首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Shan  Yibo  Chen  Shengshui  Zhong  Qiming  Mei  Shengyao  Yang  Meng 《Landslides》2022,19(6):1491-1518

The existing empirical models do not consider the influence of material composition of landslide deposits on the peak breach flow due to the uncertainty in the material composition and the randomness of its distribution. In this study, based on the statistical analyses and case comparison, the factors influencing the peak breach flow were comprehensively investigated. The highlight is the material composition-based classification of landslide deposits of 86 landslide cases with detailed grain-size distribution information. In order to consider the geometric morphology of landslide dams and the potential energy of dammed lakes, as well as the material composition of landslide deposits in an empirical model, a multiple regression method was applied on a database, which comprises of 44 documented landslide dam breach cases. A new empirical model for predicting the peak breach flow of landslide dams was developed. Furthermore, for the same 44 documented landslide dam failures, the predicted peak breach flow obtained by using the existing empirical models for embankment and landslide dams and that obtained by using the newly developed model were compared. The comparison of the root mean square error (Erms) and the multiple coefficient of determination (R2) for each empirical model verifies the accuracy and rationality of the new empirical model. Furthermore, for fair validation, several landslide dam breach cases that occurred in recent years in China and have reliable measured data were also used in another comparison. The results show that the new empirical model can reasonably predict the peak breach flow, and exhibits the best performance among all the existing empirical models for embankment and landslide dam breaching.

  相似文献   

2.
针对缺乏地形条件和工程处置措施对堰塞坝溃决过程影响研究的现状,采用4种河床坡度(0°、1°、2°、3°)和3种泄流槽横断面型式(三角形、梯形、复合型),开展了堰塞坝溃决的模型试验。通过分析堰塞坝的溃决流量、溃决历时、溃口发展和坝体纵截面演变过程,研究了不同河床坡度和泄流槽横断面对堰塞坝溃决过程的影响规律。试验结果表明:(1)堰塞坝溃决过程可分为3个阶段。阶段Ⅰ:溃口形成阶段,溃决流量较小;阶段Ⅱ:溃口发展阶段,水流下蚀及侧蚀强烈,溃决流量到达峰值;阶段Ⅲ:衰减-平衡阶段,粗化层形成,溃口停止发展。(2)河床坡度增加意味着下游坝坡、坝顶及泄流槽的坡度增加,导致水流侵蚀能力增强,溃口下切迅猛,因此在0°~3°范围内河床坡度越大,峰值流量越大,峰现时间越早,溃决流量过程曲线越趋于“高瘦型”,且残留坝高越小。(3)泄流槽横断面型式不同导致其槽深、槽宽和侧坡坡度不同,进而影响溃口发展和溃决流量。三角形槽的水土作用面积小,溃口下切及展宽速率最高,峰值流量最大,峰现时间最早;梯形槽的槽底高程最高,水土作用面积最大,溃口下切速率最低,峰现时间最晚;而复合槽介于前两者之间。试验成果将为堰塞坝应急抢险和工...  相似文献   

3.
Breaching parameters of landslide dams   总被引:11,自引:5,他引:6  
Landslide dams pose enormous risks to the public because of the potentially catastrophic floods generated by breaching of such dams. The need to better understand the threats of landslide dams raises questions about the proper estimation of breaching parameters (breach size, breaching duration, and peak outflow rate) of landslide dams and the feasibility of applying models for estimating the breaching parameters of man-made earthen dams to landslide dams. This paper aims to answer these two questions. In this study, a database of 1,239 landslide dams, including 257 cases formed during the 12 May 2008 Wenchuan earthquake, has been compiled. Based on records of 52 landslide dam cases with breaching information in the database, empirical models for estimating the breaching parameters of landslide dams are developed. A comparison study between landslide dams and man-made earth and rockfill dams is conducted, which shows that the models for man-made earth and rockfill dams are not suitable for estimating the breaching parameters of landslide dams. Two case studies are presented to show the application of the set of empirical models developed in this paper.  相似文献   

