首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sanshui basin is one of the typical Mesozoic–Cenozoic intra-continental rift basins with voluminous Cenozoic volcanic rocks in southeastern China. Thirteen cycles of volcanic eruptions and two dominant types of volcanic rocks, basalt and trachyte–rhyolite, have been identified within the basin. Both basalt and trachyte–rhyolite members of this bimodal suit have high values of εNd (+2.3 to +6.2) and different Sr isotopic compositions (initial 87Sr/86Sr ratios are 0.70461–0.70625 and 0.70688–0.71266 for basalts and trachyte–rhyolite, respectively), reflecting distinct magma evolution processes or different magma sources. The results presented in this study indicate that both of the trachyte–rhyolite and basaltic magmas were derived from similar independent primitive mantle, but experienced different evolution processes. The trachyte-rhyolitic magma experienced significant clinopyroxene and plagioclase fractionational crystallization from deeper magma chamber with significant crustal contamination, while the basaltic magmas experienced significant olivine and clinopyroxene fractionational crystallization in shallower magma chamber with minor crustal contamination. New zircon U–Pb dating confirms an initial volcanic eruption at 60 Ma and the last activity at 43 Ma. Geologic, geochemical, and geochronological data suggest that the inception of the Sanshui basin was resulted from upwelling of a mantle plume. The Sanshui basin widened due to subsequent east–west extension and the subsequent volcanism constantly occurred in the center of the basin. Evidence also supports a temporal and spatial association with other rift basins in southeastern China. The upwelling mantle plume became more active during late Cenozoic time and most likely triggered opening of other basins, including the young South China Sea basin.  相似文献   

2.
《International Geology Review》2012,54(10):1226-1245
Monzogabbro stocks including felsic enclaves (monzosyenite) around the Bafra (Samsun) area at the western edge of the Eastern Pontides cut Eocene-aged volcanic and sedimentary units. The monzogabbros contain plagioclase, alkali feldspar, clinopyroxene, olivine, hornblende, biotite, apatite, and iron-titanium oxides, whereas the felsic enclaves contain alkali feldspar, plagioclase, hornblende, biotite, clinopyroxene, and iron-titanium oxides. Mineral chemistry data suggest that magmas experienced hydrous and anhydrous crystallization in deep and shallow crustal magma chambers. Several thermobarometers were used to estimate temperatures of crystallization and emplacement for the mafic and felsic magmas. Clinopyroxene thermobarometry yielded 1100–1232 C and 5.9–8.1 kbar for monzogabbros, and 931–1109 C and 1.8–6.9 kbar for felsic enclaves. Hornblende thermobarometry and oxygen fugacity estimates reveal 739–971°C, 7.0–9.2 kbar and 10?9.71 for monzogabbros and 681–928°C, 3.0–6.1 kbar and 10?11.34 for felsic enclaves. Biotite thermobarometry shows elevated oxygen fugacity varying from 10?18.9–10?11.07 at 632–904°C and 1.29–1.89 kbar for monzogabbros, to 10?15.99 –10?11.82 at 719–873°C and 1.41–1.77 kbar for felsic enclaves. The estimated zircon and apatite saturation temperatures are 504–590°C and 693–730°C for monzogabbros and 765–775°C and 641–690°C for felsic enclaves, respectively. These data imply that several phases in the gabbroic and syenitic magmas did not necessarily crystallize simultaneously and further indicate that the mineral compositions may register intervals of disequilibrium crystallization. Besides, thermobarometry contrasts between monzogabbro and felsic enclave may be partly a consequence of extended interactions between the mafic and felsic magmas by mixing/mingling and diffusion. Additionally, the hot felsic magma was close to liquidus conditions (crystallinity < 30%) when injected into cooler mafic magma (crystallinity > 50%), and thus, the monzogabbro stocks reflect hybrid products from the mingling and incomplete mixing of these two magmas.  相似文献   

