首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present Globigerinoides ruber, G. sacculifer and Neogloboquadrina dutertrei oxygen isotope records from northwestern subtropical Atlantic Site 1058 spanning the mid Pleistocene ( 600 to 400 ka). The high temporal resolution of these records ( 800 yr) allows us to compare millennial-scale climate signals during one of the most extreme glacial periods of the Pleistocene (Marine Isotope Stage (MIS) 12) to an earlier, less extreme glacial (MIS 14), as well as to two full interglacial intervals (MIS 13 and MIS 15). We observe excellent agreement in the timing and amplitude of variations between the surface-most dwelling species G. ruber and Northern Hemisphere insolation during the two interglacial periods. There is some expression of Northern Hemisphere insolation during glacial MIS 14; however, during the more extreme glacial MIS 12 Northern Hemisphere insolation patterns are not apparent in any of the planktonic foraminiferal δ18O records. Insolation remains relatively high, but δ18O values increase toward the characteristic δ18O maximum of MIS 12 in all three of the records. On the millennial-scale, all three species display their highest amplitude δ18O variations (with a period between 4–6 kyr) during glacial MIS 12. Suborbital-scale variability is also statistically significant during glacial MIS 14, but the amplitude is smaller. These results support hypotheses linking millennial-scale climate fluctuations to the extent of continental glaciation. We propose that the relatively high degree of sea surface instability during one of the most extreme glacial periods of the Pleistocene arises from the competing effects of strong atmospheric winds related to the presence of a large ice sheet to the north and persistently high incident solar radiation during this interval of time.  相似文献   

2.
Ice-rafted debris (IRD) (>2 mm), input in eight sediment cores along the Eurasian continental margin (Arctic Ocean), have been studied over the last two glacial/interglacial cycles. Together with the revised chronologies and new micropaleontological data of two cores from the northern Barents Sea (PS2138) and northeastern Kara Sea (PS2741) spanning Marine Isotope Stages (MIS) 6 to 1, the IRD data give new insights into the glacial history of northern Eurasian ice-sheets over the last 150 ka. The chronologies of the cores are based on stable isotope records, AMS 14C datings, paleomagnetic and biostratigraphic data.Extensive episodes of northern Barents Sea ice-sheet growth, probably to the shelf edge, occurred during the late Weichselian (MIS 2) and the Saalian (MIS 6). Major IRD discharge at the MIS 4/3-transition hints to another severe glaciation, probably onto the outer shelf, during MIS 4. IRD-based instabilities of the marine-based ice margin along the northern Barents Sea between MIS 4 and 2 are similar in timing with North Atlantic Heinrich events and Nordic Seas IRD events, suggesting similar atmospheric cooling over a broad region or linkage of ice-sheet fluctuations through small sea-level events.In the relatively low-precipitation areas of eastern Eurasia, IRD peak values during Termination II and MIS 4/3-transition suggest a Kara Sea ice-sheet advance onto the outer shelf, probably to the shelf edge, during glacial MIS 6 and 4. This suggests that during the initial cooling following the interglacials MIS 5, and possibly MIS 7, the combined effect of sustained inflow of Atlantic water into the Arctic Ocean and penetration of moisture-bearing cyclones into easterly direction supported major ice build-up during Saalian (MIS 6) and Mid-Weichselian (MIS 4) glaciation. IRD peak values in MIS 5 indicate at least two advances of the Severnaya Semlya ice-sheet to the coast line during the Early Weichselian. In contrast, a distinct Kara Sea ice advance during the Late Weichselian (MIS 2) is not documented by the IRD records along the northeastern Kara Sea margin.  相似文献   

