geological and tectonic evidence, seem not to support any spatial and/or temporal connection with subduction processes. The magmatism is post-collisional and post-orogenic, and originated in a regime of lithospheric extension and attenuation affecting the whole domain of the European Hercynian belt. A change in the convergence direction between Gondwana and Laurasia, combined with the effects of gravitational collapse of the Hercynian chain, could have been the driving mechanism for lithosphere extension and thinning, as well as for upwelling of hot asthenosphere that caused thermal perturbation and magma generation. In the above context, the calc-alkaline affinity and the orogenic-like signature of the Permian magmatism might result from extensive contamination of basaltic magmas, likely derived from enriched lithospheric mantle source(s), with felsic crustal melts.  相似文献   

15.
A. Demény  S. Harangi 《Lithos》1996,37(4):335-349
Processes of carbonate formation have been related to C and O isotopic compositions in the Mesozoic alkali basalt (Mecsek Mts.) and lamprophyre (Transdanubian Range) suites of Hungary. In the studied magrnatic rocks, carbonates are present as ocelli, amygdales, xenoliths, veins and groundmass carbonate. C and O isotope studies of these types of carbonate have yielded information on the origin of the carbonates and indicated the following processes of formation that determined the δ13C and δ18O values of the carbonates:(1)Crystallization of magmatic carbonate. Textural characteristics and δ13C values suggest formation of magmatic carbonate in alkali basalt and lamprophyre dikes, whereas the δ18O compositions of these carbonates indicate low temperature oxygen isotope exchange with magmatic fluids.(2) Assimilation of sedimentary carbonate by silicate magmas. Even completely recrystallized amygdales and ocelli of basalts and lamprophyres have preserved their sedimentary δ13C values. In contrast, variations in the extent of mobilization and isotope exchange with magmatic fluids are reflected in differences in the ranges of the δ18O values of amygdales, ocelli and veins, and can be attributed to different amounts of fluids involved in the magmatic events.(3) Low temperature alteration of magmatic rocks caused only 18O-enrichment in the carbonate amygdales of basalts and the groundmass carbonates of lamprophyres, indicating that no externally-derived CO2 was present in the alteration fluids.(4) Degassing of magma and magmatic fluid. Correlations between δ13C and δ18O data, magma crystallization depths and amygdale sizes in the alkali basalts suggest that CO2 degassing has been responsible for the negative δ13C and positive δ18O shifts observed. A similar trend was found in the lamprophyres, but the extent of the δ18O shift indicates that in these rocks H2O degassing also played an important role.  相似文献   

16.
J. Lu  P. K. Seccombe  D. Foster  A. S. Andrew 《Lithos》1996,38(3-4):147-165
40Ar/39Ar dating of metamorphic biotite and alteration muscovite from the auriferous veins and host rocks at the Hill End goldfield, N.S.W., Australia, has distinguished four major geological events, including the timing of gold mineralization. The earliest hydrothermal event occurred during the Middle Devonian Tabberabberan Orogeny (370–380 Ma) and resulted in the formation of quartz veins barren of Au. A second and major episode of vein emplacement occurred in the Early Carboniferous during the principal phase of metamorphism and deformation at 359–363 Ma. This was followed by Au accumulation in two stages: (1) after the major phases of quartz deposition, and (2) during and after the development of conspicuous internal vein laminations (˜ 357 Ma and ˜ 343 Ma, respectively). Two sources of fluid are proposed for vein and ore formation. The first is a local metamorphic fluid characterized by δ18OH2O values of 8.9 to 12.5 per mil and δDH2O values of −87 to −90 per mil. The second is a mixed ore fluid with δ18O and δD values in the range of δ18OH2O 8.4 to 11 per mil and δDH2O of −49 to −36 per mil. Progressive entry of this second fluid, sourced from trough-fill or deeper crustal rocks, is linked closely to cycles of gold precipitation at Hill End.  相似文献   

17.
S. Jung  E. Hoffer  S. Hoernes 《Lithos》2007,96(3-4):415-435
Major element, trace element and Nd–Sr–Pb–O isotope data for a suite of Neo-Proterozic, pre-orogenic, rift-related syenites from the Northern Damara orogen (Namibia) constrain their sources and petrogenesis. New U–Pb ages obtained on euhdreal titanite of inferred magmatic origin constrain the age of intrusion of the Lofdal and Oas syenites to ca. 750 Ma compatible with previous high-precision zircon analyses from the Oas complex. Major rock types from Lofdal and Oas are mildly sodic nepheline-normative and quartz-normative syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Primitive samples from Lofdal and Oas show depletion of Rb, K and Th relative to Ba and Nb together with variable negative anomalies of P and Ti on a primitive mantle-normalized diagram. Evolved samples from Oas develop significant negative Ba, Sr, P and Ti anomalies and positive U and Th anomalies mainly as a function of crystal fractionation processes. The lack of a pronounced negative Nb anomaly in samples from Lofdal suggests that involvement of a crustal component is negligible. For the nepheline-normative samples from Lofdal, the unradiogenic Sr and radiogenic Nd isotope composition and low δ18O values suggest derivation of these samples from a moderately depleted lithospheric upper mantle with crustal-like U/Pb ratios (87Sr/86Sr: 0.7031–0.7035, ε Nd: ca. + 1, δ18O: 7‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.58–15.60). Primitive samples of the Oas quartz-normative syenites have identical isotope characteristics (87Sr/86Sr: 0.7034, ε Nd: ca. + 1, δ18O: 6.5‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.59) whereas more differentiated samples have higher 87Sr/86Sr ratios (0.709–0.714), slightly higher δ18O values (7.0–7.1‰), less radiogenic ε Nd values (− 1.1 to − 1.4) and more radiogenic 206Pb/204Pb ratios up to 18.27. These features together with model calculations using Sr–Nd–Pb isotopes suggest modification of a primary syenite magma by combined AFC processes involving ancient continental crust. In this case, high Nb abundances of the parental syenite liquid prevent the development of significant negative Nb anomalies that may be expected due to interaction with continental crust.  相似文献   

