首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deep wells drilled along the eastern escarpment of the Jordan Valley penetrate confined aquifers that produce thermal and mineralized artesian water. Uncontrolled flows from poorly constructed and uncapped artesian wells over the last 30 years have caused the deterioration of the quality of shallow groundwater and surface water. They also have been accelerating the discharge of saline water from deep aquifers and have caused the loss of shallow fresh groundwater resources through the downward percolation of fresh water to replace the extracted deep salty groundwater. A lack of adequate controls on the construction and maintenance of artesian wells is leading to widespread water quality problems in the region, which limits the ability of future generations to access high-quality water, a clear breach of the principle of intergenerational equity.  相似文献   

2.
沈阳市阳光港湾建筑群高层建筑采用筏板基础,多层建筑采用人工挖孔灌注桩基础,在基础施工时,均需进行相应的降水工作。采用了分期降水的施工方法,首期降水施工是在分析场地水文地质条件的基础上,利用稳定流"大井法"预算基坑的涌水量,布置了9口井,使基坑周边的1#、2#、3#、4#观测孔水位均下降至5.11m,基本上达到了首期的降水的目的;第二期降水是利用首期降水观测的水位资料,采用稳定流干扰井群计算公式对场区地下水位进行了预报,重新设计了3口井。12口井全部投放使用后,测得稳定排水量为43 000m3/d,并形成了以基坑为中心的地下水降落漏斗,降水效果明显。此经验值得同类工程借鉴。  相似文献   

3.
王旭升 《地球科学》2008,33(1):112-116
自流井是井孔-含水层系统的一种典型水文地质现象, 但在地下水资源评价和管理模型中研究较少.目前地下水数值模拟对自流井的3种处理方法均不合理, 也缺乏验证.常规地下水流有限差分法既不能准确地求出抽水井的井中水位, 也不能准确地求出自流井的流量, 必须进行校正.考虑自流井周围的径向流, 通过与井点附近地下水流的解析解相结合, 提出了矩形网格有限差分模拟的自流井校正模型, 其中考虑了自流井周围含水层存贮量的释放.算例表明, 即使用千米级大尺度网格, 本校正模型也能够获得相当精确的自流井流量, 绝大多数情况下相对误差小于5%.   相似文献   

4.
Wu  Jian  Zhou  Zhifang  Zhuang  Chao 《Hydrogeology Journal》2021,29(7):2529-2543
Hydrogeology Journal - The excavation and construction of tunnels in drained conditions essentially involves groundwater inflow, which results in water-table drawdown, groundwater inflow rate...  相似文献   

5.
A whirlpool foundation pit is a small-diameter, deep circular pit. Because of its depth and small diameter, a large drawdown is required, and a limited number of wells can be installed inside the pit. During excavation, partially penetrating wells inside and outside the foundation pit have to be installed to lower the water level when the aquifer is too thick. However, partially penetrating wells near partially penetrating curtains cannot be treated by analytical methods. Therefore, it is necessary to use numerical methods to predict dewatering during excavation. Field experiments were performed on whirlpool foundation pit 1880 of Baosteel Group, Shanghai, China, to obtain pumping rates and drawdown, pumping with a single well and two wells in the confined aquifer. The results indicate that the drawdown inside the pit induced by pumping wells outside the foundation pit was small, whereas it was large for pumping wells inside the pit. The pumping wells inside and outside the pit had to be combined to lower the water level. A three-dimensional numerical model was developed to simulate the dewatering process. The hydraulic conductivities of the confined aquifers were inversed by using the pumping tests. Operation schedules were simulated with the corrected model for different combinations of wells inside and outside the pit. The results suggest that different schedules and operation conditions affect drawdown. The monitored results during dewatering indicate that the simulation and field measurements were in agreement. The results can be applied to similar situations.  相似文献   

6.
覃卫民  张照仪  王浩  黄胜生 《岩土力学》2006,27(Z1):759-762
该基坑工程支护结构主要采用钻孔灌注桩+预应力锚索的支护体系,地下水处理采用中型井点降水。结合安全监测资料,对基坑施工中出现的险情以及施工降水对周边环境的影响进行分析。基坑施工过程中出现一些险情,通过工程参建各方的努力工作,施工中出现的险情得以化解,保证了基坑工程及周边环境的安全。  相似文献   

