首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple linear regression (SLR) models for rapid estimation of true subsurface resistivity from apparent resistivity measurements are developed and assessed in this study. The objective is to minimize the processing time and computer memory required to carry out inversion with conventional algorithms. The arrays considered are Wenner, Wenner–Schlumberger and dipole–dipole. The parameters investigated are apparent resistivity (\(\rho _a \)) and true resistivity (\(\rho _t\)) as independent and dependent variables, respectively. For the fact that subsurface resistivity is nonlinear, the datasets were first transformed into logarithmic scale to satisfy the basic regression assumptions. Three models, one each for the three array types, are thus developed based on simple linear relationships between the dependent and independent variables. The generated SLR coefficients were used to estimate \(\rho _t\) for different \(\rho _a\) datasets for validation. Accuracy of the models was assessed using coefficient of determination (\(R^{2})\), F-test, standard error (SE) and weighted mean absolute percentage error (wMAPE). The model calibration \(R^{2}\) and F-value are obtained as 0.75 and 2286, 0.63 and 1097, and 0.47 and 446 for the Wenner, Wenner–Schlumberger and dipole–dipole array models, respectively. The SE for calibration and validation are obtained as 0.12 and 0.13, 0.16 and 0.25, and 0.21 and 0.24 for the Wenner, Wenner–Schlumberger and dipole–dipole array models, respectively. Similarly, the wMAPE for calibration and validation are estimated as 3.27 and 3.49%, 3.88 and 5.72%, and 5.35 and 6.07% for the three array models, respectively. When compared with standard constraint least-squares (SCLS) inversion and Incomplete Gauss–Newton (IGN) algorithms, the SLR models were found to reduce about 80–96.5% of the processing time and memory space required to carry out the inversion with the SCLS algorithm. It is concluded that the SLR models can rapidly estimate \(\rho _t\) for the various arrays accurately.  相似文献   

2.
A new variant of the four-electrode system is proposed for geophysical resistivity investigations, particularly for profiling over conductive bodies. Model tank resistivity profiling experiments with Wenner, Schlumberger and the proposed T-shaped four-electrode arrays were carried out over a thin conducting vein type model to evaluate the efficacy of the new array. The proposed array appears to possess a larger response, a greater depth of investigation and a higher vertical resolution in detecting conducting bodies, as compared to the two-conventional arrays.  相似文献   

3.
The effectiveness of inversion apparent resistivity data to determine accurately the true resistivity distribution over 2D structures has been investigated using a common inversion scheme based on smoothness-constrained nonlinear least-squares optimization with enhancing horizontal resolution (EHR) technique by numerical simulation. The theoretical model generates in RES2DMOD software at specific distance and depth using Wenner, Wenner–Schlumberger, and pole–dipole arrays were inverted. The inversion model was compared with the original 2D model in RES2DINV software. The study model includes horizontal layering, vertical resolution, and horizontal two layers with different resistivity. Also, the response to variations in data density of these arrays was investigated. The study shows the best array suitable to be used in the survey was chosen for real data acquisition at the actual site. Subsequently, the results from borehole were used to verify the results of 2D resistivity imaging method with and without EHR technique. Saturated zone (0–40 Ω-m) was found scattered at the depth of 10–20 m. The borehole is located at 63 m at 2D resistivity imaging survey which shows at depth 10–20 m is sandy silt. Highly weathered sandstone was found at 6 m depth with resistivity value of 800 Ω-m and SPT N value of 20. The bedrock was found at 27 m depth with resistivity value of 3,000 Ω-m and SPT N value of 50. The application of 2D resistivity imaging with EHR technique indicate the ability of the proposed approach in terms of density, depth, and resistivity value of anomalous and layer in a computationally and numerically efficient manner and to exhibit good performance in the data inversion.  相似文献   

4.
《Engineering Geology》1986,22(3):217-230
Wenner, Schlumberger, and Bristow (pole—dipole) array configurations of electrical resistivity measurements were used to detect the presence of subsurface dissolution features at the El Cajon dam site in Honduras. The construction site, located on the Humuya River in a region of extensive karst development, faulting, and mineralization along fracture zones, posed a special challenge to the application of standard resistivity techniques because of the presence of a cofferdam and the advanced stage of construction.Transects were made parallel and perpendicular to the river valley floor. The best results were obtained from the Schlumberger and Bristow array configurations. Several zones of anomalously high resistivity were detected. Subsequent drilling confirmed the presence of subsurface dissolution features which could have seriously jeopardized the dam. These surveys represent an accurate, economic, and reliable procedure for regions where construction has progressed significantly and where complex geologic terrain exists.  相似文献   

