首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A heavy rainfall associated with the deepening of a monsoon depression happened in the summer of 2005. This process was first diagnostically analyzed and the 3D structure of the monsoon depression was discussed~ then this structure was compared with those of the monsoon depression in South Asia and the low vortex in the Meiyu front. The results showed that the heavy rainfall directly resulted from a monsoon depression in South China~ and the large-scale environment provided a favorable background for the deepening of the monsoon depression. The 3D structure of the monsoon depression was as follows. In the horizontal direction, there existed a convective cloud band to the south of the monsoon depression, which lay in a convectively instable area, with a relatively strong ascending motion in the mid and low levels of the troposphere, and the ascending motion matched well with a moist tongue, a convergence area, and a band of positive vorticity in the mid and low levels of the troposphere. In the vertical direction, the depression had an obviously cyclonic circulation in the mid and low levels of the troposphere, but no circulation from above 300 hPa. The monsoon depression corresponded to convergence and positive vorticity in the low levels, but to divergence and negative vorticity in the upper levels. The upward draft of the depression could reach the upper levels of the troposphere in the west of the depression, while the descending motion lay in the east. There was a low-level jet to the south of the depression, while the upper-level jet was not obvious. The depression was vertically warm in the upper levels and cold in the low levels, and the axis of the depression tilted southeastward with height, whose characteristics were different not only from the monsoon depression in South Asia but also from the low vortex in the Meiyu front.  相似文献   

2.
Clouds have important effects on the infrared radiances transmission in that the inclusion of cloud effects in data assimilation can not only improve the quality of the assimilated atmospheric parameters greatly, but also minimize the initial error of cloud parameters by adjusting part of the infrared radiances data. On the basis of the Grapes-3D-var (Global and Regional Assimilation and Prediction Enhanced System), cloud liquid water, cloud ice water and cloud cover are added as the governing variables in the assimilation. Under the conditions of clear sky, partly cloudy cover and totally cloudy cover, the brightness temperature of 16 MODIS channels are assimilated respectively in ideal tests. Results show that when the simulated background brightness temperatures are lower than the observation, the analyzed field will increase the simulated brightness temperature by increasing its temperature and reducing its moisture, cloud liquid water, cloud ice water, and cloud cover. The simulated brightness temperature can be reduced if adjustment is made in the contrary direction. The adjustment of the temperature and specific humidity under the clear sky conditions conforms well to the design of MODIS channels, but it is weakened for levels under cloud layers. The ideal tests demonstrate that by simultaneously adding both cloud parameters and atmospheric parameters as governing variables during the assimilation of infrared radiances, both the cloud parameters and atmospheric parameters can be adjusted using the observed infrared radiances and conventional meteorological elements to make full use of the infrared observations.  相似文献   

3.
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-γ-scale convective phenomena are basically unsteady under the situation of strong shear at low-levels, white the meso-β-scale convective system is maintained up to 3 hours or more. The meso-β-scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-γ-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low inten-sifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-γ-scale warm cores with peak values of 4-8oC are associated with strong convective cells. The cloud top evapo-ration causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase microphysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.  相似文献   

4.
The impacts of stratospheric initial conditions and vertical resolution on the stratosphere by raising the model top, refining the vertical resolution, and the assimilation of operationally available observations, including conventional and satellite observations, on continental U.S. winter short-range weather forecasting, were investigated in this study. The initial and predicted wind and temperature profiles were analyzed against conventional observations. Generally, the initial wind and temperature bias profiles were better adjusted when a higher model top and refined vertical resolution were used. Negative impacts were also observed in both the initial wind and temperature profiles, over the lower troposphere. Different from the results by only raising the model top, the assimilation of operationally available observations led to significant improvements in both the troposphere and stratosphere initial conditions when a higher top was used. Predictions made with the adjusted stratospheric initial conditions and refined vertical resolutions showed generally better forecasting skill. The major improvements caused by raising the model top with refined vertical resolution, as well as those caused by data assimilation, were in both cases located in the tropopause and lower stratosphere. Negative impacts were also observed, in the predicted near surface wind and lower-tropospheric temperature. These negative impacts were related to the uncertainties caused by more stratospheric information, as well as to some physical processes. A case study shows that when we raise the model top, put more vertical layers in stratosphere and apply data assimilation, the precipitation scores can be slightly improved. However, more analysis are needed due to uncertainties brought by data assimilation.  相似文献   