3.
The Bishop Tuff, one of the most extensively studied high-silica rhyolite bodies in the world, is usually considered as the archetypical example of a deposit formed from a magma body characterized by thermal and compositional vertical stratification—what we call the Standard Model for the Bishop magma body. We present here new geothermometry and geobarometry results derived using a large database of previously published quartz-hosted glass inclusion compositions. Assuming equilibrium between melt and an assemblage composed of quartz, ±plagioclase, ±sanidine, +zircon, ±fluid, we use Zr contents in glass inclusions to derive quartz crystallization temperatures, and we use (1) silica contents in glass, (2) projection of glass compositions onto the haplogranitic (quartz-albite-orthoclase) ternary, and (3) phase equilibria calculations using rhyolite-MELTS, to constrain crystallization pressures. We find crystallization temperatures of ~740–750 °C for all inclusions from both early- and late-erupted pumice. Crystallization pressures for both early- and late-erupted inclusions are also very similar to each other, with averages of ~175–200 MPa. We find no evidence of late-erupted inclusions having been entrapped at higher temperatures or pressures than early-erupted inclusions, as would be expected by the Standard Model. We argue that the thermal gradient inferred from Fe–Ti oxides—the backbone of the Standard Model—does not reflect equilibrium pre-eruptive conditions; we also note that H2O–CO2 systematics of glass inclusions yields overlapping pressure ranges for early- and late-erupted inclusions, similar to the results presented here; and we show that glass inclusion and phenocryst compositions show bimodal distributions, suggestive of compositional separation between early- and late-erupted populations. These findings are inconsistent with the Standard Model. The similarity in crystallization conditions and the compositional separation between early- and late-erupted magmas suggest that two laterally juxtaposed independent magma reservoirs existed in the same region at the same time and co-erupted to form the Long Valley Caldera and the Bishop Tuff. This hypothesis would explain the lack of mixing between early- and late-erupted crystal populations in pumice clasts; it could also explain the inferred eruption pattern—which resulted in early-erupted magmas being deposited only to the south of the caldera—if the early-erupted magma body resided to the south and the late-erupted magma body was located to the north. Our alternative model is consistent with the patchy distribution of thermal anomalies and the inference of co-eruption of distinct magma types in active volcanic areas such as the central Taupo Volcanic Zone.  相似文献   

4.
The 20 ka ~0.1 km3 Omega dacite, which erupted shortly after the 26.5 ka Oruanui super-eruption, compositionally stands out among Taupo Volcanic Zone (TVZ) magmas, which are overwhelmingly characterized by rhyolites (>90 % by volume). The previously reported presence of inherited zircons in this zircon-undersaturated magma has provided unequivocal evidence for the involvement of upper-crustal material in a 1–10 year timescale prior to the Omega eruption. However, whether this crustal involvement is characterized by wholesale, melting of preexisting crust or subordinate bulk assimilation into an already differentiated magma body remains unclear. To disentangle these processes, we describe the mineral chemistry of the major phases present in the Omega dacite and determine intensive parameters describing magma chamber conditions. Dominantly unimodal populations of plagioclase (An50–60), orthopyroxene (Mg# from 58 to 68), and clinopyroxene (Mg# from 65 to 73), along with coexisting equilibrium pairs of Fe–Ti oxides, constrain pre-eruptive temperatures to 850–950 °C, a pressure between ~3 and 7 kbars, and an oxygen fugacity of ~NNO. MELTS thermodynamic modeling suggests that this phase assemblage is in equilibrium with the bulk rock and glass compositions of the Omega dacite at these estimated PTfO2 pre-eruptive conditions. Combining these petrological observations with insights into conductive thermal models of magma–crust interactions, we argue that the Omega dacite more likely formed in the mid-to-lower crust via protracted processing through fractional crystallization coupled with some assimilation (AFC). Incorporation of crustal material is likely to have occurred at various stages, with the inherited zircons (and potentially parts of glomerocrysts) representing late and subordinate upper-crustal assimilants. This petrogenetic model is consistent with the presence of a differentiating crustal column, consisting of a polybaric fractional crystallization and assimilation history. On the basis of petrological, thermal, and geophysical considerations, upper-crustal reservoirs, which feed large-scale rhyolitic volcanism in the TVZ, most likely take the form of large, long-lived crystal mush zones. Following large eruptions, such as the Oruanui event, this mush is expected to crystallize significantly (up to 70–80 vol% crystals) due to syn-eruptive decompression. Hence, the Omega dacite, immediately post-dating the Oruanui event, potentially represents incoming deeper recharge of less-evolved magma that was able to penetrate the nearly solidified upper-crustal mush. Over the past 20,000 years, similar intermediate recharge magmas have incrementally reheated, reconstructed, and reactivated the upper-crustal mush zone, allowing a gradual return to rhyolitic volcanism at the Taupo Volcanic Center.  相似文献   

5.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO–Al2O3 and negative MgO–Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MgO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4 ±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure ~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.  相似文献   

