首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The differential code bias (DCB) is the differential hardware (e.g., the satellite or receiver) delay that occurs between two different observations obtained at the same or two different frequencies. There are two approaches used to estimate DCBs for receivers and satellites: the relative and absolute methods. The relative method utilizes a GPS network, while the absolute method determines DCBs from a single station (zero difference). Three receiver types based on the pseudo-range observables were used here to collect the GPS data: Codeless Tracking, Cross Correlation, and Non-Cross Correlation styles. According to its types, GPS receivers have responded to restrictions on the GPS signal structure in different ways. The main goal of the current research is providing a method to determine the DCBs of GPS satellites and dual frequency receivers. The developed mathematical model was based on spherical harmonic function and geometry-free combination of pseudo-range observables (C/A or/and P-code) according to receiver type. A new elevation-dependent weighting function with respect to GPS satellites in our algorithm was applied. The applied weighting function was used to consider the quality variation of satellite DCBs, which is caused by pseudo-range measurement errors. The code of the proposed mathematical model was written using MATLAB and is called “zero difference differential code bias estimation (ZDDCBE)”. This code was tested and evaluated using data from IGS GNSS stations and different types of GPS stations out of IGS network installed in Egypt and Saudi Arabia. The estimated values from the ZDDCBE code show a good agreement with the IGS analysis centers with a mean error of estimation for the receiver DCB equal 5.94%. Therefore, the ZDDCBE code can be used to estimate the DCB for any type of receiver regardless if the receiver is from IGS network or not.  相似文献   

2.
Multipath, a highly autocorrelated signal is observable phenomena during time periods longer than the sidereal period of Global Positioning System (GPS) satellites in their constellations. Multipath pattern and sidereal repeat time interaction are examined in terms of time series correlations of topocentric coordinates using GPS code and phase observations collected at high and low frequencies. The horizontal and vertical components at 5 and 30 s sampling rates are analyzed to detect and remove multipath classified by their M P 1 levels and baseline lengths. For the selected 11 stations that have 24-hour data from CORS stations in the USA and Turkey, the repeat times of the GPS constellation were identified as a function of maximum cross-correlation of adjacent time series. The multipath interference signal from two-day time series data is removed by an adaptive filter to improve time series of coordinate estimates. After the filtering process, an effective epoch based position tracking has been accomplished, especially in the height component. The position errors disappeared to maximum possible extent in the pseudo-range measurements. Up to 70% improvement for the phase derived coordinates in reflective environment has been achieved over the baselines ranging from 1 km to 175 km. For the phase observables, the filter success directly related to the multipath level which is specific to the station.  相似文献   

3.
Drought is a complex phenomenon in meteorology and can affect agriculture. Its impacts vary greatly since they depend not only on the magnitude, timing, duration, and frequency of rainfall deficits but also on the differing responses of various plants to water stress. The essence of good drought management is to use this range of responses to the best advantage. Iran is one of the world’s largest and most productive suppliers of food and fiber. The objective of this study was, therefore, to gather and analyze standardized information on the Role of Early Warning Systems for Sustainable Agriculture for cereals and leguminous and industrial crops in Iran environmental zones. Annual average rainfall (mm year?1) and ETO (mm year?1) are 76.56 and 3001, respectively, in stations with very dry climate; 195.41 and 2249, respectively, in stations with dry climate; 343.9 and 1351, respectively, in stations with semi-dry climate; 583.8 and 1153, respectively, in stations with semi-humid climate; and 1272 and 949, respectively, in stations with humid climate. The maximum and minimum of annual average rainfall happened in Rasht (1337 mm year?1) and Zabol (57 mm year?1) stations, and the maximum and minimum for annual average ETO happened in Chabahar (3909.15 mm year?1) and Anzali harbor (890.6 mm year?1), respectively. Therefore, 13.63 % of stations have suitable conditions for crop productions and 86.37 % are in critical conditions.  相似文献   