3.
A new theory is proposed to explain global cooling at the onset of Pleistocene glacial periods. Atmospheric CO2 drawdown is considered to be the driving force behind global cooling, brought about by heightened productivity at the equatorial divergences and along continental margins, particularly in upwelling regions. Eutrophication appears to be triggered when global warming during late interglacial periods causes accelerated melting of the West Antarctic Ice Sheet. This would release large reserves of silicate-enriched subglacial meltwaters into the surrounding oceans where entrainment would take place into deep and intermediate currents forming in Antarctic and subantarctic waters. Subsequent advection, mixing and upwelling of silicate-enriched deep and intermediate waters into the coastal zones and open-ocean divergences results in the proliferation of large, rapidly-sinking diatom species with a high affinity for dissolved silicate. These blooms enhance rates of recycling of N and P in upwelling regions and accelerate rates of organic carbon production, export and sequestration in shelf and slope sediments and in the deep sea. The resultant atm. CO2 drawdown initiates global cooling. Consequent expansion of Northern Hemisphere glaciers lowers sea level, while increased temperature and pressure gradients between equatorial and polar regions intensify meridional winds. The former process exposes nutrient-enriched coastal sediments to wave erosion, thereby releasing new nutrient supplies, while the latter process enhances upwelling. The combined effect is to greatly increase rates of org. C production and export from continental margins and further accelerate atm. CO2 drawdown. Glacial-period cooling is also enhanced by a number of other positive feedbacks, including changes in albedo, water vapour and cloud cover. Episodic warming intervals during glacial periods may be related to insolation changes associated with orbital precession and tilt cycles, but processes involved in deglaciation and reversion to the interglacial climatic regime are complex and not yet fully understood.  相似文献   

4.
Based on a grid of high resolution, single channel seismic lines, this paper addresses the Late Cenozoic evolution of the western Svalbard continental shelf. The seismic structure of the shelf includes at least 16 erosional unconformities, each representing a glacial advance. The evolution during the last approximately one million years has been divided into six main erosional and depositional phases. Differential margin subsidence around a hinge zone is an important controlling mechanism for the accumulation of the sedimentary wedge at the outer shelf. The most significant depositional change appears to be related to a general climatic shift, globally recorded to be centred around 1 Ma. At this level, corresponding to the Upper Regional Unconformity (URU) on the shelf, the depositional regime changed from net erosion to net deposition and shelf aggradation. Of major significance is probably a shift from thick, eroding glaciers with steep ice profiles, to low profile fast flowing ice streams maintained by an increased amount of interglacial and interstadial sediments. The relationship between climatic fluctuations, glacial dynamics and depositional regime is discussed.  相似文献   

5.
Paleoceanographic changes since the Late Weichselian have been studied in three sediment cores raised from shelf depressions along a north–south transect across the central Barents Sea. AMS radiocarbon dating offers a resolution of several hundred years for the Holocene. The results of lithological and micropaleontological study reveal the response of the Barents Sea to global climatic changes and Atlantic water inflow. Four evolutionary stages were distinguished. The older sediments are moraine deposits. The destruction of the Barents Sea ice sheet during the beginning of the deglaciation in response to climate warming and sea level rise resulted in proximal glaciomarine sedimentation. Then, the retreat of the glacier front to archipelagoes during the main phase of deglaciation caused meltwater discharge and restricted iceberg calving. Fine-grained distal glaciomarine sediments were deposited from periodic near-bottom nepheloid flows and the area was almost permanently covered with sea ice. The dramatic change in paleoenvironment occurred near the Pleistocene/Holocene boundary when normal marine conditions ultimately established resulting in a sharp increase of biological productivity. This event was diachronous and started prior to 10 14C ka BP in the southern and about 9.2 14C ka in the northern Barents Sea. Variations in sediment supply, paleoproductivity, sea-ice conditions, and Atlantic water inflow controlled paleoenvironmental changes during the Holocene.  相似文献   

6.
7.
This paper addresses the influence of external forcing (changes in tectonics, sea level and climate) on the downstream and long-term (103–105 years) evolution of sediment composition along a fluvial longitudinal profile. The River Meuse served as a case study for a semi 2-D forward-modelling approach to simulate the downstream sediment transport in the 200- to 0-ka period. This has been related to bulk geochemical properties of the tributary catchments to quantify the bulk composition of the sediment load in the main river. The model was used to test the hypothesis that long-term fluvial dynamics influences sediment composition.The simulation exercise showed that long-term fluvial dynamics can yield systematic temporal changes in fluvial sediment composition, especially in high-relief areas. We tested a scenario of minimal discharges and maximum hillslope erosion during cold glacial periods (weathering-limited sediment supply), alternating with maximal discharges and minimal hillslope erosion during prolonged interstadials or interglacials (transport-limited sediment supply). This scenario largely reproduced the timing and direction of measured changes in the bulk and clay geochemistry of fine-grained sediments, which were deposited in the River Meuse lower reach from 13 to 0 ka. However, it failed to reproduce the measured amplitude of change, which was five to six times larger than the modelled amplitude. This suggests that climate-dependent changes in weathering intensity of rocks and saprolite in the source areas were more important and that aeolian inputs from outside the drainage basin have co-determined the sediment composition.  相似文献   