6.
Summary This work integrates new geochemical data with the numerous published analyses on rocks from the Mt. Somma-Vesuvius volcano. New quantitative models for the evolution of magma source regions and magma at different depths are proposed. The origin of the Somma-Vesuvius parental magma is modeled as 0.05–0.1 melt fractions of a MORB-type source composed of 54% olivine, 30% orthopyroxene, 10% clinopyroxene, 1% garnet, and 4% amphibole, and 1–5% sediment introduced through the adjacent arc system. The excess concentrations of Rb, Ba, K, and Sr are attributed to a subduction-related fluid phase. Major and trace element concentrations, coupled with Sr–Nd–Pb isotope signatures suggest that the bulk composition of sediments being subducted below southern Italy is similar to that of the carbonate rich sediment columns described by Plank and Langmuir (1998) and Vroon et al. (1995). Furthermore, it appears that the sediment contribution was introduced as a partial melt, which would account for some geochemical patterns, such as 143Nd/144Nd versus Th/Ce. The EC–AFC model (Spera and Bohrson, 2001) is then used to track the evolution of Somma-Vesuvius magmas. The results are consistent with the melting of crustal Hercynian basement at depths of 12 and >20 km (De Natale et al., 2001). Such a model is also consistent with the thermal model of Annen and Sparks (2002) for the evolution of magmatic provinces. Here, magmas from the upper mantle form a melt intrusion and storage zone at 12 to >20 km allowing for crustal melting to take place. At Vesuvius, Plinian eruptions involve the first magma withdrawn from a deep magma reservoir. Interplinian eruptions involve reduced volumes of magma stored over a larger depth range until the volcanic activity stops. This suggests that little magma is left in the melt intrusion and storage zone. A new cycle is started by a Plinian event when new magma rises from the upper mantle and is emplaced in the lower crust.  相似文献   

7.
王坤  李奇维  秦颖  李祥波  董欢 《地球科学》2022,47(11):4294-4308
为了了解峨眉山地幔柱岩浆系统的演化过程,对红格超大型钒钛磁铁矿矿床中辉绿岩脉进行了全岩主微量、矿物原位成分和同位素研究,并利用MELTS软件进行了岩浆过程模拟计算.研究发现,红格辉绿岩脉具有与峨眉山高钛玄武岩一致的稀土元素配分型式和Sr同位素组成,表明其起源于峨眉山地幔柱.辉绿岩含有斑晶和基质两个世代矿物,从斑晶核部到边部和基质,单斜辉石Mg#值较为连续变化,而斜长石An值具有明显的间断.MELTS模拟表明,这种成分变化难以用简单的岩浆上升侵位解释,反映了辉绿岩脉在岩浆演化过程中可能还与同期的正长质岩浆发生了混合.我们的研究表明,峨眉山地幔柱岩浆作用具有穿地壳、多期次、多阶段演化的特点,并且同源岩浆混合也是一个不可忽视的方面.   相似文献   

8.
Sugarloaf Mountain is a 200-m high volcanic landform in central Arizona, USA, within the transition from the southern Basin and Range to the Colorado Plateau. It is composed of Miocene alkalic basalt (47.2–49.1?wt.% SiO2; 6.7–7.7?wt.% MgO) and overlying andesite and dacite lavas (61.4–63.9?wt.% SiO2; 3.5–4.7?wt.% MgO). Sugarloaf Mountain therefore offers an opportunity to evaluate the origin of andesite magmas with respect to coexisting basalt. Important for evaluating Sugarloaf basalt and andesite (plus dacite) is that the andesites contain basaltic minerals olivine (cores Fo76-86) and clinopyroxene (~Fs9-18Wo35-44) coexisting with Na-plagioclase (An48-28Or1.4–7), quartz, amphibole, and minor orthopyroxene, biotite, and sanidine. Noteworthy is that andesite mineral textures include reaction and spongy zones and embayments in and on Na-plagioclase and quartz phenocrysts, where some reacted Na-plagioclases have higher-An mantles, plus some similarly reacted and embayed olivine, clinopyroxene, and amphibole phenocrysts.Fractional crystallization of Sugarloaf basaltic magmas cannot alone yield the andesites because their ~61 to 64?wt.% SiO2 is attended by incompatible REE and HFSE abundances lower than in the basalts (e.g., Ce 77–105 in andesites vs 114–166?ppm in basalts; Zr 149–173 vs 183–237; Nb 21–25 vs 34–42). On the other hand, andesite mineral assemblages, textures, and compositions are consistent with basaltic magmas having mixed with rhyolitic magmas, provided the rhyolite(s) had relatively low REE and HFSE abundances. Linear binary mixing calculations yield good first approximation results for producing andesitic compositions from Sugarloaf basalt compositions and a central Arizona low-REE, low-HFSE rhyolite. For example, mixing proportions 52:48 of Sugarloaf basalt and low incompatible-element rhyolite yields a hybrid composition that matches Sugarloaf andesite well ? although we do not claim to have exact endmembers, but rather, viable proxies. Additionally, the observed mineral textures are all consistent with hot basalt magma mixing into rhyolite magma. Compositional differences among the phenocrysts of Na-plagioclase, clinopyroxene, and amphibole in the andesites suggest several mixing events, and amphibole thermobarometry calculates depths corresponding to 8–16?km and 850° to 980?°C. The amphibole P-T observed for a rather tight compositional range of andesite compositions is consistent with the gathering of several different basalt-rhyolite hybrids into a homogenizing ‘collection' zone prior to eruptions. We interpret Sugarloaf Mountain to represent basalt-rhyolite mixings on a relatively small scale as part of the large scale Miocene (~20 to 15 Ma) magmatism of central Arizona. A particular qualification for this example of hybridization, however, is that the rhyolite endmember have relatively low REE and HFSE abundances.  相似文献   

