首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Satellite remote sensing data play an important role in the improvement of climate models forcing field, relevant physical parameters and simulation accuracy. At present, there are many years of satellite remote sensing data and a variety of products about land surface attributes. However, the application of satellite remote sensing data to climate models is still very limited. Fully using satellite remote sensing data is important to improving the simulation ability. In the paper, remote sensing estimates methods of three key land surface parameters including Fractional Vegetation Coverage(FVC), Leaf Area Index(LAI)and surface albedo(Albedo)is reviewed and up or down scaling land surface variables in validation process is analyzed. Secondly, taking WRF(Weather Research and Forecasting)model as an example, three parameters in climate model are described. Finally, the key problems of using remote sensing data in climate models are discussed, which comprise the uncertainties and scales of remote sensing estimation parameters and the future direction is prospected.  相似文献   

2.
Understanding the impacts of climate change on water quality and stream flow is important for management of water resources and environment. Miyun Reservoir is the only surface drinking water source in Beijing, which is currently experiencing a serious water shortage. Therefore, it is vital to identify the impacts of climate change on water quality and quantity of the Miyun Reservoir watershed. Based on long-time-series data of meteorological observation, future climate change scenarios for this study area were predicted using global climate models (GCMs), the statistical downscaling model (SDSM), and the National Climate Centre/Gothenburg University—Weather Generator (NWG). Future trends of nonpoint source pollution load were estimated and the response of nonpoint pollution to climate change was determined using the Soil and Water Assessment Tool (SWAT) model. Results showed that the simulation results of SWAT model were reasonable in this study area. The comparative analysis of precipitation and air temperature simulated using the SDSM and NWG separately showed that both tools have similar results, but the former had a larger variability of simulation results than the latter. With respect to simulation variance, the NWG has certain advantages in the numerical simulation of precipitation, but the SDSM is superior in simulating precipitation and air temperature changes. The changes in future precipitation and air temperature under different climate scenarios occur basically in the same way, that is, an overall increase is estimated. Particularly, future precipitation will increase significantly as predicted. Due to the influence of climate change, discharge, total nitrogen (TN) and total phosphorus (TP) loads from the study area will increase over the next 30 years by model evaluation. Compared to average value of 1961?~?1990, discharge will experience the highest increase (15%), whereas TN and TP loads will experience a smaller increase with a greater range of annual fluctuations of 2021 ~ 2050.  相似文献   

3.
A methodology for diagnosis of free and convectively coupled equatorial waves (CCEWs) is reviewed and illustrated for Kelvin and mixed Rossby–gravity (MRG) waves. The method is based on prefiltering of the geopotential and horizontal wind, using three-dimensional normal mode functions of the adiabatic linearized equations of a resting atmosphere, followed by space–time power and cross-spectral analysis applied to the normal-mode-filtered fields and the outgoing long-wave radiation (OLR) to identify spectral regions of coherence. The methodology is applied to geopotential and horizontal wind fields produced by European Centre for Medium-Range Weather Forecasts interim reanalysis and OLR data produced by the National Oceanic and Atmospheric Administration. The same type of data simulated by two climate models that participated in the fifth phase of the climate model intercomparison project are also used. Overall, simulation of free and CCEWs was achieved by the models with moderate success. Kelvin and MRG waves were identified in the space–time spectral domains, using both observationally based and climate model datasets. Other nonequatorial waves, classified as tropical depression and extratropical storm track activity, along with the Madden–Julian oscillation were also observed. However, significant deviations were also evident in the models, which may help identification of deficiencies in the models’ simulation schemes for some physical processes. Therefore, this diagnosis method should be a useful procedure for climate model validation and model benchmarking.  相似文献   

4.
耦合SWAT与RIEMS模拟黑河干流山区径流   总被引:3,自引:3,他引:0  
以黑河干流山区为研究区,采用1:100 000植被类型图、1:1 000 000土壤类型图和气象水文观测数据,耦合SWAT水文模型与RIEMS高分辨率区域气候模式,模拟1995-2010年月径流变化过程,探讨水文模型气象驱动数据的优化方法和气候水文模型耦合的区域适宜性。RIEMS气候模式输出精度较高,降水、温度、湿度、风速的相关系数均在0.80以上,均通过了0.01显著性水平检验,时空分辨率达到6 h和3 km。构建虚拟气象站点,弥补气象观测站点稀少且分布不均匀的不足,对水文模型气象驱动数据进行优化;遵循多时间尺度、多变量和多站点的原则来校准模型。结果表明,径流模拟值与观测值的过程趋势拟合程度较好,NSE均在0.60以上,PBIAS介于±20%之间,R2达到0.70以上。径流模拟在枯水期表现较好,在丰水期存在一定的误差,主要是受降水驱动数据偏高的影响,气候模式模拟能力需要提高,水文模型空间插值方法和气候水文模型耦合方案需进一步完善。总体来看,耦合SWAT模型与RIEMS模式能够较好地模拟黑河干流山区水文过程,可为流域水资源的预测和管理提供科学依据。  相似文献   