8.
Uniquely in the Southern Hemisphere the New Zealand micro-continent spans the interface between a subtropical gyre and the Subantarctic Circumpolar Current. Its 20° latitudinal extent includes a complex of submerged plateaux, ridges, saddles and basins which, in the present interglacial, are partial barriers to circulation and steer the Subtropical (STF) and Subantarctic (SAF) fronts. This configuration offers a singular opportunity to assess the influence of bottom topography on oceanic circulation through Pleistocene glacial – interglacial (G/I) cycles, its effect on the location and strength of the fronts, and its ability to generate significant differences in mixed layer thermal history over short distances.For this study we use new planktic foraminiferal based sea-surface temperature (SST) estimates spanning the past 1 million years from a latitudinal transect of four deep ocean drilling sites. We conclude that: 1. the effect of the New Zealand landmass was to deflect the water masses south around the bathymetric impediments; 2. the effect of a shallow submerged ridge on the down-current side (Chatham Rise), was to dynamically trap the STF along its crest, in stark contrast to the usual glacial–interglacial (G–I) meridional migration that occurs in the open ocean; 3. the effect of more deeply submerged, downstream plateaux (Campbell, Bounty) was to dynamically trap the SAF along its steep southeastern margin; 4. the effects of saddles across the submarine plateaux was to facilitate the development of jets of subtropical and subantarctic surface water through the fronts, forming localized downstream gyres or eddies during different phases in the G–I climate cycles; 5. the deep Pukaki Saddle across the Campbell-Bounty Plateaux guided a branch of the SAF to flow northwards during each glacial, to form a strong gyre of circumpolar surface water in the Bounty Trough, especially during the mid-Pleistocene Climate Transition (MIS 22-16) when exceptionally high SST gradients existed across the STF; 6. the shallower Mernoo Saddle, at the western end of the Chatham Rise, provided a conduit for subtropical water to jet southwards across the STF in the warmest interglacial peaks (MIS 11, 5.5) and for subantarctic water to flow northwards during glacials; 7. although subtropical or subantarctic drivers can prevail at a particular phase of a G–I cycles, it appears that the Antarctic Circumpolar Current is the main influence on the regional hydrography.Thus complex submarine topography can affect distinct differences in the climate records over short distances with implications for using such records in interpreting global or regional trends. Conversely, the local topography can amplify the paleoclimate record in different ways in different places, thus enhancing its value for the study of more minor paleoceanographic influences that elsewhere are more difficult to detect. Such sites include DSDP 594, which like some other Southern Ocean sites, has the typical late Pleistocene asymmetrical saw-tooth G–I climate pattern transformed to a gap-tooth pattern of quasi-symmetrical interglacial spikes that interrupt extended periods of minimum glacial temperatures.  相似文献   

9.
Uranium series dating has been carried out on secondary uranyl silicate minerals formed during sub-glacial and post-glacial weathering of Proterozoic uraninite ores in south west Finland. The samples were obtained from two sites adjacent to the Salpauselkä III ice marginal formation and cover a range of depths, from the surface to more than 60 m. Measured ages fall into three distinct groups, 70–100 ka, 28–36 ka and < 2500 yr. The youngest set is associated with surface exposures and the crystals display clear evidence of re-working. The most likely trigger for uranium release at depths below the surface weathering zone is intrusion of oxidising glacial melt water. The latter is often characterised by very high discharge rates along channels, which close once the overpressure generated at the ice margin is released. There is excellent correspondence between the two Finnish sites and published data for similar deposits over a large area of southern and central Sweden. None of the seventy samples analysed gave a U–Th age between 40 and 70 ka; a second hiatus is apparent at 20 ka, coinciding with the Last Glacial Maximum. Thus, the process responsible for uranyl silicate formation was halted for significant periods, owing to a change in geochemical conditions or the hydrogeological regime. These data support the presence of interstadial conditions during the Early and Middle Weichselian since in the absence of major climatic perturbations the uranium phases at depth are stable. When viewed in conjunction with proxy data from mammoth remains it would appear that the region was ice-free prior to the Last Glacial Maximum.  相似文献   