9.
Summary Pyroclastites erupted from the Upper Pollara magma chamber (13 ka, Salina Island, Aeolian Archipelago) resulted from mingling and mixing of rhyolitic and andesitic magmas. An experimental study has been conducted on the rhyolitic end-member to constrain the pre-eruptive conditions of the magma. In order to check for the role of mixing on the equilibrium phase assemblage, three different starting compositions, corresponding to three different mixing degrees, have been used. The crystallization experiments were conducted at two different oxygen fugacities and at variable temperature and fluid contents. The results indicate that the natural mineralogical assemblage can only be reproduced from a composition showing a certain degree of mixing. Assuming a pressure of 200 MPa (generally accepted for the Aeolian Islands), the pre-eruptive temperature of the magmas is estimated between 755 and 800 °C and the water content of the melt was higher than 4–4.5 wt.%. The Upper Pollara magma crystallized at relatively high fO2 (ΔlogfO2 = Ni–NiO + 1 log unit), compared to rhyolitic magmas from Lipari and Vulcano. As this difference has not been observed for the most primitive magmas the difference in fO2 could be related to different degassing processes operating in Salina and Lipari – Vulcano magmas.  相似文献   

10.
Quantifying crustal deformation is important for evaluating mass balance, material transfer, and the interplay between tectonism and magmatism in continental arcs. We present a dataset of >650 finite strain analyses compiled from published works and our own studies with associated structural, geochronologic, and geobarometric information in central and southern Sierra Nevada, California, to quantify the arc crust deformation. Our results show that Mesozoic tectonism results in 65% arc-perpendicular bulk crust shortening under a more or less plane strain condition. Mesozoic arc magmatism replaced ∼80% of this actively deforming arc crust with plutons requiring significantly greater crustal thickening. We suggest that by ∼85 Ma, the arc crust thickness was ∼80 km with a 30-km-thick arc root, resulting in a ∼5 km elevation. Most tectonic shortening and magma emplacement must be accommodated by downward displacements of crustal materials into growing crustal roots at the estimated downward transfer rate of 2–13 km/Myr. The downward transfer of crustal materials must occur in active magma channels, or in “escape channels” in between solidified plutons that decrease in size with time and depth resulting in an increase in the intensity of constrictional strain with depth. We argue that both tectonism and magmatism control the thickness of the crust and surface elevation with slight modification by surface erosion. The downward transported crustal materials initially fertilize the MASH zone thus enhancing to the generation of additional magmas. As the crustal root grows it may potentially pinch out and cool the mantle wedge and thus cause reduction of arc magmatism.  相似文献   

11.
Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up (~50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic (~62–65 wt% SiO2) ignimbrite with an estimated erupted volume of ~500 km3 and an average of ~45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from ~750 to >800?°C) of an upper crustal mush in response to hotter recharge from below. Zircon U–Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location ~0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures (~710–760?°C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.  相似文献   

12.
Thermodynamic models are vital tools to evaluate magma crystallization and storage conditions. Before their results can be used independently, however, they must be verified with controlled experimental data. Here, we use a set of hydrothermal experiments on the Late-erupted Bishop Tuff (LBT) magma to evaluate the rhyolite-MELTS thermodynamic model, a modified calibration of the original MELTS model optimized for crystallization of silicic magmas. Experimental results that are well captured by rhyolite-MELTS include a relatively narrow temperature range separating the crystallization of the first felsic mineral and the onset of the ternary minimum (quartz plus two feldspars), and extensive crystallization over a narrow temperature range once the ternary minimum is reached. The model overestimates temperatures by ~40 °C, a known limitation of rhyolite-MELTS. At pressures below 110 MPa, model and experiments differ in the first felsic phase, suggesting that caution should be exercised when applying the model to very low pressures. Our results indicate that for quartz, sanidine, plagioclase, magnetite, and ilmenite to crystallize in equilibrium from LBT magma, magma must have been stored at ≤740 °C, even when a substantial amount of CO2 occurs in the coexisting fluid. Such temperatures are in conflict with the hotter temperatures retrieved from magnetite–ilmenite compositions (~785 °C for the sample used in the experiments). Consistent with other recent studies, we suggest that the Fe–Ti oxide phases in the Late Bishop Tuff magma body are not in equilibrium with the other minerals and thus the retrieved temperature and oxygen fugacity do not reflect pre-eruptive storage conditions.  相似文献   