5.
Based on the satellite retrieval methodology, the spectral characteristics and cloud microphysical properties were analyzed that included brightness temperatures of Channels 4 and 5, and their brightness temperature difference (BTD), the particle effective radius of seeded cloud track caused by an operational cloud seeding and the microphysical effects of cloud seeding were revealed by the comparisons of their differences inside and outside the seeded track. The cloud track was actually a cloud channel reaching 1.5-km deep and 14-km wide lasting for more than 80 min. The effective radius of ambient clouds was 10-15μm, while that within the cloud track ranged from 15 to 26μm. The ambient clouds were composed of supercooled droplets, and the composition of the cloud within the seeding track was ice. With respect to the rather stable reflectance of two ambient sides around the track, the visible spectral reflectance in the cloud track varied at least 10%, and reached a maximum of 35%, the reflectance of 3.7μm in the seeded track relatively decreased at least 10%. As cloud seeding advanced, the width and depth were gradually increased. Simultaneously the cloud top temperature within the track became progressively warmer with respect to the ambient clouds, and the maximum temperature differences reached 4.2 and 3.9℃at the first seeding position for Channels 4 and 5. In addition, the BTD in the track also increased steadily to a maximum of 1.4℃, compared with 0.2-0.4℃of the ambient clouds. The evidence that the seeded cloud became thinner comes from the visible image showing a channel, the warming of the cloud tops, and the increase of BTD in the seeded track. The seeded cloud became thinner mainly because the cloud top descended and it lost water to precipitation throughout its depth. For this cloud seeding case, the glaciation became apparent at cloud tops about 22 min after seeding. The formation of a cloud track in the supercooled stratiform clouds was mainly because that the seeded cloud volume glaciated into ice hydrometeors that precipitated and so lowered cloud top height. A thin line of new water clouds formed in the middle of the seeded track between 38 and 63 min after seeding, probably as a result of rising motion induced by the released latent heat of freezing. These clouds disappeared in the earlier segments of the seeded track, which suggested that the maturation of the seeding track was associated with its narrowing and eventual dissipation due to expansion of the tops of the ambient clouds from the sides inward.  相似文献   

6.
In order to reveal the relation between strong convective cloud characteristics and rainfall rate,over 20000 hourly raingauge data from 333 weather stations and the corresponding 4000 convectivecloud infrared images of GMS-4 during the period of 1992—1994 in Henan,Hubei and SichuanProvinces were studied.The results show that cloud top temperature,temperature gradient,thegrowth of cloud,overshooting top and the normalized distance between a cloud covering pixels and thecluster center have certain relations to cloud precipitation.These relations can vary with differentgeographical regions.Based on the study above,a convective rainfall estimation technique wasdeveloped by the scientists in National Satellite Meteorological Center of China.Its average error is30% for daily precipitation with a correlation coefficient of 0.69.  相似文献   

7.
It is shown that the medium scale cloud cluster is u major one of precipitation systems from analysing the rainstorms along the Changjiang River during the plum rain period of 1980-1983. The medium-scale cloud clusters do not always correspond to the moving vortex, but they are in good agreement with the convergence center for the divergent component of wind at 850 hPa. The favourable environmental conditions for the genesis and development of medium-scale cloud cluster, such as the large-scale circulation situation, patterns of temperature and moisture, potential instability, and the structure of cloud cluster are given. A model on large seaie clond pattern for the genesis of medium scale cloud cluster is presented.  相似文献   

8.
In this paper, characteristics of precipitating clouds in a thermal convective system (TCS) occurred in the southeastern mainland of China at 15:00 BT (Beijing time) on August 2, 2003 in the central western subtropical Pacific anticyclone (WSPA) is studied by using TRMM tropical rainfallmeasuring mission PR (precipitution radar) and IR Infrared radiation measurements. The precipitating cloud structures in both horizontal and vertical, relationship among storm top, cloud top, and surface rain rate are particularly analyzed. Results show that a strong ascending air at 500 hPa and a strong convergence of moisture flux at 850 hPa in the central WSPA supply necessary conditions both in dynamics and moisture for the happening of the TCS precipitation. The TRMM PR observation shows that the horizontal scale of the most TCS precipitating clouds is about 30-40 km, their averaged vertical scale is above 10 km, and the maximum reaches 17.5 km. The maximum rain rate near surface of those TCS clouds is beyond 50 mm h-1. The mean rain profile of the TCS clouds shows that its maximum rain rate at 5 km altitude is 1 km lower than the estimated freezing level of the environment. Compared with the mesoscale convective system (MCS) of "98.7.20", both systems have the same altitude of the maximum rain rate displayed from both mean rain profiles, but the TCS is much deeper than the MCS. From the altitude of the maximum rain rate to near surface, profiles show that rain rate reducing in the TCS is faster than that in the MCS, which implies a strong droplet evaporation process occurring in the TCS. Relationship among cloud top, storm top, and surface rain rate analysis indicates a large variation of cloud top when storm top is lower. On the contrary, the higher the storm top, the more consistent both cloud top and storm top. And, the larger the surface rain rate, the higher and more consistent for both cloud top and storm top. At the end, results expose that area fractions of non-precipitating clouds and clear sky are 86% and 2%, respectively. The area fraction of precipitating clouds is only about 1/8 that of non-precipitating clouds.  相似文献   