5.
In this paper, the application of 2D and 3D electrical resistivity methods in geotechnical investigations is explored through a case study in Northern Greece. These two methods were employed at a lignite surface mining operation where fracture zones and discontinuities have been recently observed close to the pit boundaries. The main aim of the geophysical survey was to estimate the inclination of the contact between the Neogene and Schist/Carbonate formations near the southern limits of the pit, as well as to estimate the thickness of the carbonate rocks on top of the Schist formations to evaluate the stability of the southern slopes. Synthetic data were initially generated to help plan an efficient electrical tomography survey, in a region with complex geology and irregular terrain. Three configurations (Wenner–Schlumberger and dipole–dipole or pole–dipole) proved essential in such conditions and helped improving the resolution of the resistivity section. The sections were then calibrated by boreholes. Finally, the geophysical survey provided invaluable data regarding the geometry of the bedrock and possible faults, which was essential for the slope stability calculations.  相似文献   

6.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

7.
In this study, a groundwater exploration survey was conducted using the DC Resistivity (DCR) method in a hydrogeological setting containing a perched aquifer. DCR data were gathered and an electrical tomography section was recovered using conventional four-electrode instruments with a Schlumberger array and a two-dimensional (2D) inversion scheme. The proposed scheme was tested over a synthetic three-dimensional (3D) subsurface model before deploying it in a field situation. The proposed method indicated that gathering data with simple four-electrode instruments at stations along a line and 2D inversion of datasets at multiple stations can recover depth intervals of the studied aquifer in the hydrogeological setting even if it has a 3D structure. In this study, 2D inversion of parallel profiles formed a pseudo-3D volume of the subsurface resistivity structures and mapped out multiple resistive (>25 ohm·m) bodies at shallow (between 50–100 m) and deep sections (>150 m). In general, the proposed method is convenient to encounter geological units that have limited vertical and spatial extensions in any direction and presents resistivity contrast from groundwater-bearing geologic materials.  相似文献   

8.
The use of resistivity sounding and two-dimensional (2-D) resistivity imaging was investigated with the aim of delineating and estimating the groundwater potential in Keffi area. Rock types identified are mainly gneisses and granites. Twenty-five resistivity soundings employing the Schlumberger electrode array were conducted across the area. Resistivity sounding data obtained were interpreted using partial curve matching approach and 1-D inversion algorithm, RESIST version 1.0. The 2-D resistivity imaging was also carried out along two traverses using dipole–dipole array, and the data obtained were subjected to finite element method modeling using DIPRO inversion algorithm to produce a two-dimensional subsurface geological model. Interpretation of results showed three to four geoelectrical layers. Layer thickness values were generally less than 2 m for collapsed zone, and ranged from 5 to 30 m for weathered bedrock (saprolite). Two major aquifer units, namely weathered bedrock (saprolite) aquifer and fractured bedrock (saprock) aquifer, have been delineated with the latter usually occurring beneath the former in most areas. Aquifer potentials in the area were estimated using simple schemes that involved the use of three geoelectrical parameters, namely: depth to fresh bedrock, weathered bedrock (saprolite) resistivity and fractured bedrock (saprock) resistivity. The assessment delineated the area into prospective high, medium and low groundwater potential zones.  相似文献   

9.
为了提高电阻率法对地下介质污染问题的探测能力,分析了含油污水污染地下介质后引起的导电性变化,建立了适用于该问题分析的地电模型。利用2.5维有限元的方法正演模拟了采用温纳、施龙贝格、偶极和二极装置监测时所得的典型电异常剖面。正演模拟结果显示不同装置对污染区的反映能力不同,相对而言施龙贝格和温纳装置对污染区分布的反映较为直观。饱和粘土的含油污染区用温纳装置测量,剖面上表现为相对高阻异常特征,异常区域分布和污染通道相吻合。应用实例也证实了这一分析。  相似文献   

10.
从三电位电极系基本理论出发,对高密度电阻率法常用温纳、偶极及微分装置的分辨率、信号强度等进行了比较研究。实例分析表明,温纳装置测量获得的数据纵向分辨率较高,采集信号的强度大,信噪比高,采用该装置探测基岩面的起伏状况效果明显;偶极装置采集的数据横向分辨率较高,在探测基岩内部构造方面有较好的灵敏度,但该装置采集的信号强度小,抗干扰能力差。在实际应用时,建议运用多种装置形式进行综合测量和对比解释,以进一步提高勘探效果和精度。   相似文献   

11.
Orthogonal set of 2D geoelectrical resistivity field data, consisting of six parallel and five perpendicular profiles, were collected in an investigation site using the conventional Wenner array. Seven Schlumberger soundings were also conducted on the site to provide ID layering information and supplement the orthogonal 2D profiles. The observed 2D apparent resistivity data were first processed individually and then collated into 3D data set which was processed using a 3D inversion code. The 3D model resistivity images obtained from the inversion are presented as horizontal depth slices. Some distortions observed in the 2D images from the inversion of the 2D profiles are not observed in the 2D images extracted from the 3D inversion. The survey was conducted with the aim of investigating the degree of weathering and fracturing in the weathered profile, and thereby ascertaining the suitability of the site for engineering constructions as well as determining its groundwater potential.  相似文献   