13.
Tertiary volcanics in the northern zone of the Eastern Pontides are characterized by subaerial and shallow-subaqueous facieses, and are divided into three volcanic suites: Eocene aged (1) basalt-trachybasalt-basaltic trachyandesite (BTB) and (2) trachyte-trachyandesite (TT), and Miocene aged (3) basanite-tephrite (BT) suites. Clinopyroxene is a common phase in all three volcanic suites, and has different compositions with Mg# varying from 0.57 to 0.91 in BTB suite and 0.57–0.84 in TT suite to 0.65–0.90 in BT suite. Feldspars in all suites generally exhibit wide range of compositions from sanidine to albite or anorthite and have weak normal and reverse compositional zoning. Olivines in BTB and BT suites have Fo60–92. Hornblendes in BTB, TT and BT suites are commonly magnesio-hastingsite and rare pargasite in composition (Mg#: 0.67–0.90). Brown mica is mainly phlogopite with Mg# ranging from 0.56 to 0.92 in the BTB suite, 0.59–0.84 in the TT suite, and 0.75–0.93 in the BT suite. Analcime is present only in the BT suite rocks. Fe–Ti oxides in all suites are mainly composed of magnetite and titanomagnetite. Textural petrographic and mineral chemical data suggest that magmas had undergone hydrous and anhydrous crystallizations in deep-, mid-, and shallow-crustal magma chambers. Clinopyroxene thermobarometric calculations show that Eocene magma chambers were characterized by temperature ranging from 1,100 to 1,244 °C and pressure ranging from 1.84 to 5.39 kbar. Similarly, the Miocene magma chambers were characterized by temperature ranging from 1,119 to 1,146 °C and pressure ranging from 4.23 to 4.93 kbar. Hornblende thermobarometry, oxygen fugacity, and hygrometer reveal that the crystallization temperature of Eocene volcanics range from 956 to 959 °C at pressure ranging from 6.49 to 6.52 kbar. Eocene volcanics were characterized by water content ranging from 7.83 to 8.57 wt.% and oxygen fugacity of 10?9.36 to 10?9.46 (ΔNNO+2). Miocene volcanics had crystallization temperature ranging from 970 to 978 °C at pressure ranging from 8.70 to 9.00 kbar with water content ranging from 8.04 to 8.64 wt.% and oxygen fugacity ranging from 10?8.75 to 10?8.87 (ΔNNO+2). Brown mica thermobarometric data show that Eocene volcanics were characterized by relatively high oxygen fugacity varying from 10-10.32 to 10-12.37 (HM) at temperature ranging from 858 to 953 °C and pressure ranging from 1.08 to 1.41 kbar. Miocene volcanics were crystallized at highly oxidized conditions, which are characterized by high oxygen fugacity of 10?12.0 (HM) at temperature of 875 °C and pressure of 2.09 kbar. The wide range of obtained temperatures for clinopyroxenes of the suites denotes that the equilibration of clinopyroxene crystals initiates from depth until close to the surface before magma eruption. The compositional variations, resorbed core and reverse zoning patterns in clinopyroxene phenocrysts, as well as variable pressures of crystallization, further indicate that the magmas that formed the suites were polybaric in origins and were composite products of more than one petrogenetic stage. The observed range of phenocryst assemblage and different compositional trends possibly originated from fractionation of magmas with different initial water contents under variable pressures of crystallization. The repeated occurrence of magmas from different suites during a single period of activity suggests that the magmatic system consists of several conduit systems and that magma reservoirs are dispersed at different levels of crustal magma chambers.  相似文献   

14.
Post-collision magmatism and tectonics in northwest Anatolia   总被引:1,自引:0,他引:1  
A suite of biotite-hornblende granodiorite intrusions has been emplaced into blueschist-facies metasediments in northwest Anatolia, following collision between two continental margins, now represented by the Tavanli and Sakarya zones. The 40Ar/39Ar ages of phengites and glaucophanes from the blueschists, metamorphosed under unusually high P-low T conditions (P=20±2 kbar, T=430±30° C), suggest that metamorphism apparently occurred over a period spanning at least 20 Ma from 108 to 88 Ma. Post-tectonic granodiorites were emplaced during the Eocene (53 to 48 Ma) resulting in a cordierite and andalusite-bearing thermal aureole, indicative of pressures of 3 kbar. Trace-element systematics of the granodiorites are consistent with a derivation either from mantle-derived magmas by fractional crystallisation in shallow magma chambers, or from anatexis of crustal lithologies of internediate composition at pressures <10 kbar. The preservation of high P-low T assemblages in the blueschists together with the range of ages determined for blueschist-facies metamorphism are indicative of rapid exhumation of delaminated fragments from a subducted continental margin. However decompression melting of the crust is unlikely to have been a significant cause of magmatism, both because exhumation of the blueschists from deep crustal levels predated magmatism by at least 25 Ma, and because of the small melt fraction (<0.1) that may be generated in crustal lithologies by this process. Melting in the mantle wedge is required either to generate a primary melt for the derivation of magmas of intermediate composition or to provide an advective heat source for crustal melting. The cause of melt formation in the upper mantle may be related to the termination of subduction following collision during the Mid-Eocene.  相似文献   