4.
Dam breach width significantly influences peak breach outflow, inundation levels, and flood arrival time, but uncertainties inherent in the prediction of its value for embankment dams make its accurate estimation a challenging task in dam risk assessments. The key focus of this paper is to provide a fuzzy logic (FL) model for estimating the average breach width of embankment dams as an alternative to regression equations (RE). The FL approach is capable of handling nonlinear behavior, imprecision in discrete measurements, and parameter uncertainty. Historical data from 69 embankment dam failures are used in the development and testing of the FL model. Application of the FL model is also presented for estimating average breach widths of two case studies that have adequately documented data. The accuracy of the FL rule-based model is investigated using uncertainty analysis: the mean prediction error between the FL estimates and the observed average breach widths is very small (=0.03) and comparable to that achieved using the best available RE. Moreover, the FL uncertainty band is found to be approximately ±0.51 order of magnitude smaller than the ±0.56 order of magnitude achieved with the best available RE. The simulation results indicate the potential of the FL model to be used as a predictive tool for estimating the average breach width of embankment dams.  相似文献   

5.
近年来,频发的地质构造活动和极端气候灾害诱发了大量堰塞坝,严重威胁上下游群众的生命财产安全。开挖泄流槽是最常用降低堰塞坝溃决风险的措施,由于时间非常急迫、交通极度瘫痪,其开挖量非常有限,因此如何利用有限的开挖量将溃坝风险降低至最小是亟待解决的问题。本文基于水土耦合冲刷机理,提出了考虑不同泄流槽方案的堰塞坝溃决机理分析方法,并应用于唐家山堰塞坝。该方法根据水力学参数和坝体抗冲刷性参数动态计算瞬时坝体冲刷率,进而分析泄流槽对溃决全过程的影响,从而自动获取最优的泄流槽设计方案。将此方法应用于唐家山堰塞坝案例发现:唐家山堰塞坝泄流槽最优设计时溃坝洪峰流量为1700m3·s-1,小于实际峰值流量6500m3·s-1,主要是因为增大泄流槽的纵坡率,显著增强溃坝前的冲刷并形成双洪峰,从而有效降低了溃决峰值流量。由于复合槽相对较小的水力半径限制了溃坝前的冲刷,使得临溃时水位较高,因此溃坝峰值流量比单槽大,溃坝风险降低效果不如单槽。  相似文献   

6.
The Attabad landslide dam caused significant property losses and many human casualties in Pakistan, and also greatly affected the operation of the China-Pakistan Karakoram Highway (KKH). This paper discusses the risk of dam breach and hazards to the KKH project construction site following a dam breach. The paper examines the following three topics. (1) The geomorphologic dimensionless blockage index (DBI) and the analogy method were used to analyze the stability of the Attabad landslide dam. The long-term behaviors of landslide dams downstream of the Attabad landslide dam indicate that the risk of a dam breach exists, but the probability of a total dam failure is low. (2) The peak discharge of a potential breach of the Attabad landslide dam was calculated for scenarios in which 1/4, 1/3, 1/2, and total failure of the dam was breached. The potential breach discharge decreases with the downstream distance. (3) The potential impacts of the landslide dam breach on the KKH project construction site were analyzed. Based on the composition of the landslide dam, the probability of a 1/3 dam breach is high. To ensure the safety of downstream areas, disaster preparedness plans that correspond to the 1/2 dam breach scenario should be developed. Based on experience in addressing the landslide dam that was caused by the Wenchuan Earthquake, artificial controlled drainage measures are suggested and provide a technical reference for addressing the Attabad landslide dam and achieving recovery and normal operation of KKH.  相似文献   