5.
穆振侠  姜卉芳 《冰川冻土》2012,34(6):1284-1292
作为气候变化产物及气候变化敏感指示器的积雪, 对干旱区的区域社会经济的发展、 生态环境的改善起着极其重要的作用. 为能够更好的指导环境变化下积雪水资源的合理开发利用, 基于2001-2010年MODIS积雪数据、 2005年MODIS土地利用/覆被变化(LUCC)数据及阿克苏气象站气象数据, 对昆马力克河流域积雪消融规律对气候变化的响应进行分析. 结果表明: 研究区气温自1997年后快速升高, 尤其以冬季和春节较明显; 年际、 年内及时段积雪消融规律对气候变化有较好的响应关系; 不同覆被下除农用地所在区域积雪覆盖率与气温变化服从线性变化外, 其他覆被下均服从抛物线型变化. 积雪覆盖率对气温变化的敏感程度有一定的差异, 以林地所在区域最敏感, 变化较快, 其次依次为灌丛、 草地和稳定雪/冰所在区域.  相似文献   

6.
Visualization of the El Berrocal granite: application to rock engineering   总被引:6,自引:0,他引:6  
This paper outlines the visualization of the El Berrocal granite using a computer-based geological modelling system, EarthVision, and discusses the application of this visualization to engineering aspects of waste disposal in crystalline rocks. The El Berrocal Project was an international study with the aim of understanding and modelling the migration processes which have controlled the distribution of naturally occurring radionuclides in a fractured granitic environment. EarthVision was used to provide three-dimensional geological models of the site structure and properties. Modelling of the site structure concentrated on the development of visualizations of the main discontinuities in the granite. These included a model of the main mineralized structures, a model of the regional fracture network, models of local fracture networks between borehole clusters and a visualization of the mineralogy of the fractures in individual boreholes. These fracture models were visualized with the boreholes and access gallery to the mine. In addition, the fracture network in the region of a large scale tracer test was visualized with the injection and extraction zones for the tracer test. Three-dimensional interpolations of the rock and fluid structure were undertaken. A model of the hydraulic conductivity illustrated large-scale variations in hydraulic conductivity and channelling effects in the tracer test zone. A model of the sulphate concentrations in the groundwater illustrated the interpolation of spatial data based on structural domains. The visualizations of the geology of the El Berrocal granite illustrate that, despite limitations, geological modelling can be a powerful and graphic tool in rock engineering. The use of computer visualizations can be provide the three-dimensional structural framework for computations, can aid decision making during the construction phase of waste repositories and can be useful in understanding and analysing the results of numerical calculations.  相似文献   

7.
Ping Zhu 《Natural Hazards》2008,47(3):577-591
Hurricane wind damage constitutes the largest percentage of catastrophic insured losses in the US. Yet the complicated wind structures and their changes are not fully understood and, thus, have not been considered in current risk catastrophic models. To obtain realistic landfall hurricane surface winds, a large eddy simulation (LES) framework in a weather forecasting mode has been developed from a multiple nested Weather Research & Forecasting (WRF) model to explicitly simulate a spectrum of scales from large-scale background flow, hurricane vortex, mesoscale organizations, down to fine-scale turbulent eddies in a unified system. The unique WRF-LES enables the high resolution data to be generated in a realistic environment as a hurricane evolves. In this paper, a simulation of the landfalling Hurricane Katrina is presented to demonstrate various features of the WRF-LES. It shows that the localized damaging winds are caused by the large eddy circulations generated in the hurricane boundary layer. With a sufficient computational power, WRF-LES has the potential to be developed into the next generation operational public wind-field model for hurricane wind damage mitigation.  相似文献   

8.
On Visualization for Assessing Kriging Outcomes   总被引:7,自引:0,他引:7  
Extant opinion about kriging is that all weights should be positive. Visualizations rendered by converting kriged grids to digital images are presented to show that negative weights may be beneficial to some spatial problems. In particular, variogram models with zero-valued nuggets, already well known to minimize smoothing through kriging, result in a visual resolution substantially superior to that from kriging with a variogram model having a nonzero nugget value in application to satellite acquired data. Negative weights are more likely when using variogram models with zero-valued nuggets, but resultant visualizations often show a smoother transition between extreme data values. This is true even when a variogram model having a nugget value of zero is not optimum with respect to mean square error, as is demonstrated using a nitrate data set. An analogy to digital image processing is used to suggest that the influence of negative weights in kriging is similar to a high-boost kernel.  相似文献   