7.
In terms of controlling groundwater in deep foundation pit projects, the usual methods include increasing the curtain depth, reducing the amount of pumped groundwater, and implementing integrated control, in order to reduce the drawdown and land subsidence outside pits. In dewatering design for confined water, factors including drawdown requirements, the thickness of aquifers, the depth of dewatering wells and the depth of cutoff curtains have to be considered comprehensively and numerical simulations are generally conducted for calculation and analysis. Longyang Road Station on Shanghai Metro Line 18 is taken as the case study subject in this paper, a groundwater seepage model is developed according to the on-site engineering geological conditions and hydrogeological conditions, the excavation depth of the foundation pit as well as the design depth of the enclosure, hydrogeological parameters are determined via the pumping test, and the foundation pit dewatering is simulated by means of the three-dimensional finite difference method, which produces numerical results that consistent with real monitoring data as to the groundwater table. Besides, the drawdown and the land subsidence both inside and outside the pit caused by foundation pit dewatering are calculated and analyzed for various curtain depths. This study reveals that the drawdown and the land subsidence change faster near the curtain with the increase in the curtain depth, and the gradient of drawdown and land subsidence changes dwindles beyond certain depths. In this project, the curtain depth of 47/49 m is adopted, and a drawdown-land subsidence verification test is completed given hanging curtains before the excavation. The result turns out that the real measurements basically match the calculation results from the numerical simulation, and by increasing the depth of curtains, the land subsidence resulting from dewatering is effectively controlled.  相似文献   

8.
33 large-diameter wells embedded in 2-m thick, 63-m deep diaphragm walls were constructed to reduce both the uplift pressures and the groundwater inflow during the excavations. As the actual thickness of the pumped aquifer is unknown, the installed wells are regarded as partial penetration wells. Single-well and multi-well pumping tests were conducted in the deep gravel formation of Taipei Basin to derive the hydraulic parameters and to investigate the drawdown characteristics at both the construction and remote sites. However, the tidal effect on the drawdown of both the pumping well and nearby observation wells was found significant. Additionally, wellbore storage, skin, and leakage need to be taken into account for deriving the hydraulic parameters. Hence, a method to remove these five factors influencing the drawdown curve is developed, which takes advantage from the late-time characteristics of drawdown data and the early-time behavior of drawdown. Some currently available semi-log graphic techniques are therefore proven applicable for parameter determination. Validity of the proposed method is verified by the good agreement between the calculated and the measured drawdown of both the pumping well and observation well.  相似文献   

9.
In terms of controlling groundwater in deep foundation pit projects, the usual methods include increasing the curtain depth, reducing the amount of pumped groundwater, and implementing integrated control, in order to reduce the drawdown and land subsidence outside pits. In dewatering design for confined water, factors including drawdown requirements, the thickness of aquifers, the depth of dewatering wells and the depth of cutoff curtains have to be considered comprehensively and numerical simulations are generally conducted for calculation and analysis. Longyang Road Station on Shanghai Metro Line 18 is taken as the case study subject in this paper, a groundwater seepage model is developed according to the on-site engineering geological conditions and hydrogeological conditions, the excavation depth of the foundation pit as well as the design depth of the enclosure, hydrogeological parameters are determined via the pumping test, and the foundation pit dewatering is simulated by means of the three-dimensional finite difference method, which produces numerical results that consistent with real monitoring data as to the groundwater table. Besides, the drawdown and the land subsidence both inside and outside the pit caused by foundation pit dewatering are calculated and analyzed for various curtain depths. This study reveals that the drawdown and the land subsidence change faster near the curtain with the increase in the curtain depth, and the gradient of drawdown and land subsidence changes dwindles beyond certain depths. In this project, the curtain depth of 47/49 m is adopted, and a drawdown-land subsidence verification test is completed given hanging curtains before the excavation. The result turns out that the real measurements basically match the calculation results from the numerical simulation, and by increasing the depth of curtains, the land subsidence resulting from dewatering is effectively controlled.  相似文献   