9.
In this study we observed the microphysical properties, including the vertical and horizontal distributions of ice particles,liquid water content and ice habit, in different regions of a slightly supercooled stratiform cloud. Using aircraft instrument and radar data, the cloud top temperature was recorded as higher than -15℃, behind a cold front, on 9 September 2015 in North China. During the flight sampling, the high ice number concentration area was located in the supercooled part of a shallow convective cloud embedded in a stratiform cloud, where the ambient temperature was around -3℃. In this area,the maximum number concentrations of particles with diameter greater than 100 μm and 500 μm(N_(100) and N_(500)) exceeded 300 L~(-1) and 30 L~(-1), respectively, and were related to large supercooled water droplets with diameter greater than 24 μm derived from cloud–aerosol spectrometer probe measurements. The ice particles types in this region were predominantly columnar, needle, graupel, and some freezing drops, suggesting that the occurrence of high ice number concentrations was likely related to the Hallett–Mossop mechanism, although many other ice multiplication processes cannot be totally ruled out.The maximum ice number concentration obtained during the first penetration was around two to three orders of magnitude larger than that predicted by the Demott and Fletcher schemes when assuming the cloud top temperature was around-15℃.During the second penetration conducted within the stratiform cloud, N_(100) and N_(500) decreased by a factor of five to ten, and the presence of columnar and needle-like crystals became very rare.  相似文献   

10.
In this paper, a hailstorm occurring on 9 May 1999 in Huanghuai region was studied by using the combined data from the precipitation radar (PR), microwave image (TMI), and visible infrared scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. According to the 3-orbit observations of 5-h duration from the TRMM satellite, the variation characteristics of the precipitation structures as well as cloud top temperature and microwave signals of the precipitating cloud were comprehensively analyzed during the evolution of hailstorm. The results show that the precipitation is obviously converted from early hail cloud with strong convection into the later storm cloud with weak convection. For hail cloud, there exists some strong convective cells, and the heavy solid precipitation is shown at the middle-top levels so that the contribution of rainfall amount above the freezing-layer to the column precipitation amount is rather larger than that within the melting-layer. However, for storm cloud, the convective cells are surrounded by the large area of stratiform precipitation, and the precipitation thickness gradually decreases, and the rainfall above the freezing-layer obviously reduces and the contribution of rainfall amount within the melting-layer rapidly increases. Therefore, the larger ratio of rainfall amount above the freezing layer to column precipitation amount is, the more convective the cloud is; reversely, the larger proportion of rainfall below the melting layer is, the more stable the stratiform cloud is. The different changing trends of microwave signals at different precipitation stages show that it is better to consider the structures and stages of precipitating cloud to choose the optimal microwave channels to retrieve surface rainfall.  相似文献   

11.
A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in the 3.7μm channel, and cloud-top microphysical properties were vividly represented using the RGB visual multispectral classification scheme. The microphysical zones of clouds and the processes of hail formation and development are inferred using the relations of cloud-top temperature (T) versus re for the tops of convective clouds. The results show that particle effective radius was smaller near the cloud base of hailstorm. There was a deep zone of diffusional droplet growth at the low level where the particles grew slowly with height, and there existed an evident area of small ice particles in the cloud top, suggesting the existence of a strong updraft in the clouds. The low glaciated temperature indicated a great depth from the cloud base to the glaciation height, which provided a deep layer of supercooled water for hail growth.  相似文献   