15.
Melting experiments involving fifteen runs were performed at pressures between 1.0 and 2.0 GPa in order to locate the liquidus temperatures, the solidus temperatures, and the melting intervals of the Wannienta basaltic magma, northern Taiwan. The experimental results showed that the liquidus and solidus temperatures were raised by 60 GPa and 40 GPa respectively. The liquidus mineral at 1.0 GPa is orthopyroxene, whereas the liquidus mineral is clinopyroxene at 1.5 and 2.0 GPa. The crystallized phases are clinopyroxene and plagioclase at temperatures between 1220 and 1270°C and pressures between 1.0 and 2.0 GPa. Garnet appears at 2.0 GPa near the solidus. The geochemical evolution of the residual magma with decreasing temperature show the following trends: At 1.0 GPa, Al, Na, and K are progressively enriched while depletions occur in Mg. At 2.0 GPa, Si, Fe and K are progressively enriched with decreasing temperature while depletions occur in Mg, Ca, and Na. The fractionation trend of the Kuanyinshan volcanic series is similar to the trend observed in residual magmas at pressures between one atmosphere and 1.0 GPa. These results indicate that the depth for fractional crystallization of the Wannienta basaltic magma to produce andesites could be modeled at low pressure. The fractionates involved included iron-titanium oxides, olivine, plagioclase, and clinopyroxene.  相似文献   

16.
刘鑫  汤艳杰 《岩石学报》2018,34(11):3315-3326
冀西北姚家庄存在一套晚三叠世的超镁铁岩-正长岩杂岩体,岩体内发育具有环带特征的单斜辉石。辉石的环带有两种:简单环带和复杂环带。简单环带一般为正环带,辉石核部的MgO和Cr2O3含量高,Si O2、Fe O和Na2O含量低;边部的主要氧化物含量与核部刚好相反。简单正环带可以分为两类,其中核边接触带平滑、由核到边化学成分具有渐变特征的正环带辉石可能是岩浆在分离结晶或地壳混染过程中形成。而核边接触带有熔蚀结构、由核到边化学成分突变的正环带辉石可能是早期结晶的辉石颗粒受到晚期低镁岩浆的溶蚀改造而成的。复杂环带具有核-幔-边结构,其中,核部低镁高铁、幔部高镁低铁、边部与核部相似,但其Mg#更低,这些特征暗示了岩浆混合作用的存在,形成辉石核部的母岩浆可能来自富集的岩石圈地幔,幔部高Mg#的特征指示了软流圈地幔物质的贡献,其边部低Mg#的特征则指示了地壳物质的加入。具有韵律环带的复杂辉石是在岩浆多期侵入的过程中形成的。辉石环带的组成特征表明,姚家庄杂岩体是由岩浆多期侵位形成的,后期侵入的岩浆与前期就位的岩浆不断反应,形成了具有多种不同环带特征的辉石,并最终形成了空间上由外到内依次为辉石岩、辉石正长岩和正长岩的环状杂岩体。结合前人的研究成果,推测形成姚家庄岩体的岩浆主要来源于富集的岩石圈地幔,并由少量地壳组分和软流圈物质的贡献。  相似文献   