4.
Drought is one of the most important natural hazards in Iran. It is especially more prevalent in arid and hyper arid regions where there are serious limitations in regard to providing sufficient water resources. On the other hand, drought modeling and particularly its prediction can play important role in water resources management under conditions of lack of sufficient water resources. Therefore, in this study, drought prediction in a hyper arid location of Iran (Ardakan region) has been surveyed based on the abilities of artificial neural. Standardized Precipitation Index (SPI) in different time scales (3, 6, 9, 12, and 24 monthly time series) computed based on the data gathered from four rain gauge stations. After evaluation and testing of different artificial neural networks (ANN) structures, gradient descent back propagation (traingd) network showed higher abilities than others. Then, the predictions of SPI time series with different monthly lag times (1:12 months) were tested. Generally, drought prediction by ANNs in the Ardakan region has shown considerable results with the correlation coefficient (R) more than 0.79 and in the most cases and it rises more than 0.90, which indicates the ANN’s ability of drought prediction.  相似文献   

5.
This study investigates the variations of benzene concentration levels in district 1, situated in the north part of Tehran, capital of Iran. Thirty-three stations in five categories, namely roadsides, busy roads, residential areas, traffic intersections, and the vicinity of gas stations, were monitored during the rush hours in the afternoon once a week over a period of 1 year. Accordingly, benzene concentration levels were measured and predicted by inverse distance weight model. The recorded benzene concentration levels were then compared with those reported in other parts of the world. According to the results, the annual concentration levels of benzene was 13.85 ppb for roads with heavy traffic flow, 14.98 ppb for traffic intersections, 29.01 ppb for the vicinity of the gas stations, 3.26 ppb for residential areas, and 9.97 ppb for roadsides. The concentration of benzene in the vicinity of the gas station sampling point was higher than in the other stations, and at all locations was found to be so much more than the standard concentration levels (1.56 ppb) prescribed by Environmental Protection Agency for the ambient air quality. The results of the study revealed that the benzene concentration levels in Tehran are distinctly more than its standard level. This is mainly attributed to the poor quality of fuel and lack of a standard system for controlling petrol vapors in the gas stations.  相似文献   

6.
Iran has long been known as one of the most seismically active areas of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. The Alborz region in the northern part of Iran is an active EW trending mountain belt of 100 km wide and 600 km long. The Alborz range is bounded by the Talesh Mountains to the west and the Kopet Dagh Mountains to the east and consists of several sedimentary and volcanic layers of Cambrian to Eocene ages that were deformed during the late Cenozoic collision. Several active faults affect the central Alborz. The main active faults are the North Tehran and Mosha faults. The Mosha fault is one of the major active faults in the central Alborz as shown by its strong historical seismicity and its clear morphological signature. Situated in the vicinity of Tehran city, this 150-km-long N100° E trending fault represents an important potential seismic source. For earthquake monitoring and possible future prediction/precursory purposes, a test site has been established in the Alborz mountain region. The proximity to the capital of Iran with its high population density, low frequency but high magnitude earthquake occurrence, and active faults with their historical earthquake events have been considered as the main criteria for this selection. In addition, within the test site, there are hot springs and deep water wells that can be used for physico-chemical and radon gas analysis for earthquake precursory studies. The present activities include magnetic measurements; application of methodology for identification of seismogenic nodes for earthquakes of M ≥ 6.0 in the Alborz region developed by International Institute of Earthquake Prediction Theory and Mathematical Geophysics, IIEPT RAS, Russian Academy of Science, Moscow (IIEPT&MG RAS); a feasibility study using a dense seismic network for identification of future locations of seismic monitoring stations and application of short-term prediction of medium- and large-size earthquakes is based on Markov and extended self-similarity analysis of seismic data. The establishment of the test site is ongoing, and the methodology has been selected based on the IASPEI evaluation report on the most important precursors with installation of (i) a local dense seismic network consisting of 25 short-period seismometers, (ii) a GPS network consisting of eight instruments with 70 stations, (iii) magnetic network with four instruments, and (iv) radon gas and a physico-chemical study on the springs and deep water wells.  相似文献   