10.
柳林泉域滞流区低温岩溶热水的年龄分析   总被引:2,自引:1,他引:1  
为了研究柳林泉域西部滞流区低温岩溶热水的年龄,在区域地质、水文地质条件调查及野外取样、分析的基础上,以滞流区横沟自流井的岩溶热水为例,利用δ2H(‰)、δ18O(‰)、3H(TU)和14C(pMC)同位素测年技术分析、计算并校核了该区岩溶水的滞留时间。通过分析岩溶水中3H和14C的关系及其δ2H、δ18O值,表明横沟岩溶水属于古岩溶水,其年龄应在10 000 a以上;利用14C计算并校核后的岩溶水年龄也印证了这一点,横沟1#和2#井岩溶水的14C年龄分别为12 908 a和9 090 a。因此,横沟附近岩溶热水应属于末次冰期盛冰期内补给的古岩溶水。   相似文献   

11.
井周流场,水跃值与井内水位降深的关系   总被引:2,自引:0,他引:2  
本文以单井稳定流抽水为例,从井固流场与地下水向集水井幅射流的涌水量方程入手,阐明井结构,井周泥浆堵塞和井内水位降深的关系。证明了水跃值是井周泥浆堵塞降深与井周三维流域或紊流引起的二次项降深(简称“井损“)之代数和,并得出了水跃值不同组成部分随井内降深变化而变化的规律。从而提出了消除水跃值,利用裘布依涌水量方程进行水文地质参数计算。  相似文献   

12.
以北京地铁某线X站为例,研究由于该站受施工工法(两端明挖中部暗挖)限制及交通和地下管线的影响,无场地实施封闭式管井井点降水,利用现有场地条件,在无法实施降水井封闭的区域周边布设降水井,进行干扰降水的方法对该区域地下水进行控制的问题。本文通过计算基坑涌水量,并运用等值线预测地下水降深的方法,对暗挖段地下水位降深进行计算与预测,结合预测结果并综合考虑周边环境和场地实际情况等因素,优化降水井布置,合理选择降水井泵量,通过实践检验达到了预期效果,既解决了由于无法实施封闭式管井井点区域的地下水控制问题,降低了工程风险,又节约了施工成本。  相似文献   

13.
Foundation dewatering has become a major cause of land subsidence in Shanghai. The burial depth of foundations in relation to geotechnical construction works is less than 75 m, and the corresponding groundwater includes phreatic, low-pressure artesian, and the first confined aquifers. Based on the geological and hydrogeological conditions beneath Shanghai, methods of dewatering may be divided into three modes and further five patterns according to the insertion depth of the dewatering-retaining system. The most common dewatering mode aims to reduce the water pressure in the confined aquifer by setting the dewatering wells inside the pit, whilst the retaining walls are buried in the confined aquifer and partially cut off the confined aquifer layer. To predict the settlement due to foundation dewatering, numerical models are generally adopted, which are similar to those used to predict land subsidence induced by regional groundwater withdrawal; however, since foundation dewatering is conducted along with the setting of retaining walls and foundation pit excavation, which differs from regional groundwater withdrawal, interactions between the retaining wall-dewatering well, the dewatering-excavation, and dewatering-recharge are important factors affecting the analytical model. Since the grading of the shallow soil layers is different, stratified settlement characteristics of the shallow soil strata and seepage erosion, which results in additional deformation, need to be given particular consideration.  相似文献   