17.
Uturuncu is a dormant volcano in the Altiplano of SW Bolivia. A present day ~70 km diameter interferometric synthetic aperture radar (InSAR) anomaly roughly centred on Uturuncu’s edifice is believed to be a result of magma intrusion into an active crustal pluton. Past activity at the volcano, spanning 0.89 to 0.27 Ma, is exclusively effusive and almost all lavas and domes are dacitic with phenocrysts of plagioclase, orthopyroxene, biotite, ilmenite and Ti-magnetite plus or minus quartz, and microlites of plagioclase and orthopyroxene set in rhyolitic groundmass glass. Plagioclase-hosted melt inclusions (MI) are rhyolitic with major element compositions that are similar to groundmass glasses. H2O concentrations plotted versus incompatible elements for individual samples describe a trend typical of near-isobaric, volatile-saturated crystallisation. At 870 °C, the average magma temperature calculated from Fe–Ti oxides, the average H2O of 3.2 ± 0.7 wt% and CO2 typically <160 ppm equate to MI trapping pressures of 50–120 MPa, approximately 2–4.5 km below surface. Such shallow storage precludes the role of dacite magma emplacement into pre-eruptive storage regions as being the cause of the observed InSAR anomaly. Storage pressures, whole-rock (WR) chemistry and phase assemblage are remarkably consistent across the eruptive history of the volcano, although magmatic temperatures calculated from Fe–Ti oxide geothermometry, zircon saturation thermometry using MI and orthopyroxene-melt thermometry range from 760 to 925 °C at NNO ± 1 log. This large temperature range is similar to that of saturation temperatures of observed phases in experimental data on Uturuncu dacites. The variation in calculated temperatures is attributed to piecemeal construction of the active pluton by successive inputs of new magma into a growing volume of plutonic mush. Fluctuating temperatures within the mush can account for sieve-textured cores and complex zoning in plagioclase phenocrysts, resorption of quartz and biotite phenocrysts and apatite microlites. That Fe–Ti oxide temperatures vary by ~50–100 °C in a single thin section indicates that magmas were not homogenised effectively prior to eruption. Phenocryst contents do not correlate with calculated magmatic temperatures, consistent with crystal entrainment from the mush during magma ascent and eruption. Microlites grew during ascent from the magma storage region. Variability in the proportion of microlites is attributed to differing ascent and effusion rates with faster rates in general for lavas >0.5 Ma compared to those <0.5 Ma. High microlite contents of domes indicate that effusion rates were probably slowest in dome-forming eruptions. Linear trends in WR major and trace element chemistries, highly variable, bimodal mineral compositions, and the presence of mafic enclaves in lavas demonstrate that intrusion of more mafic magmas into the evolving, shallow plutonic mush also occurred further amplifying local temperature fluctuations. Crystallisation and resorption of accessory phases, particularly ilmenite and apatite, can be detected in MI and groundmass glass trace element covariation trends, which are oblique to WRs. Marked variability of Ba, Sr and La in MI can be attributed to temperature-controlled, localised crystallisation of plagioclase, orthopyroxene and biotite within the evolving mush.  相似文献   

18.
The post-caldera Kameni islands of the Santorini volcanic complex, Aegean Sea, Greece are entirely volcanic and were formed by eleven eruptions between 197 B.C. and 1950. Petrographic, mineral chemical and whole-rock major and trace element data are presented for samples of lava collected from the products of seven eruptive cycles which span the entire period of activity. The main phenocryst phases are plagioclase, clinopyroxene, orthopyroxene and titaniferous magnetite, which are weakly zoned (e.g. plagioclase — An55 to An42). The lavas are typical calc-alkaline dacites and show a restricted range of composition (from 64.1 to 68.4 wt. % SiO2). The phenocrysts were in equilibrium with the melts at temperatures of 960–1012 °C, pressures of 800–1500 bars and oxygen fugacities of 10–9.6-10–9.9 bars. The pre-eruptive water content of the magmas was 3–4 wt. % but since the lavas contain only 0.1–0.4 wt. % H2O, a considerable amount (about 0.01–0.015 km3) of water was lost prior to or during eruption. This indicates that the magmas rose to the surface gradually allowing the (largely) non-explosive loss of volatiles. The lavas were probably extruded initially from more or less cylindrical conduits which developed into fissures as the eruptions proceeded. The post-caldera lavas evolved from more mafic parental magmas (basalt-andesite) via fractional crystallization. The small range of compositional variation shown by these lavas can be explained in terms of near-equilibrium crystallization. Analyses of samples of lavas belonging to single eruption cycles and to individual flows indicate that the underlying magma chamber is compositionally zoned. The average composition of erupted magma has remained approximately constant since 1570 A.D. but that fact that the 197 B.C. magma was sligthly richer in SiO2 provides additional evidence that the magma chamber is compositionally zoned. Crystal settling has not affected the composition of the magma over a 2,200 year period of time which indicates that the melts do not behave as Newtonian fluids. Zonation was thus probably established prior to the 197 B.C. eruption though it is possible that it is developed and maintained by crystal-liquid differentiation processes other than crystal settling (e.g. boundary layer crystallization). The data indicate that there has been no significant cooling during 2,200 years; the maximum amount of cooling is <50 °C and is probably less than 30 °C. Two hypotheses are considered to explain the thermal and chemical buffering of the post-caldera magma chamber: (i) The magma chamber is large and heat losses due to conduction are largely compensated by latent heat supplied by thick, partially crystalline cumulate sequences. (ii) Periodic influx of hot mafic magma, which does not mix with the dacitic magma, inhibits cooling. The second alternative is favored because the post-caldera lavas differ geochemically from the pre-caldera lavas which signifies that a new batch of magma was formed and/or emplaced after the catastrophic eruption of 1390 B.C., and hence that mafic magmas may still be reaching upper crustal levels.  相似文献   