7.
Sammen  Saad Sh.  Mohamed  T. A.  Ghazali  A. H.  Sidek  L. M.  El-Shafie  A. 《Natural Hazards》2017,87(1):545-566

The study of dam-break analysis is considered important to predict the peak discharge during dam failure. This is essential to assess economic, social and environmental impacts downstream and to prepare the emergency response plan. Dam breach parameters such as breach width, breach height and breach formation time are the key variables to estimate the peak discharge during dam break. This study presents the evaluation of existing methods for estimation of dam breach parameters. Since all of these methods adopt regression analysis, uncertainty analysis of these methods becomes necessary to assess their performance. Uncertainty was performed using the data of more than 140 case studies of past recorded failures of dams, collected from different sources in the literature. The accuracy of the existing methods was tested, and the values of mean absolute relative error were found to be ranging from 0.39 to 1.05 for dam breach width estimation and from 0.6 to 0.8 for dam failure time estimation. In this study, artificial neural network (ANN) was recommended as an alternate method for estimation of dam breach parameters. The ANN method is proposed due to its accurate prediction when it was applied to similar other cases in water resources.

  相似文献   

8.
The Hattian landslide, which was triggered by the 2005 Kashmir earthquake, formed one of largest landslide dams in the world and it has posed a serious threat of flooding to people living in the lower reach of the Jhelum River. In order to understand deformation occurring in the body of the dam, physical measurements using a Differential Global Positioning System (DGPS) were conducted. Gradual deformation and slowly developing backward erosion initially were observed, leading eventually to a sudden creation of a deep hollow on the downstream slope of the landslide dam. The dimensions of this eroded gully were determined by laser scanning, and the results showed a significant loss of soil volume and a large change in the body of the dam. A breach formation model was used to predict the outflow hydrograph generated by constant downcutting of dam during a breaching event. A run-off analysis of the outflow hydrograph was conducted to evaluate inundation levels of flood waves in case the dam is breached. Hazardous downstream locations were identified near the junction of the Karli and Jhelum Rivers, suggesting a need for early warning system in order to avoid loss of lives.  相似文献   

9.
Numerical simulation of landslide dam breaching due to overtopping   总被引:1,自引:0,他引:1  
The breach of landslide dam often causes significant disaster in the inundated area; the prediction of breach hydrograph is in high demand for the dam breach risk evaluation. In this study, according to the model tests and Tangjiashan landslide dam breach case, the surface erosion accompanied by intermittent mass failure is known as the key breaching mechanism for landslide dam due to overtopping failure. The downstream slope angle would gradually decrease during the dam-breaching process, whereas a planar wedge failure occurs when the breach slopes at the dam crest and downstream breach channel fail. Based on the breach mechanism, a numerical model for landslide dam breach due to overtopping is developed to simulate the coupling process of water and soil. The model focuses on the breach morphology evolution during the breaching for the sake of the improvement of breach hydrograph prediction. Furthermore, the model can handle one- and two-sided breach, as well as incomplete and base erosion at the vertical direction. The case study of Tangjiashan landslide dam-breaching feedback analysis testifies the rationality of the present model with the relative errors less than 10% for peak discharge, final breach widths, and time to peak. The sensitivity analysis indicates that the final breach depth and soil erodibility affect the breach flow prediction of the landslide dam significantly, whereas the one- or two-sided breach mode is less sensitive.  相似文献   

10.
为进一步了解堰塞坝溃坝过程,开展了9组水槽模型试验,对溃口纵向下切和溯源发展过程进行了系统分析,并讨论了上溯源点移动速度与溃口水深之间的关系。研究发现:非黏性堰塞坝溃坝过程中,冲刷面与底床的夹角时刻发生变化,上、下溯源点位置不固定但也不能完全发展到坝踵;上、下坡面坡度增大到最大值1:1.5时,下溯源点到下游坝趾的最大距离与坝体沿水流方向长度的比值(xp*/xd*,反映下溯源点最终相对位置)对应降低到最小值0.24和0.18;坝体相对尺寸从1减小到1/2时,xp*/xd*值从0.38增大到0.47。上溯源点的无量纲移动速度是不断变化的,在无量纲时刻为0.13时,其x,y分量分别达到峰值0.94和0.32;上溯源点处溃口水深出现时刻相对移动速度峰值点出现时刻有延迟,大概延迟0.04个无量纲时间。  相似文献   