12.
The cloud phase composition of cold clouds in the Antarctic atmosphere is explored using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instruments for the period 2000--2006. We used the averaged fraction of liquid-phase clouds out of the total cloud amount at the cloud tops since the value is comparable in the two measurements. MODIS data for the winter months (June, July, and August) reveal liquid cloud fraction out of the total cloud amount significantly decreases with decreasing cloud-top temperature below 0oC. In addition, the CALIOP vertical profiles show that below the ice clouds, low-lying liquid clouds are distributed over ~20% of the area. With increasing latitude, the liquid cloud fraction decreases as a function of the local temperature. The MODIS-observed relation between the cloud-top liquid fraction and cloud-top temperature is then applied to evaluate the cloud phase parameterization in climate models, in which condensed cloud water is repartitioned between liquid water and ice on the basis of the grid point temperature. It is found that models assuming overly high cut-offs (》-40oC) for the separation of ice clouds from mixed-phase clouds may significantly underestimate the liquid cloud fraction in the winter Antarctic atmosphere. Correction of the bias in the liquid cloud fraction would serve to reduce the large uncertainty in cloud radiative effects.  相似文献   

13.
The influence of various cloud parameters and the interactions with the ground albedo and the solar zenith angle have been studied by means of model simulations. The radiative transfer model suitable for a cloudy atmosphere as well as for a clear atmosphere has been developed on the basis of the Discrete Ordinate Method. This study leads to a general understanding for cloudy atmospheres: in the presence of a uniform cloud, the cloud scattering is dominant to molecular and aerosol scattering, and it is also wavelength-independent; the ratio of transmitted irradiance in a cloudy atmosphere to that in the background clear atmosphere is independent of cloud height and solar zenith angle. That’s to say, the radiation downwelling out of a cloud is quite isotropic; it decreases approximately exponentially with the cloud optical depth at a rate related to the ground albedo; the reflected irradiance at the top of the atmosphere is dependent on cloud optical depth as well as on solar zenith angle, but not on ground albedo for clouds of not very thin optical depth.  相似文献   

14.
This study investigates the characteristics of cold clouds and snowfall in both the Yeongdong coastal and mountainous regions under different meteorological conditions based on the integration of numerical modeling and three-hourly rawinsonde observations with snow crystal photographs for a snowfall event that occurred on 29?30 January 2016.We found that rimed particles predominantly observed turned into dendrite particles in the latter period of the episode when the 850 hPa temperature decreased at the coastal site,whereas the snow crystal habits at the mountainous site were largely needle or rimed needle.Rawinsonde soundings showed a well-defined,two-layered cloud structure along with distinctive wind-directional shear,and an inversion in the equivalent potential temperature above the low-level cloud layer.The first experiment with a decrease in lower-layer temperature showed that the low-level cloud thickness was reduced to less than 1.5 km,and the accumulated precipitation was decreased by 87%compared with the control experiment.The difference in precipitation amount between the single-layered experiment and control experiment(two-layered)was not so significant to attribute it to the effect of the seeder?feeder mechanism.The precipitation in the last experiment by weakening winddirectional shear was increased by 1.4 times greater than the control experiment specifically at the coastal site,with graupel particles accounting for the highest proportion(~62%).The current results would improve snowfall forecasts in complicated geographical environments such as Yeongdong in terms of snow crystal habit as well as snowfall amount in both time and space domains.  相似文献   

15.
The comparison analyses between two tropical depressions in the South China Sea are completed by numerical ex-periments with a limited area model developed in Guangzhou Institute of Tropical and Oceanic Meteorology. One of thedepressions develops and finally becomes a typhoon within 24 hours of the analyzing period (defined as DVD hereafter),and the other not (defined as UNDVD) The analyses show that their initial structures of temperature, humidity, pres-sure. wind and stability are obviously different from each other. There are a very deep wet layer and a clear warm-coredstructure in the mid-lower troposphere in the depression area in the DVD case, but with the warm core in the upperrather than lower troposphere arid a very shallow wet layer in the lower troposphere in the depression area in theUNDVD case. The developing and non-developing processes are successfully simulated by the model, showing that theCISK mechanism plays the most important role in the development of SCSDs (Tropical Depressions in the South ChinaSea). Several numerical experiments show that the structures of humidity and temperature in the depression area haveimportant effect on the development of SCSDs. It is favourable to the development of SCSDs when a very deep wet layerexists in the mid-lower troposphere or a warm-cored structure exists in the mid-lower troposphere instead of in uppertroposphere, and conversely, it is unfavourable to the development of SCSDs when the wet layer is very shallow in thelower troposphere or the warm-cored structure is in the upper troposphere rather than in mid-lower troposphere. Thestructures of stability for each case are also analysed, which shows evident differences between the two cases, with adeeper instability layer in the DVD case and a shallower one in the UNDVD case. Finally, the sensitivity of the devel-opment of the SCSDs to the vertical structures of humidity and temperature in the depression area is discussed.  相似文献   