9.
Researchers wish to study the potential impact of sea level rise from climate change, and visual analytic tools can allow scientists to visually examine and explore different possible scenarios from simulation runs. In particular, hydrodynamic flux is calculated to understand the net movement of water; but typically this calculation is tedious and is not easily achieved with traditional visualization and analytic tools. We present a visual analytic method that incorporates a transect profiler and flux calculator. The analytic software is incorporated into our visual analytics tool Vinca, and generates multiple transects, which can be visualized and analysed in several alternative visualizations; users can choose specific transects to compare against real-world data; users can explore how flux changes within a domain. In addition, we report how ocean scientists have used our tool to display multiple-view views of their data and analyse hydrodynamic flux for the coastal zone.  相似文献   

10.
11.
The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.  相似文献   

12.
The current and future wind energy potentials for two square areas (SA) in the region of Freiburg were assessed and analyzed, with the aim of mitigating climate change by increasing the use of wind energy. For future conditions the regional climate models REMO and CLM were taken into account for the IPCC Emission Scenarios (SRES) A1B and B1. One aim was to provide information of the applicability of data from regional climate models in terms of wind energy. As a reference dataset, the wind energy potentials of the two measurement stations of the German Weather Service (DWD) (1961–1990) in Freiburg (SA I) and on the Feldberg (SA II) were assessed. Calculations were carried out by the Wind Analysis and Application Program (WAsP). Results were in terms of visual analysis displayed with maps. While the annual electricity performances of the reference data in SA I and SA II reach up to 7.2 GWh and 10.1 GWh respectively, the calculations for REMO and CLM show an underestimation of the real conditions for every period and Emission Scenario. Hence the applicability of the models in consideration seems to be limited. Nevertheless, with regard to different socio-economic developments (SRES A1B and B1), the results provide an overview of the wind energy potentials’ development in the different periods.  相似文献   

13.
Evidence of small glaciers is often used to infer past atmospheric climate through calculation of steady-state ELAs. However, if topographic niches such as shading or windblown-snow augmented mass-balance then ELAs cannot reflect regional climate and determining the significance of these topoclimates is therefore important. The Brecon Beacons, South Wales, contains upland glacial landforms dating to the Younger Dryas (11,000–10,000 yr BP) when local climate was at the threshold for glaciation. This case study categorises topoclimate using three-dimensional modelling of topography and reconstructed palaeoglaciers from two sites containing mapped moraines whose orientation suggest complex patterns of deglaciation. Ablation season solar radiation is modelled over multiple ice-surfaces as shade from surrounding topography and intensity from ice-surface incidence angle. Snowblow and avalanching potential models are also used and the significance of all topoclimate variables assessed against a mass-balance deficit calculated for each glacier given palaeoclimate models for the region. Results demonstrate that both glaciers were likely to be heavily reliant on topoclimate and that previous studies underestimate the significance of solar radiation. Modelled over multiple ice-surfaces reflecting patterns of recession, results indicate that the distribution of topoclimate variables predicts the style of deglaciation at both sites, possibly explaining the complexity of glacial evidence in this environment.  相似文献   

14.
The Earth System Curator is a National Science Foundation sponsored project developing a metadata formalism for describing the digital resources used in climate simulations. The primary motivating observation of the project is that a simulation/model’s source code plus the configuration parameters required for a model run are a compact representation of the dataset generated when the model is executed. The end goal of the project is a convergence of models and data where both resources are accessed uniformly from a single registry. In this paper we review the current metadata landscape of the climate modeling community, present our work on developing a metadata formalism for describing climate models, and reflect on technical challenges we have faced that require new research in the area of Earth Science Informatics.  相似文献   