11.
Landslide dam failure can trigger catastrophic flooding in the downstream. However, field observation of such flooding is rarely available, while laboratory experimental studies are sparse. The mechanism of landslide dam failure and the flood has so far remained insufficiently understood. Here, we present an experimental investigation of landslide dam failure and the flood. A total of 28 runs of experiments are carried out in a flume of 80 m × 1.2 m × 0.8 m, with differing inflow discharge, dam composition, dam geometry, and initial breach dimension. An array of twelve automatic water-level probes is deployed to measure the stage hydrographs along the flume, and the video recording of the dam failure processes facilitates an estimation of the widening of initial breach. Under the present experimental conditions with dams composed of homogeneous materials, landslide dam failure is primarily caused by erosion of overtopping flow, and lateral mass collapse is also considerable during the cause of breach widening. Cohesive clay may act to mitigate the seepage through the dam and thus its subsidence and appreciably modulate the dam failure process and the flood. However, the impacts of clay may be readily overwhelmed by a large inflow discharge and initial breach. Gravels in the dam may appreciably depress the rate of the dam failure process and thus modify the flood. The present work provides new experimental data set for testing mathematical models of the flood flow due to landslide dam failure.  相似文献   

12.
山区特大地震往往导致大量堰塞湖,例如2008年汶川地震形成了至少257个堰塞湖,并且主震后发生了大量余震,这些余震可能会影响堰塞坝体的安全状态。通过大型振动台模型试验,研究了余震及库水耦合作用下堰塞坝体的破坏及溃决机理和过程。共进行了两组不同材料的振动台模型试验,分别模拟含黏粒较多且颗粒较小(坝体Ⅰ)和基本不含黏粒且颗粒较大(坝体Ⅱ)的两种坝体。在不同水位条件下进行振动台试验。研究成果表明:(1)地震和库水耦合作用下堰塞坝体的主要溃决方式是漫顶溢流,主要溃决过程为地震力使松散的堰塞坝体发生沉陷,库水渗入使沉陷加剧,最终水位上升漫过坝顶发生溢流冲蚀破坏。(2)地震一般不会直接引起堰塞坝体的破坏。地震力对坝体稳定性的主要影响是使坝体发生沉陷变形。在地震和库水耦合作用下,坝体沉陷比单一因素作用下更为剧烈,因此地震作用会使漫顶溢流提前发生。(3)地震和库水耦合作用下坝体Ⅰ沉陷量大于坝体Ⅱ,说明现实中由大粒径岩土体组成的堰塞坝体具有更好的稳定性。  相似文献   

13.
Wu  Hang  Trigg  Mark A.  Murphy  William  Fuentes  Raul 《Landslides》2022,19(3):555-572

To address the current data and understanding knowledge gap in landslide dam inventories related to geomorphological parameters, a new global-scale landslide dam dataset named River Augmented Global Landslide Dams (RAGLAD) was created. RAGLAD is a collection of landslide dam records from multiple data sources published in various languages and many of these records we have been able to precisely geolocate. In total, 779 landslide dam records were compiled from 34 countries/regions. The spatial distribution, time trend, triggers, and geomorphological characteristic of the landslides and catchments where landslide dams formed are summarized. The relationships between geomorphological characteristics for landslides that form river dams are discussed and compared with those of landslides more generally. Additionally, a potential threshold for landslide dam formation is proposed, based on the relationship of landslide volume to river width. Our findings from our analysis of the value of the use of additional fluvial datasets to augment the database parameters indicate that they can be applied as a reliable supplemental data source, when the landslide dam records were accurately and precisely geolocated, although location precision in smaller river catchment areas can result in some uncertainty at this scale. This newly collected and supplemented dataset will allow the analysis and development of new relationships between landslides located near rivers and their actual propensity to block those particular rivers based on their geomorphology.