12.
Surface geophysics and a priori information were employed to delineate the subsurface geology at Idi-oro in Abijo, Ibeju Lekki area of Lagos, Nigeria for foundation investigation purpose. Resistivity measurement was conducted using 1-D and 2-D resistivity probing techniques. The resistivity measurements were made with ABEM tetrameter model SAS 1000 system. The 1-D vertical electrical resistivity sounding data were obtained using the Schlumberger electrode array while the 2-D resistivity data were obtained using the dipole–dipole array. The interpreted results revealed three to five subsurface geological layers. This is made up of the top soil with resistivity values that vary from 132.4 to over 2,313.5 Ω?m and thickness values that range from 0.3 to 4.8 m, the fine sand with resistivity values that vary from 221.0 to 3,032.7 Ω?m and thickness values that range from 0.4 to 5.5 m, the medium sand with resistivity values that vary from 202.8 to 1,247.7 Ω?m and thickness values that range from 4.9 to 58.4 m. On the other hand, the clayey sand has the resistivity values that vary from 146.1 to 1,744.0 Ω?m and thickness values that vary from 2.2 to 26.3 m, while the coarse sand has resistivity values that vary from 238.3 to 14,313.9 Ω?m but with no thickness value because the current terminated in this layer. The resistivity data correlate well with borehole logs. On the whole, it is concluded that the investigated area has competent sand layer that can support medium to giant engineering structures with resistivity values that vary from 202 to 14,314 Ω?m and thickness values that vary from 0.8 to 58.4 m.  相似文献   

13.
The magnitude of errors in the determination of depth to bedrock from Wenner and Schlumberger resistivity sounding curves, caused by the non-identification of a suppressed layer, has been investigated. The principal objective is to evaluate how the layer thicknesses and resistivities affect the accuracy of depth estimates. In the computations, the intermediate layer in a 3-layer model, in which the resistivity increases with depth, is removed and the 2-layer sounding curve that is electrically equivalent to the 3-layer curve is generated. The results indicate that there is a possibility for large depth underestimations when the resistivity contrast between layers 1 and 2 is very large. This is manifested in a steeply rising terminal branch on the sounding curve. There is a slight decrease in the depth underestimation as the resistivity contrast between layers 2 and 3 increases. Conversely, if the intermediate layer is fairly thick and the resistivity contrasts are not too large, the best-fit 2-layer curve shows large deviations from the 3-layer curve. In such cases, the intermediate layer can be identified, resulting in reliable depth estimates. A field example from Nigeria is presented in which the sounding data has been interpreted so as to account for a prebasement layer of intermediate resistivity, indicative of a fractured granite.  相似文献   

14.
The use of wastewater for irrigation in sandy soil increases the pollution risk of the soil and may infiltrate to the shallow groundwater aquifer. In such environment, some important parameters need to be obtained for monitoring the wastewater in the unsaturated zone over the aquifer. These parameters include clay content, heterogeneities of the upper soils, depth to the aquifer and the variations of groundwater quality. In the present work, the efficiency of DC resistivity method in forms of 1-D and 2-D measurements was studied for wastewater monitoring in the Gabal el Asfar farm, northeast of Cairo, Egypt. Forty-one Schlumberger soundings (VES) were performed then followed by three pole-dipole 2-D profiles along some considered regions within the area. The resistivity measurements were integrated with the boreholes, hydrogeological and hydrochemical (surface and groundwater samples) information to draw a clear picture for the subsurface conditions. The obtained results were presented as cross sections and 3-D visualization to trace the clay intercalations within the unsaturated zone. In addition, a vulnerability map was created using the obtained results from 1-D Schlumberger survey and confirmed with the 2-D resistivity profiling. The obtained results have shown that the 2-D resistivity imaging technique is a powerful tool for mapping the small-scale variability within the unsaturated zone and the wastewater infiltration. However, limitations of resistivity techniques were observed in the area with limited resistivity contrast such as thin clay layers with brackish water background. Under that condition, the measured pattern of resistivity distributions depends on the applied electrode array, electrode spacing and using the available geological information during the inversion process.  相似文献   