15.
Climate ensembles utilize outputs from multiple climate models to estimate future climate patterns. These multi-model ensembles generally outperform individual climate models. In this paper, the performance of seven global climate model and regional climate model combinations were evaluated for Ontario, Canada. Two multi-model ensembles were developed and tested, one based on the mean of the seven combinations and the other based on the median of the same seven models. The performance of the multi-model ensembles were evaluated on 12 meteorological stations, as well as for the entire domain of Ontario, using three temperature variables (average surface temperature, maximum surface temperature, and minimum surface temperature). Climate data for developing and validating the multi-model ensembles were collected from three major sources: the North American Coordinated Regional Downscaling Experiment, the Digital Archive of Canadian Climatological Data, and the Climactic Research Unit’s TS v4.00 dataset. The results showed that the climate ensemble based on the mean generally outperformed the one based on the median, as well as each of the individual models. Future predictions under the Representative Concentration Pathway 4.5 (RCP4.5) scenario were generated using the multi-model ensemble based on the mean. This study provides credible and useful information for climate change mitigation and adaption in Ontario.  相似文献   

16.
Obligatory interactions between species are fundamental to ecosystem functioning and are expected to be particularly sensitive to climate change. Although the effect of past and current climate changes on individual species has been thoroughly investigated, their effect on obligatory interactions has been overlooked. In this review, we present predictions about the effects of climate change on obligatory interactions and illustrate these predictions with examples from the literature. We focus on abrupt past climate change, especially during the Quaternary, because knowing past responses is useful for understanding and predicting the response of organisms and ecosystems to the current climate change. We also pinpoint the need for better time calibration of demographic events from genetic data, and for more studies focused on particularly suitable biological models. We hope that this review will stimulate interaction between the earth sciences and the life sciences on this timely topic.  相似文献   

17.
Based on the ERA-Interim atmospheric reanalysis data from the European Medium-Term Weather Forecast Center from 1979 to 2016 and the ERSSTv4 sea surface temperature data from the US National Oceanic and Atmospheric Administration, the regional climate model CWRF was used to simulate the climate characteristics in East Asia. The results show that the CWRF model can well reproduce the average characteristics of the East Asian winter monsoon circulation, including the location and intensity of the low-level continental cold high pressure and variation characteristics of wind field in high and low levels. The occurrence area and frequency of the north wind in the simulation and the reanalysis data were further calculated and compared. It is shown that they are basically consistent. The distribution of air temperature and precipitation over China are well represented by the model. The water vapor transport is also in good agreement with the reanalysis data. The water vapor from the Bay of Bengal plays a vital role in the precipitation over South China. The simulation results of apparent heat source and apparent moisture sink show that the model can well simulate the thermal difference between the East Asian continent and the adjacent sea area. The analysis results indicate that CWRF model has the ability to simulate the main characteristics of the East Asian winter monsoon.  相似文献   

18.
We investigate the glacial climate conditions in the southeastern Carpathian Basin (Vojvodina, Serbia) based on the reconstruction of malacological palaeotemperatures and results from a high-resolution regional climate simulation. Land snail assemblages from eight loess profiles are used to reconstruct July temperatures during the Last Glacial Maximum (LGM). The malacological reconstructed temperatures are in good agreement with the simulated LGM July temperatures by the Weather Research and Forecast model. Both methods indicate increasing temperatures from the northwestern towards the southeastern parts of the study area. LGM aridity indices calculated based on the regional climate model data suggest more arid conditions in the southeastern parts compared with more humid conditions in the northwestern parts. However, for present-day conditions, the moisture gradient is reversed, exhibiting more humid (arid) conditions in the southeast (northwest). An explanation for the reversed LGM aridity pattern is provided by an analysis of the prevailing wind directions over the South Banat district (Serbia). The prevailing moist northwesterly winds during summer are not able to compensate for the annual lack of moisture induced by the dry winds from the southeast that are more frequent during the LGM for the other seasons.  相似文献   

19.
Episodic recharge and climate change in the Murray-Darling Basin, Australia   总被引:1,自引:0,他引:1  
In semi-arid areas, episodic recharge can form a significant part of overall recharge, dependant upon infrequent rainfall events. With climate change projections suggesting changes in future rainfall magnitude and intensity, groundwater recharge in semi-arid areas is likely to be affected disproportionately by climate change. This study sought to investigate projected changes in episodic recharge in arid areas of the Murray-Darling Basin, Australia, using three global warming scenarios from 15 different global climate models (GCMs) for a 2030 climate. Two metrics were used to investigate episodic recharge: at the annual scale the coefficient of variation was used, and at the daily scale the proportion of recharge in the highest 1% of daily recharge. The metrics were proportional to each other but were inconclusive as to whether episodic recharge was to increase or decrease in this environment; this is not a surprising result considering the spread in recharge projections from the 45 scenarios. The results showed that the change in the low probability of exceedance rainfall events was a better predictor of the change in total recharge than the change in total rainfall, which has implications for the selection of GCMs used in impact studies and the way GCM results are downscaled.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号