  相似文献   

14.
滑坡堰塞坝作为结构松散的堆积物,随着上游水位的不断上涨,其稳定性不断降低,并存在突然溃坝的风险。以唐家山滑坡堰塞坝为研究对象,基于相似原理,开展符合坝体颗粒级配的室内水槽物理模型实验,模拟了不同坝后蓄水量、不同水位和不同颗粒物质组成条件下坝体渗流、漫顶破坏的整个过程。监测结果显示:堰塞坝漫顶溃坝主要分为渗流、漫顶、冲刷和溃决4个过程;坝体堆积颗粒级配越差,坝体允许渗流坡降越小;相同材料配比的坝体,上游水位相同时,坝体底部水平位移最大,且漫顶溃坝时溃口尺寸与蓄水量正相关。该研究结果揭示了堰塞坝漫顶破坏规律,可为堰塞坝溃坝防治提供理论参考。  相似文献   

15.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

16.
A smoothed particle hydrodynamics (SPH) numerical modeling method implemented for the forward simulation of propagation and deposition of flow-type landslides was combined with different empirical geomorphological index approaches for the assessment of the formation of landslide dams and their possible evolution for a local case study in southwestern China. The SPH model was calibrated with a previously occurred landslide that formed a stable dam impounding the main river, and it enabled the simulation of final landslide volumes, and the spatial distribution of the resulting landslide deposits. At four different sites on the endangered slope, landslides of three different volumes were simulated, respectively. All landslides deposited in the main river, bearing the potential for either stable impoundment of the river and upstream flooding scenarios, or sudden breach of incompletely formed or unstable landslide dams and possible outburst floods downstream. With the empirical indices, none of the cases could be identified as stable formed landslide dam when considering thresholds reported in the literature, showing up the limitations of these indices for particular case studies of small or intermediate landslide volumes and the necessity to adapt thresholds accordingly for particular regions or sites. Using the occurred benchmark landslide as a reference, two cases could be identified where a complete blockage occurs that is more stable than the reference case. The other cases where a complete blockage was simulated can be considered as potential dam-breach scenarios.  相似文献   

17.
Stability of landslide dams and development of knickpoints   总被引:2,自引:0,他引:2  
The Wenchuan earthquake triggered many landslides and numerous avalanches and created 100 odd quake lakes. The quake lakes may be removed or preserved. The removal strategy was applied to several large landslide dams, which were dangerous because massive amounts of water pooled up in the quake lakes. The dams could eventually fail under the action of dam outburst flooding, potentially endangering the lives of people in the downstream reaches. This paper studied the stability of landslide dams and the development of knickpoints by field investigations and experiments, and analyzing satellite images. The study concluded that if landslide dams were preserved, they would develop into knickpoints and act as a primary control of riverbed incision and, thus, reduce the potential of new landslide. The stability of landslide dams depends mainly on the development of the step-pool system and stream power of the flood flow. If a landslide dam consists of many boulders, a step-pool system may develop on the spillway channel of the dam, which would maximize the resistance, consume most of the flow energy and consequently protect the dam from incision. The development degree of the step-pool system is represented by a parameter S p, which was measured with a specially designed instrument. A preservation ratio of landslide dams is defined as the ratio of preserved height after flood scouring to the original height of the dam. For streams with peak flood discharge lower than 30 m3/s, the preservation ratio is linearly proportional to S p. For rivers with a peak flood discharge higher than 30 m3/s (30–30,000 m3/s), the minimum S p value for stable channel increases with log p, in which p is the unit stream power. For a landslide dam with a poorly developed step-pool system, S p is smaller than the minimum value and the outburst flood incises the spillway channel and causes failure of the dam. For preserved landslide dams, sediment deposits in the quake lakes. A landslide dam may develop into a knickpoint if it is stabilized by long-term action of the flow. Large knickpoints can totally change the fluvial processes and river morphology. Uplift of the Qinghai–Tibetan Plateau has caused extensive channel bed incision along almost all rivers. For many rivers, the incision has been partly controlled by knickpoints. Upstream reaches of a knickpoint have a new and unchanging base level. This brings about a transition from degradation to aggradation and from vertical bed evolution to horizontal fluvial process. Multiple and unstable channels are prominent in the reaches, upstream of the knickpoints. If hundreds of landslide dams occurred simultaneously on a reach of a mountain river, the potential energy of bank failure and the slope erosion would be greatly reduced and sediment yield from the watershed may be reduced to nearly zero. The quake lakes may be preserved long term and become beautiful landscapes. Streams with long-term unfilled quake lakes have good aquatic ecology.  相似文献   