7.
在航空重力测量的后期资料处理中,GPS技术主要作用是精确确定飞机的位置、速度和加速度,以提供可靠的飞机飞行参数和必要的重力加速度改正等.笔者以航空重力领域的实际需求,开发了航空重力的GPS后处理软件-EGPS.该软件能够利用伪距差分、多普勒频移的方法解算航空重力测量的载体位置、速度和加速度等.通过处理航空重力测量中GPS资料的速度解算实例,并与国外已经先进的航空重力测量处理软件的速度解算结果对比、分析,EGPS已经基本达到了航空重力测量领域对GPS速度高精度解算的要求.  相似文献   

8.
For studying recent crustal movements and their relation to earthquake occurrence in large scales, the National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt started in 2006 the establishment of the Egyptian Permanent GPS Network (EPGN). Beginning with 4 stations in 2007, 15 stations were operational at the end of 2011. In addition, a station in Alexandria of the French “Centre d'Études Alexandrines” (CEALX) was added as station to the EPGN. Nowadays, 16 stations are operational and an extension to 20 in the near future is expected. The collected EPGN data of the last 6 years are used in this work to throw light upon the present state of recent crustal movement of the whole of Egypt. Bernese software V. 5.0 was used for processing the collected data according to the IGS standards. In addition, selected IGS, AFREF, and EPN sites are processed for reference frame definition. In this first comprehensive analysis of the permanent network, a complete and consistent evaluation resulted in the first estimates of present day horizontal velocities and coordinate time series.  相似文献   

9.
Precise Point Positioning (PPP) algorithms have been widely used in the Global Positioning System (GPS)-based applications. A PPP technique with a single receiver provides effective solutions where accurate absolute positioning is required. This paper provides the performance assessment of GPS PPP for detecting the displacements caused by an earthquake. For this purpose, the earthquake that occurred on 21 July 2017 at Kos-Bodrum with the impact of Mw 6.6 was investigated by analyzing the data of the permanent GPS stations located around the related region with the PPP technique. The location distances of these GPS stations range from 10 to 89 km to the epicenter of this earthquake. GPS data provided from seven permanent stations from the Continuously Operating Reference Stations-Turkey (CORS-TR) and local Bodrum CORS networks were processed to determine the co-seismic displacements during the earthquake. The data of these stations for days of year (DOYs) 200, 201, 202, and 203 were analyzed with post-process static PPP and kinematic PPP methods. GIPSY-OASIS II v6.4 was used for processing the data and all of the solutions were performed in the ITRF2008 reference frame. Two strategies were followed on the post-process static solutions. In the first strategy, 4-day data with 24-h observations were separately analyzed day by day. In the second strategy, the 24-h data were divided into 3-h duration, which is the minimum duration for optimum PPP solutions, and then the analyses were performed. When the displacements between DOYs 200 and 203 are considered in the 24-h data analysis, significant displacements have been observed through northwest direction in the northern stations whereas MUG1 is excluded. Moreover, there is significant displacement through the southeast direction in the station DATC located in the south of the epicenter. When the 3-h solutions are examined, displacements, especially on n and e directions, are observed starting from the solutions, which include Mw 6.6 earthquake. According to the kinematic PPP solutions, the effects of the Mw 6.6 earthquake can be seen clearly in the stations DATC, ORTA, TRKB, and YALI. Considering all outcomes, the PPP technique with both static and kinematic solutions provides effective results for detecting the displacements during the earthquake.  相似文献   