19.
The Haji Abad intrusion is a well-exposed Middle Eocene I-type granodioritc pluton in the Urumieh–Dokhtar magmatic assemblage (UDMA). The major constituents of the investigated rocks are K-feldspar, quartz, plagioclase, pyroxene, and minor Fe–Ti oxide and hornblende. The plagioclase compositions fall in the labradorite, andesine, and oligoclase fields. The amphiboles range in composition from magnesio-hornblende to tremolite–hornblende of the calcic-amphibole group. Most pyroxenes principally plot in the field of diopside. The calculated average pressure of emplacement is 1.9 kbar for the granodioritic rocks, crystallizing at depths of about 6.7 km. The highest pressure estimated from clinopyroxene geobarometry (5 kbar) reflects initial pyroxene crystallization pressure, indicating initial crystallization depth (17.5 km) in the Haji Abad granodiorite. The estimated temperatures using two-feldspar thermometry give an average 724 °C. The calculated average temperature for clinopyroxene crystallization is 1090 °C. The pyroxene temperatures are higher than the estimated temperature by feldspar thermometry, indicating that the pyroxene and feldspar temperatures represent the first and late stages of magmatic crystallization of Haji Abad granodiorite, respectively. Most pyroxenes plot above the line of Fe3+?=?0, indicating they crystallized under relatively high oxygen fugacity or oxidized conditions. Furthermore, the results show that the Middle Eocene granitoids crystallized from magmas with H2O content about 3.2 wt%. The relatively high water content is consistent with the generation environment of HAG rocks in an active continental margin and has allowed the magma to reach shallower crustal levels. The MMEs with ellipsoidal and spherical shapes show igneous microgranular textures and chilled margins, probably indicating the presence of magma mixing. Besides, core to rim compositional oscillations (An and FeO) for the plagioclase crystals serve as robust evidence to support magma mixing. The studied amphiboles and pyroxenes are grouped in the subalkaline fields that are consistent with crystallization from I-type calc-alkaine magma in the subduction environment related to active continental margin. Mineral chemistry data indicate that Haji Abad granodiorites were generated in an orogenic belt related to the volcanic arc setting consistent with the subduction of Neo-Tethyan oceanic crust beneath the central Iranian microcontinent.  相似文献   

20.
The Malayer–Boroujerd plutonic complex (MBPC) in western Iran, consists of a portion of a magmatic arc built by the northeast verging subduction of the Neo-Tethys plate beneath the Central Iranian Microcontinent (CIMC). Middle Jurassic-aged felsic magmatic activity in MBPC is manifested by I-type and S-type granites. The mafic rocks include gabbroic intrusions and dykes and intermediate rocks are dioritic dykes and minor intrusions, as well as mafic microgranular enclaves (MMEs). MBPC Jurassic-aged rocks exhibit arc-like geochemical signatures, as they are LILE- and LREE-enriched and HFSE- and HREE-depleted and display negative Nb–Ta anomalies. The gabbro dykes and intrusions originated from metasomatically enriched garnet-spinel lherzolite [Degree of melting (fmel) ~ 15%] and exhibit negative Nd and positive to slightly negative εHf(T) (+ 3.0 to ? 1.6). The data reveal that evolution of Middle Jurassic magmatism occurred in two stages: (1) deep mantle-crust interplay zone and (2) the shallow level upper crustal magma chamber. The geochemical and isotopic data, as well as trace element modeling, indicate the parent magma for the MBPC S-type granites are products of upper crustal greywacke (fmel: 0.2), while I-type granites formed by partial melting of amphibolitic lower crust (fmel: 0.25) and mixing with upper crustal greywacke melt in a shallow level magma chamber [Degree of mixing (fmix): 0.3]. Mixing between andesitic melt leaving behind a refractory dense cumulates during partial crystallization of mantle-derived magma and lower crustal partial melt most likely produced MMEs (fmix: 0.2). However, enriched and moderately variable εNd(T) (? 3.21 to ? 4.33) and high (87Sr/86Sr)i (0.7085–0.7092) in dioritic intrusions indicate that these magmas are likely experienced assimilation of upper crustal materials. The interpretations of magmatic activity in the MBPC is consistent with the role considered for mantle-derived magma as heat and mass supplier for initiation and evolution of magmatism in continental arc setting, elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号