14.
Groundwater flow and the associated surface water flow are potential negative factors on underground tunnels. Early detection of environmental impacts on water resources is of significant importance to planning, design and construction of tunnel projects, as early detection can minimize accidents and project delays during construction. The groundwater modeling software package Groundwater Modeling System (GMS), which supports the groundwater numerical codes MODFLOW and FEMWATER, was utilized to determine the impact of tunneling excavation on the hydrogeological environment in a regional area around the tunnel and a local hot springs area, at the “Tseng-Wen Reservoir Transbasin Diversion Project”, in Taiwan. A hydrogeological conceptual model was first developed to simplify structures related to the site topography, geology and geological structure. The MODFLOW code was then applied to simulate groundwater flow pattern for the hydrogeological conceptual model in the tunnel area. The automated parameter estimation method was applied to calibrate groundwater level fluctuation and hydrogeological parameters in the region. Calibration of the model demonstrated that errors between simulated and monitored results are smaller than allowable errors. The study also observed that tunneling excavation caused groundwater to flow toward the tunnel. No obvious changes in the groundwater flow field due to tunnel construction were observed far away in the surrounding regions. Furthermore, the FEMWATER code for solving 3-D groundwater flow problems, in which hydrogeological characteristics are integrated into a geographic information system (GIS), is applied to evaluate the impact of tunnel construction on an adjacent hot spring. Simulation results indicated that the groundwater drawdown rate is less than the groundwater recharge rate, and the change to the groundwater table after tunnel construction was insignificant for the hot spring area. Finally, the groundwater flow obtained via the GMS indicated that the hydrogeological conceptual model can estimate the possible quantity of tunnel inflow and the impact of tunnel construction on the regional and local groundwater resources regime of the transbasin diversion project.  相似文献   

15.
为了增加地下水开采水量,并且尽可能地减小地下水开采后的水位降深,在水源地下游设置地下截水坝,并且同时配合辐射井开采地下水。通过数值模型的计算及预测,截潜流工程不但可以有效地截取地下水径流,更大限度地利用地下水资源,而且可以有效地控制地下水位降深以及腾出地下库容,以便在洪水期容纳更多的洪水入渗。通过实际工程的检验表明:地下截水坝配合辐射井这种截潜流工程在地下水开采中具有重要的作用。  相似文献   

16.
国家大剧院深基坑地下水控制设计及施工技术   总被引:3,自引:0,他引:3  
国家大剧院基坑地下水控制是大剧院工程的三大难题之一,也是专家们讨论的焦点。经过水文地质试验和充分论证,确定了地下水控制方案和施工方法,即采用反循环成井工艺施工引渗井,将上层滞水和潜水引渗到第一层承压含水层中消纳,保证第一步基坑开挖至-15 7m;在-15 7m位置采用连续墙阻隔第一层承压水,并使用旋挖钻机在槽内施工降水井,疏干槽内承压含水层并进行越流补给控制,保证基坑开挖至-26m;在歌剧院台仓局部加深部份(-32 5m),采用封闭布设减压井,解决基坑开挖和台仓地下结构施工时基坑突涌的问题;最后采用特殊的封井技术,将井管内高于槽底约10m的承压水头封堵在槽底以下0 5m,安全截断井管,保证了基础施工。  相似文献   

17.
通过采用单位面积河流在单位水头差作用下的渗漏量来表征河流渗漏能力,建立渗流井取水理想模型,分别计算了在不同河流渗漏能力和含水层渗透性能条件下,竖井降深对渗流井出水量的影响。建立渗流井取水非稳定流模型,计算了在前期稳定竖井降深不同条件下,河流断流后渗流井出水量衰减过程及竖井降深发展过程。提出渗流井合理竖井降深应根据河流与地下水是否脱节以及含水层渗透性能,在岸边渗流井中部及一侧各布设一个观测孔,根据观测孔水位进行确定。对于含水层渗透性能较强地区,渗流井竖井降深应使得渗流井范围内地下水位与河流脱节,但高于辐射孔顶面;对于含水层渗透性能较差地区,渗流井竖井降深应使得侧部观测孔水位接近河床底面或刚出现脱节。  相似文献   

18.
Wang  Jianxiu  Liu  Xiaotian  Liu  Shaoli  Zhu  Yanfei  Pan  Weiqiang  Zhou  Jie 《Acta Geotechnica》2019,14(1):141-162