10.
In this study, high resolution surface measurements of diverse slope movements are compared to environmental factors such as ground surface temperature (GST) and snow cover, in order to reveal and compare velocity fluctuations caused by changing environmental conditions. The data cover 2 years (2011–2013) of Global Positioning System (GPS) and GST measurements at 18 locations on various slope movement types within an alpine study site in permafrost (Mattertal, Switzerland). Velocities have been estimated based on accurate daily GPS solutions. The mean annual velocities (MAV) observed at all GPS stations varied between 0.006 and 6.3 ma?1. MAV were higher in the period 2013 compared to 2012 at all stations. The acceleration in 2013 was accompanied by a longer duration of the snow cover and zero curtain and slightly lower GST. The amplitude (0–600 %) and the timing of the intra-annual variability were generally similar in both periods. At most stations, an annual cycle in the movement signal was observed, with a phase lag of 1–4 months to GST. Maximum velocity typically occurred in late summer and autumn, and minimum velocity in late winter and beginning of spring. The onset of acceleration always started in spring during the snowmelt period. At two stations located on steep rock glacier tongues, overprinted on the annual cycle, short-term peaks of velocity increase, occurred during the snowmelt period, indicating a strong influence of meltwater.  相似文献   

11.
We present four case studies of exceptional wave events of meteorological origin, observed on the Finnish coast in the summers of 2010 and 2011. Eyewitnesses report unusually rapid and strong sea-level variations (up to 1 m in 5–15 min) and strong oscillating currents during these events. High-resolution sea-level measurements confirm the eyewitness observations, but the oscillations recorded by tide gauges mostly have a considerably smaller amplitude. The oscillations coincide with sudden jumps in surface air pressure at coastal observation stations, related to the passage of squall lines or gust fronts. These fronts propagate above the sea at a resonant speed, allowing efficient energy transfer between the atmospheric disturbance and the sea wave that it generates. Thus, we interpret the observed sea-level oscillations as small meteotsunamis, long tsunami-like waves generated by meteorological processes and resonance effects.  相似文献   

12.
The assessment of drought hazard impacts on wheat cultivation as a strategic crop in Iran is essential for making mitigation plans to reduce the impact of drought. Standardized precipitation index has gained importance in recent years as a potential drought indicator and is being used more frequently for assessment of drought hazard in many countries. In the present study, the calculated standardized precipitation index for 48 stations dataset in the 30-year time scale fulfilled 30 statistical matrices. The drought hazard index map was produced by sum overlaying the spatial representations of 30 statistical matrices and categorized into four levels of low, moderate, high, and very high, which demonstrated probability of drought occurrences of 10–20 %, 20–30 %, 30–40 %, and 40–50 %, respectively. Finally, after the general division of zonal statistics in drought hazard index map of Iran, major drought hazard zones were geographically classified into five zones. The statistical analysis showed a significant correlation (R 2?=?0.701 to 0.648) between drought occurrences and wheat cultivation including surface area and total production for these drought hazard zones.  相似文献   

13.
中国大陆现今构造运动的GPS速度场与活动地块   总被引:141,自引:11,他引:130  
张培震  王琪  马宗晋 《地学前缘》2002,9(2):430-441
GPS观测结果给出了在欧亚参考框架下周边板块的运动状态 ,印度板块的运动方向约NE2 0° ,速度是 40~ 42mm/a ;北美板块的运动方向约NW 2 80°~ 2 90° ,速度是 2 1~ 2 3mm/a ;菲律宾板块的运动方向是NW 2 90°~ 310° ,速度是 37~ 45mm/a ;哈萨克—西伯利亚地盾的运动方向约NE130° ,速度是 3~ 5mm/a。GPS所揭示的中国大陆现今运动场清晰地表现出了以活动地块为单元的分块运动特征。文中给出了各主要活动地块的运动方向和速度。大部分活动地块内部结构完整 ,以整体性的运动为主 ;个别活动地块内部发生构造变形 ,地块的整体性不好。中国大陆以活动地块为单元的现今构造变形可能与大陆岩石圈的结构和性质有关 ,上地壳以脆性变形为主 ,下地壳和上地幔以粘塑性的流变为特征 ,从底部驱动着上覆脆性地块的整体运动。  相似文献   