16.
Experiments were conducted to test the impact of a cloud diagnosis scheme in place of prescribed zonalaverage cloud on medium and long range integrations with the Australian Bureau of Meteorology ResearchCentre(BMRC)global atmosphere model.The cloud scheme was shown to improve the temperature bias inthe lower troposphere but there was deterioration in the upper troposphere,especially in the tropics,asso-ciated with underestimation of high cloud amount.Thirty day mean fields in a January integration showed greater amplitude in the Northern Hemisphereplanetary waves and a deeper Antarctic circumpolar trough than the control experiment or a simulation withno cloud.The results for the diagnosed cloud case agree more closely with corresponding observed fields.There was also some reduction in the zonal average zonal wind component reflecting the additional zonalasymmetry introduced by the diagnostic cloud scheme.Similar trends were also noted in medium and longrange forecasts for January and July conditions,although the impact on predictive skill was slight and insome cases detrimental.Areas for improving the diagnostic cloud scheme are noted.  相似文献   

17.
Numerical Simulation of Roll Vortices in the Convective Boundary Layer   总被引:1,自引:0,他引:1  
Roll vortices,which often appear when cold air outbreaks over warm ocean surfaces,are an important system for energy and substance exchange between the land surface and atmosphere.Numerical simulations were carried out in the study to simulate roll vortices in the convective boundary layer(CBL).The results indicate,that with proper atmospheric conditions,such as thermal instability in the CBL,stable stratification in the overlying layer and suitable wind shear,and a temperature jump between the two layers in a two-layer atmosphere,convective bands appear after adding initial pulses in the atmosphere.The simulated flow and temperature fields presented convective bands in the horizontal and roll vortices in the crosswind section. The structure of the roll vortices were similar to those observed in the cloud streets,as well as those from analytical solutions.Simulations also showed the influence of depth and instability strength of the CBL, as well as the stratification above the top of the CBL,on the orientation spacing and strength of the roll vortices.The fluxes caused by the convective rolls were also investigated,and should perhaps be taken into account when explaining the surface energy closure gap in the CBL.  相似文献   

18.
This study examined the relationship between mature phase of the cold event in 1999 and the East Asian summer atmosphere circulation in 2000.The cold event reaches its mature phase in the autumn and winter of 1999,which is the strongest La Nina episode in recent 11 years.There is a clear anomalous pattern of the atmosphere circulation around East Asia in the summer of 2000, i.e.the negative anomaly centers around the Cherski Mountains and 20°N,170°E at 500 hPa,the main body of the subtropical high keeps in further northern position than usual and the negative anomaly of precipitation located in southern central China.This pattern is thought as the response to the preceding strong cold event in autumn of 1999.It is also identified that the response of the East Asian atmosphere circulation in summer of 2000 to the strong La Nina event in 1999 belongs to the top rank in recent 43 years.On the other hand,the inactive blocking anticyclone around East Asia in summer of 2000 is associated with the positive SST anomaly and the 850 hPa temperature anomaly around the Bering Sea simultaneously.Nevertheless,although the impact on the summer atmosphere circulation around East Asia from La Nina events could not rank with that from E1 Nino,the impact could not be neglected especially in a strong La Nina case.  相似文献   

19.
In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formations in the Atlantic region are sensitive to the phase of the NAO. Sixty-seven percent more winter blocking days are observed during the negative phase compared to the positive phase of the NAO. The average length of blocking during the negative phase is about 11 days, which is nearly twice as long as the 6-day length observed during the positive phase of the NAO. The NAO-related differences in blocking frequency and persistence are associated with changes in the distribution of the surface air temperature anomaly, which, to a large extent, is determined by the phase of the NAO. The distribution of regional cloud amount is also sensitive to the phase of the NAO. For the negative phase, the cloud amounts are significant, positive anomalies in the convective zone in the Tropics and much less cloudiness in the mid latitudes. But for the positive phase of the NAO, the cloud amount is much higher in the mid-latitude storm track region. In the whole Atlantic region, the cloud amount shows a decrease with the increase of surface air temperature. These results suggest that there may be a negative feedback between the cloud amount and the surface air t.emperature in the Atlantic region.  相似文献   

20.
A shower cloud observed in Jiangxi,a hailstorm observed in Hebei and“75.8”torrential rain in Henanare simulated with our microphysical model in a one-dimensional framework.The model,using the radio-sonde data as input,gets its output which shows agreement in many aspects as compared with observationsin each case.The glaciation of small cumulus cloud,low precipitation efficiency of hailstorm and the per-sistence of torrential rain are demonstrated.It is also shown that the Bergeron process has little influence,but the warm-rain process plays an important role in the formation of precipitation in cumulonimbus witha warm cloud base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号