18.
Dam-breaches that cause outburst floods may induce downstream hazards. Because landslide dams can breach soon after they are formed, it is critical to assess the stability quickly to enable prompt action. However, dam geometry, an essential component of hazard evaluation, is not available in most cases. Our research proposes a procedure that utilizes post-landslide orthorectified remote sensing images and the pre-landslide Digital Terrain Model in the Geographic Information System to estimate the geometry of a particular dam. The procedure includes the following three modules: (1) the selection of the reference points on the dam and lake boundaries, (2) the interpolation of the dam-crest elevation, and (3) the estimation of dam-geometry parameters (i.e., the height, length, and width), the catchment area, the volumes of barrier lake and landslides dam. This procedure is demonstrated through a case study of the Namasha Landslide Dam in Taiwan. It was shown the dam-surface elevation estimated from the proposed procedure can approximate the elevation derived from profile leveling after the formation of the landslide dam. Thus, it is feasible to assess the critical parameters required for the landslide dam hazard assessment rapidly once the ortho-photo data are available. The proposed procedure is useful for quick and efficient decision making regarding hazard mitigation.  相似文献   

19.
堰塞坝是由于崩塌、滑坡、泥石流等形成的天然坝体,不同于人工土石坝,堰塞坝坝体结构松散,颗粒级配不均匀,在较高水头作用下坝体可能发生渗透破坏而导致溃坝,严重威胁下游人民群众的生命及财产安全。由于堰塞坝存在较大粒径颗粒,常规的渗透试验装置难以满足要求,本文研制了直径为60cm的大直径渗透试验仪,进行了不同堰塞坝级配材料的渗透破坏试验,并探讨了堰塞坝体材料渗透特性的主要影响因素。研究发现:(1)堰塞坝材料的渗透破坏形式取决于材料级配,粗颗粒含量较多时为管涌破坏,细颗粒含量较多或粒径缺失时为流土破坏;(2)堰塞坝渗透系数随干密度的增大而减小,主要取决于细料填充粗料孔隙的程度,单独使用不均匀系数或曲率系数不适用于评价渗透系数的变化;(3)基于试验数据提出了用于堰塞坝渗流破坏形式的判别公式,并推导出堰塞坝管涌破坏的临界水力坡降计算公式。  相似文献   

20.
Zhang  Yansong  Chen  Jianping  Zhou  Fujun  Bao  Yiding  Yan  Jianhua  Zhang  Yiwei  Li  Yongchao  Gu  Feifan  Wang  Qing 《Landslides》2022,19(4):941-962

A large paleolandslide occurred opposite the Gangda village in the upper Jinsha River, SE Tibetan Plateau. Field geological investigations and remote sensing indicated that the Gangda paleolandslide once blocked the Jinsha River. Evidence of river blocking, including landslide dam relics, upstream lacustrine sediments, and downstream outburst sediments, has been well preserved. To understand the river-blocking event including landslide, dam breach, and associated outburst flooding, optically stimulated luminescence (OSL) dating and numerical simulations were performed in this study. OSL dating results showed that the paleolandslide dam was formed at 5.4?±?0.5 ka BP and breached at 3.4?±?0.3 ka BP, indicating that the dam lasted approximately 2000 years. The discrete element method was used to simulate the dynamics of the Gangda rock landslide based on the restored topography, while a fluid–solid coupling model was performed to simulate the landslide dam breaching and flooding. The fluid–solid coupling model can simultaneously reflect the process of landslide-dam collapse and the propagation of outburst flood. The simulated results indicate that the whole landslide process lasted about 60 s with a peak velocity of 38 m/s. It is significant that the simulated morphology of the residual landslide dam and downstream outburst sediments is consistent with the field observations. The combined numerical investigation in this paper provided new insights into the research of landscape evolution and helped to understand the chain disaster of landslide, dam breach, and flooding.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号