14.
In this research, the frequency of dust storms was prepared at 87 synoptic stations for the period of 1987–2013. These data were classified by means of Fuzzy c-means clustering algorithm. Satellite images of MODIS and brightness temperature index were also used for detection and tracking dust storm of 30 Jun 4 July 2008. The results indicated that Iran is classified in five clusters by the dust-storm-frequencies from which, cluster 5 is reclassified in three clusters because of its wide range. The maximum number of days with dust storms was observed in cluster 1 that includes only Zabol station with the frequency of 790 days with the duration 1987–2013. The minimum number of days with dust storms was observed in cluster 5-3 that includes the stations located in portions of North, Northwest, Northeast Iran and the higher elevations of the Zagros in western Iran. A case study about a severe dust storm in Iran using satellite images indicate that brightness temperature index (BTI) is a desired index for detection and monitoring of dust storms. The source of the investigated dust storms is Iraq and South of the Arabian Peninsula that had influenced the western half of Iran in several days. The frequency of dust storms increased markedly in the west, southwest of Iran and Persian Gulf around as main receptors from emerging dusty areas but it increased slightly in the eastern half of Iran.  相似文献   

15.
Extreme-temperature events have a great impact on human society. Thus, knowledge of summer temperatures can be very useful both for the general public and for organizations whose workers operate in the open. An accurate forecasting of summer maximum and minimum temperatures could help to predict heatwave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The objective of this work is to evaluate the skill of the regional atmospheric and modelling system (RAMS) model in determining daily summer maximum and minimum temperatures in the Valencia Region. For this, we have used the real-time configuration of this model currently running at the Centro de Estudios Ambientales de Mediterráneo Foundation. This operational system is run twice a day, and both runs have a 3-day forecast range. To carry out the verification of the model in this work, the information generated by the system has been broken into individual simulation days for a specific daily run of the model. Moreover, we have analysed the summer forecast period from 1 June to 31 August for 2007, 2008, 2009 and 2010. The results indicate good agreement between observed and simulated maximum temperatures, with RMSE in general near 2 °C both for coastal and inland stations. For this parameter, the model shows a negative bias around ?1.5 °C in the coast, while the opposite trend is observed inland. In addition, RAMS also shows good results in forecasting minimum temperatures for coastal locations, with bias lower than 1 °C and RMSE below 2 °C. However, the model presents some difficulties for this parameter inland, where bias higher than 3 °C and RMSE of about 4 °C have been found. Besides, there is little difference in both temperatures forecasted within the two daily RAMS cycles and that RAMS is very stable in maintaining the forecast performance at least for three forecast days.  相似文献   

16.
Environmental noise pollution is a disrupting factor in the urban areas which can lead to adverse health effects, behavior and quality of life. Present study was carried out in Tabriz (Iran) and aimed to achieve a real condition of noise pollution. Thirty-five measurement stations were selected, and noise levels were recorded. The equivalent noise level in (A) frequency weighting network, route-mean-square sound pressure level, minimum sound pressure level, maximum sound pressure level and noise pollution level were computed as applicable indices. Temporal and spatial variability of these noise indices were plotted by Arc GIS. Public awareness about the noise pollution was assessed through interview. Mixed model and pairwise comparisons were used for comparison of noise indices based on stations and times. It was found that noise levels were significantly different and higher than permissible levels at most stations, especially at heavily travelled crossroads and squares. Mean equivalent noise level for morning, noon, afternoon and night was 71.35 ± 7.49, 71.63 ± 4.90, 70.67 ± 4.52 and 68.74 ± 5.22 dB(A), respectively. The noise indices of all stations and measurement times had significant difference (p value = 0.028 and 0.019, respectively). It was observed that in normal traffic, the highest sound levels are produced by buses, trucks and motorbikes due to low-technology engines. Using the horn was the first reflex of the most drivers. A main part of the noise pollution problem of the studied city can be attributed to driving culture and non-compliance with traffic laws.  相似文献   