Water level is decreased during foundation pit excavation to avoid water inrush under confined water pressure. Cut-off wall is often used as waterproof curtain to partially cut off the dewatered aquifer. When a foundation pit is located in a built-up area and the underlying confined aquifer is not cut off, the drawdown must be minimized outside the pit to avoid land subsidence in buildings and pipelines. The coupling effect of the cut-off wall and pumping well is used to control the drawdown outside the foundation pit. However, the coupling mechanism is not intuitively well understood because of the limitations of existing experimental methods. In this study, transparent soil was introduced to model the coupling mechanism in the physical model test. High-purity fused silica and mixed paraffin oil were used as skeleton and fluid to simulate the confined aquifer and groundwater. Industrial solid dye and paraffin oil were used as tracers. A camera was used to collect flow information. Tests were performed for the combinations of cut-off wall and partially penetrating pumping wells. The insertion depth ratio of the cut-off wall most effectively influenced the drawdown. The layout of the pumping wells in horizontal direction influenced water level distribution and flow rate. The optimal depth of the pumping wells was 1–5 m above the bottom of the cut-off wall, and the optimal horizontal distance between the cut-off wall and the pumping wells was 25% of the pit width. Non-Darcy flow was observed within the range of 0–10 m around the bottom of the cut-off wall. These results were significant in understanding the cut-off wall and pumping well coupling effect on foundation pit dewatering.

  相似文献   

19.
The groundwater reserves in Kharga Oases have been studied for the long-term socioeconomic development in the area. The Nubian Sandstone, which consists of a thick sequence of coarse clastic sediments of sandstone, sandy clay interbedded with shale, and clay beds, forms a complex aquifer system. The Nubian Aquifer has been providing water to artesian wells and springs in the Kharga Oases for several thousand years. Groundwater in the Kharga Oases is withdrawn from springs and shallow and deep artesian wells Nearly all the wells originally flowed, but with the exploitation of ground-water from deep wells for irrigation beginning about 1959. the natural flows declined as more and more closely spaced deep wells were drilled By 1975 many deep wells had ceased to flow The water demand in the area has been met by pumping both shallow and deep wells The total annual extraction from deep wells has fluctuated over the year, however, the annual withdrawal from deep wells has exceeded extraction from shallow wells About 17 billion m3 of water was withdrawn from the combination of shallow and deep wells during the period 1960–1980 The Nubian complex aquifer in the Kharga Oases has a very large groundwater potential that could be exploited and beneficially used for a long-term agricultural development in the area, provided proper well spacing and management are implemented Other major environmental considerations for which precise hydrogeologic data are needed include
  1. Determination of the long-term yield available from properly constructed and producing artesian wells that will support a planned migration of population from the overcrowded Nile delta and flood plain areas
  2. Development of an effective management program and adequate staff to maintain groundwater production over an extended period of years
  3. The impact on climate caused by extensive irrigation in the oases of the Western Desert of Egypt
  4. Protection against water logging of soils from irrigation practices
  5. Protection against salinization of soils from irrigation practices
  6. Development of effective surface and subsurface drainage practices
  7. The impact of farming and pest control practices on the shallow groundwater of the oases
  8. Determination of the long-term development of the artesian water on the quality of the water from the aquiter systems in the Western Desert
This paper addresses items 1, 2 and 8.  相似文献   

20.
In this paper, fist-order reliability method (FORM) is used to evaluate the impacts of uncertainties posed by traditional deterministic models on the environment in Jining, China. Because of groundwater contamination in shallow aquifer, and an increase in water demand, the new wells target the confined aquifer with constant pumping rate of 5,000 m3/d. Using Theis equation, the groundwater drawdown is analyzed to determine whether the confined aquifer will be contaminated. Although the piezometric level is higher than the phreatic level by 11.0 m, the risk of drawdown is still 19.49% when the pumping rate of 5,000 m3/d is maintained for 2 years. The deterministic model indicates a drawdown of 8.94 m which is lower than the maximum tolerance drawdown of 11.0 m. The sensitivity and uncertainty analysis reveal that the model result is more sensitive to transmissivity than specific yield, while the reliability analysis offers significant information for the decision makers. This approach exposes and minimizes the risk of undesirable consequences such as groundwater contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号