15.
某坝基为砂卵石基础,其下为强风化基岩,坝基渗漏和左右岸绕坝渗漏是该水库坝基存在的主要地质问题。为此,采取了塑性混凝土防渗墙与双排帷幕灌浆相结合的综合防渗措施。为了检测水库坝基及塑性混凝土防渗墙施工质量,防止水库正常蓄水后发生渗漏,选用了高密度电法进行无损检测。工程采用温纳施伦贝尔法观测,分别采用5m和10m电极间距,电极数60个,剖面数16。依据5m和10m道距实测视电阻率剖面与反演结果的解释,对水库坝基和防渗墙的工程质量进行了评价,认为-25m桩号塑性混凝土防渗墙可能存在渗漏问题,-80m桩号对应一低阻异常,坝体可能存在渗漏通道;其余部位未发现明显异常。  相似文献   

16.
本文通过对成都理工大学砚湖南侧已知地形断面进行浅层勘测,对同一条测线的三种高密度电阻率法装置勘探数据进行断面拼接,并对结果进行比较,测试高密度电法对横向目标体的勘测效果。结果表明:偶极装置更适用于横向电性变化大的地质情况,温纳装置其次,而微分装置效果很差,与另外两种装置有较大差异。  相似文献   

17.
Groundwater is a very important component of water resources in coastal aquifers in Thoothukudi. It has been established that the groundwaters in the coastal zone of the Zirconium Complex, Pazhayakayal, Thoothukudi district, Tamilnadu, India, are subjected to wave and tidal impact. The groundwater quality was studied by hydrogeological methods, 2D electrical resistivity imaging (ERI) techniques (six profiles), 11 Wenner vertical electrical sounding (VES), and well log analysis. Also, nine geochemical water samples were taken from the study area. The 2D ERI and VES surveys were carried out using WGMD-4 Ltd., Chennai, resistivity meter, multicore cable, and multielectrodes with Wenner array. The collected resistivity data were interpreted using the Res2DINV software. The research shows that the groundwaters are the result of the paleoriver flow along the Tamirabarani Channel in the western area and of the seawater intrusion in the eastern area. The fresh water is characterized by resistivity of about 10–100 Ohm?m in the study area. The resistivity of 10–50 Ohm?m indicates that the subsurface section is made up of sand, clay, and caliche. Resistivity values of more than 200 Ohm?m are specific to sand dunes. The very low resistivity (<5 Ohm?m) layer might be due to the seawater intrusion in the study area. Six water samples from the well drilled in the coastal area were analyzed, which made it possible to determine the concentrations of major and trace elements in the groundwaters. These data were used to establish the seawater intrusion and coastal environment characteristics in the study area.  相似文献   

18.
This paper describes the use of a backprojection algorithm to reconstruct subsurface images of the electrical resistivity in horizontal planes parallel to the surface. The algorithm can be applied to detect buried objects such as tanks or pipes and possible leakages from them. Two imaging strategies are compared: juxtaposition of vertical planes, and 3D reconstruction from the sensitivity matrix corresponding to the entire volume whose surface is explored. The electrode arrays used for voltage measurement are the dipole–dipole array and a modified Schlumberger array. A personal computer controls current injection, electrode switching, and voltage detection. The system injects 1 kHz, 20 V peak-to-peak square waveforms, thus avoiding electrode polarization effects. Experimental laboratory measurements show that the algorithm detects localized objects such as an insulating sphere and a conductive cylinder immersed in water. Furthermore, covering half of the cylinder by a rubber sleeve to simulate a nonconductive leak, yields a distinct image for the leak. The backprojection algorithm does not need any regularization parameter and it is very fast in inverting the sensitivity matrix because it approximates the inverse matrix by its transposed. The dipole–dipole array usually yields a lower overall pixel error than the modified Schlumberger array but both allow the detection of simulated underground leaks.  相似文献   

19.
曹崇本 《贵州地质》2012,29(2):112-118
为探讨高密度电法与联合剖面法寻找高阻溶洞的效果,利用水槽模型试验及野外现场实测方法,总结了高密度电法常用排列方式、不同成图方法在高阻溶洞上的异常响应特征,讨论了异常体地表投影位置及中心埋深的确定方法。提出探测高阻溶洞采用高密度电法温纳排列(α1)、β排列和高密度联合剖面三种方法的最佳组合方法。  相似文献   

20.
Land subsidence is a serious problem in Indian coalfields due to old underground mine workings. Unfortunately, most of these are uncharted as no mine plans are available. The hidden galleries, goafs, shafts etc. may pose great threat for future mine development as well as to the local environment. The mine workings should be charted to undertake an effective preventive action. In the present study, 2D electrical resistivity tomography (ERT) technique has been used to detect underground mine workings, mainly air or water filled galleries. Initially, the whole exercise has been executed through a synthetic model study. Gaussian random noise of 5mV/A has been added with synthetic data to demonstrate field condition which provides realistic results. ERT survey was conducted over a part of Jogidih coal mine of Jharia coal field in India for a first time. Four electrode configurations, Wenner, Schlumberger, dipole-dipole and gradient were considered for this study. The results indicate the presence of sub-surface water and air filled cavity due to high resistivity contrast with surroundings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号