17.
Uncertainty in depth–duration–frequency (DDF) curves is usually disregarded in the view of difficulties associated in assigning a value to it. In central Iran, precipitation duration is often long and characterized with low intensity leading to a considerable uncertainty in the parameters of the probabilistic distributions describing rainfall depth. In this paper, the daily rainfall depths from 4 stations in the Zayanderood basin, Iran, were analysed, and a generalized extreme value distribution was fitted to the maximum yearly rainfall for durations of 1, 2, 3, 4 and 5 days. DDF curves were described as a function of rainfall duration (D) and return period (T). Uncertainties of the rainfall depth in the DDF curves were estimated with the bootstrap sampling method and were described by a normal probability density function. Standard deviations were modeled as a function of rainfall duration and rainfall depth using 104 bootstrap samples for all the durations and return periods considered for each rainfall station.  相似文献   

18.
Assessing the climatic characteristics and identifying the climatic parameters of a specific region can play a major role in human welfare. Thermal comfort conditions are among the most significant factors of climatic variables in the northwestern regions of Iran due to the considerable spatial and temporal variations and are vital for environmental, energy and economic management. It is therefore necessary to advance our knowledge of the climatic conditions in order to provide an appropriate tool for managing climatic extremes. This requires charting of the range of clusters of the thermal comfort conditions in this region. In this study, the general atmosphere circulation model HADCM3 and the A1 scenario, downscaled by the LARS-WG model, were employed to simulate the climatic conditions in Iran during the period 2011–2040. The data obtained were compared with sampled data from six Iranian climatic stations for the 30-year period (1961–1990). In order to tabulate this comparison, six clusters per climatic station were defined based on intrinsic similarity of data. Results show an increase in the annual average temperature of these six stations by 1.69 °C for the predicted years, projected from the base years 1961–1990. This factor has resulted in an increment of the annual average thermal comfort temperature inside buildings by a magnitude of 0.52 °C in future decades. When the thermal requirements of the studied region were evaluated based on the real temperature difference and the degree of thermal comfort, it becomes clear that apart from cluster 1, the energy required to reach thermal comfort inside buildings will increase in the future. As a result of this temperature increase, an increase of the energy required to reach the thermal comfort is expected. This new methodology is an interesting tool and needs to be seriously considered by engineers and architects in designing buildings of the future.  相似文献   

19.
The Abu-Dabbab area is characterized by high seismicity and complex tectonic setting; for these facts, a local geodetic network consisting of 11 geodetic benchmarks has been established. The crustal deformation data in this area are collected using the GPS techniques. Five campaigns of GPS measurements have been collected, processed, and adjusted to get the more accurate positions of the GPS stations. The horizontal velocity vectors, the dilatational, the maximum shear strains, and the principal strain rates were estimated. The horizontal velocity varies in average between 3 and 6 mm per year across the network. The results of the deformation analysis indicate a significant contraction and extension across the southern central part of the study area which is characterized by high seismic activity represented by the clustering shape of the microearthquakes that trending ENE. The north and northeastern parts are characterized by small strain rates. This study is an attempt to provide valuable information about the present state of the crustal deformation and its relationship to seismic activity and tectonic setting at the Abu-Dabbab area. The present study is the first work demonstrating crustal deformation monitoring at the Abu-Dabbab area. The time interval is relatively short. Actually, these results are preliminary results. So, the continuity of GPS measurements is needed for providing more information about the recent crustal deformation in that area.  相似文献   

20.
The Global Positioning System (GPS) has become a popular sensing system for positioning because it is free and always available and can be used in all weathers. However, the accuracy of GPS is dependent on the measurement factors selected by the surveyor. Therefore, the purpose of this research is to determine the optimal factors of the GPS positioning process. The selected process variables were measurement time and duration, recording interval, and mask angle. To determine the optimum conditions of these factors, a three-level Box–Behnken design was utilized. The results indicated that the optimum conditions of the experimental factors are 13 h as measurement time, 21.77 min as the measurement duration, 22.43 s as the range interval, and 8° as the mask angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号