18.
The Attepe district consists of Precambrian, Lower–Middle Cambrian, Upper Cambrian–Lower Ordovician and Mesozoic formations. It contains several iron deposits and occurrences. Three types of iron-mineralizations can be distinguished in the area; (i) Sedimentary Fe-sulfide in Precambrian bituminous metapelitic rocks, and Fe-oxides in Precambrian metasandstones (SISO), (ii) vein-type Fe-carbonate and oxides composed of mainly siderite, ankerite and hematite including barite in Lower–Middle Cambrian metacarbonates of the Çaltepe Formation (HICO), (iii) karstic Fe-oxides and hydroxides essentially in the Lower–Middle Cambrian metacarbonates and the unweathered Fe-carbonates (KIO). The latter type is more widespread and located at the upper parts of the most important mineable iron deposits like Attepe deposit.

Oxygen-, carbon-, sulfur- and strontium-isotope studies have been performed on siderites and barites in the vein-type ores, and on calcites in the recrystallized Çaltepe Limestones to investigate the sources and formation mechanism of primary ore-forming constituents. The δ13C values of siderites and calcites in limestones of the Çaltepe Formation range from −10.10‰ to −8.20‰, and from −0.8‰ to 2.30‰. Both carbonate minerals show δ18O values between 17.50–18.30‰ and 16.20–23.00‰, respectively. The δ13C and δ18O isotopic variations do not indicate any direct or linear relations between siderites and limestones. However, it is possible that the carbon and oxygen isotopic compositions of carbonate minerals could be changed to some extent, when limestones were subjected to hydrothermal processes or thermal alterations during metamorphism.

The isotopic values of barites display 32.40–38.30‰ for δ34S and 12.20–14.70‰ for δ18O. The strontium isotope ratios (0.717169–0.718601) of barites and the sulfur isotope compositions of barites and pyrites suggest that there are no direct linkages of ore-forming compounds neither with a magmatic source nor with sedimentary pyrite formations in the Precambrian bituminous shales of the Attepe formation.

According to the field observations and the stable isotope data, siderites and ankerites should be formed by interaction between iron-rich hydrothermal fluids and Çaltepe limestones, whereas isotope ratios of barites indicate that they were formed by mixing of sulfur-rich meteoric waters and deeply circulated hydrothermal solutions.  相似文献   


19.
The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at  43 Ma at shallow depths ( 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = − 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) − 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that  77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.  相似文献   

20.
The Bandombaai Complex (southern Kaoko Belt, Namibia) consists of three main intrusive rock types including metaluminous hornblende- and sphene-bearing quartz diorites, allanite-bearing granodiorites and granites, and peraluminous garnet- and muscovite-bearing leucogranites. Intrusion of the quartz diorites is constrained by a U–Pb zircon age of 540±3 Ma.

Quartz diorites, granodiorites and granites display heterogeneous initial Nd- and O isotope compositions (Nd (540 Ma)=−6.3 to −19.8; δ18O=9.0–11.6‰) but rather low and uniform initial Sr isotope compositions (87Sr/86Srinitial=0.70794–0.70982). Two leucogranites and one aplite have higher initial 87Sr/86Sr ratios (0.70828–0.71559), but similar initial Nd (−11.9 to −15.8) and oxygen isotope values (10.5–12.9‰). The geochemical and isotopic characteristics of the Bandombaai Complex are distinct from other granitoids of the Kaoko Belt and the Central Zone of the Damara orogen. Our study suggests that the quartz diorites of the Bandombaai Complex are generated by melting of heterogeneous mafic lower crust. Based on a comparison with results from amphibolite-dehydration melting experiments, a lower crustal garnet- and amphibole-bearing metabasalt, probably enriched in K2O, is a likely source rock for the quartz diorites. The granodiorites/granites show low Rb/Sr (<0.6) ratios and are probably generated by partial melting of meta-igneous (intermediate) lower crustal sources by amphibole-dehydration melting. Most of the leucogranites display higher Rb/Sr ratios (>1) and are most likely generated by biotite-dehydration melting of heterogeneous felsic lower crust. All segments of the lower crust underwent partial melting during the Pan-African orogeny at a time (540 Ma) when the middle crust of the central Damara orogen also underwent high T, medium P regional metamorphism and melting. Geochemical and isotope data from the Bandombaai Complex suggest that the Pan-African orogeny in this part of the orogen was not a major crust-forming episode. Instead, even the most primitive rock types of the region, the quartz diorites, represent recycled lower crustal material.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号