10.
The evolution of a submarine fan, the Bear Island Trough Mouth Fan, is outlined using high-resolution seismic data. Eight seismic units are identified. The identified units comprise sediments of Middle and Late Pleistocene age. They were probably deposited during eight glacial advances of the Barents Sea Ice Sheet to the shelf break. The units are dominated by a chaotic seismic signature on the upper fan and a mounded seismic facies further downslope. The mounded signature is inferred to reflect large submarine debris flow deposits, probably generated by oversteepening of the upper slope. Unlike many other passive margin fans, glacigenic sediments derived from an ice sheet at the shelf break were the primary sediment input. During interstadials and interglacials the sedimentation rate was reduced markedly. Three large sliding events also influenced the Middle and Late Pleistocene fan growth.  相似文献   

11.
Growth patterns of the last ice age coral terraces at Huon Peninsula   总被引:1,自引:0,他引:1  
At Huon Peninsula, Papua New Guinea, prolific coral growth during the last-glacial was episodic and in response to a series of sea-level rises. The resultant step-like coral terraces are currently situated from 20 m up to 140 m above sea-level due to continuous tectonic uplift of the Peninsula. The sea-level rises were in response to periodic partial disintegration of Northern Hemisphere ice sheets associated with severe climate swings and occurred within decadal timescales. The relatively rapid 15 m to 35 m rise in sea-levels exposed new head-room for corals to colonize. The resulting terrace structures contain individual corals that do not appear to have grown sequentially in time and with elevation. Additionally, following the peak, sea level fell relatively slowly over several thousand years and corals grew and filled in the flanks of the terrace such that younger corals now occupy lower elevations. We have labeled these structures “pack-up” reefs. This is in contrast to coral terraces formed during major sea-level rises from glacial to interglacial or glacial to interstadial transitions where the rate of sea level rise is commensurate with coral growth rates and corals can keep up with sea-level rise by growing on top of each other in a time orderly sequence. Deriving sea-level information from pack-up terraces is difficult and is likely to be ambiguous. The periodic fluctuations in climate were associated with atmospheric radiocarbon swings that seem to have varied smoothly with time. The same corals that show a scatter in stratigraphic temporal ordering appear regularly distributed in time and with radiocarbon content attesting to the veracity of the age measurements and at the same time confirm the disordered distribution of corals in “pack-up” type reefs.  相似文献   

12.
The change in the global mean atmospheric pressure between glacial and interglacial periods is evaluated at sea level. This change originates in a modification of topography and in a possible variation in the atmospheric mass. In this calculation the atmosphere is at hydrostatic equilibrium, and the parameters describing the glacial period are varied in a plausible range. The result, with constant atmospheric mass, is a mean sea level pressure decrease of 9–15 hPa linked with the deglaciation. The corresponding pressure change at the reference level corresponding to the present day sea level does not exceed one hPa. When considering only the change in the atmospheric mass, an increase which does not exceed 2 hPa is found, linked with the deglaciation.  相似文献   

13.
The paper is concerned with identifying changes in the time series of water and sediment discharge of the Zhujiang (Pearl River), China. The gradual trend test (Mann–Kendall test), and abrupt change test (Pettitt test), have been employed on annual water discharge and sediment load series (from the 1950s–2004) at nine stations in the main channels and main tributaries of the Zhujiang. Both the Mann–Kendall and Pettitt tests indicate that water discharge at all stations in the Zhujiang Basin showed no significant trend or abrupt shift. Annual water discharges are mainly influenced by precipitation variability, while the construction of reservoirs/dams in the Zhujiang Basin had little influence on water discharge. Sediment load, however, showed significant decreasing trends at some stations in the main channel of the Xijiang and Dongjiang. More stations have seen significantly decreasing trends since the 1990s. The decreasing sediment load in the Zhujiang reflects the impacts of reservoir construction in the basin. In contrast, the Liujiang, the second largest tributary of the Xijiang, has experienced a significant upward shift of sediment load around 1991 likely caused by exacerbated rock desertification in the karst regions. The annual sediment load from the Zhujiang (excluding the delta region) to the estuary has declined from 80.4 × 106 t averaged for the period 1957–1995 to 54.0 × 106 t for the period 1996–2004. More specifically, the sediment load declined steadily since the early 1990s so that in 2004 it was about one-third of the mean level of pre-90s. Water discharge and sediment load of the Zhujiang would be more affected by human activities in the future with the further reservoir developments, especially the completion of the Datengxia hydroelectric project, and an intensification of the afforestation policy in the drainage basin.  相似文献   

14.
As part of a multiproxy investigation, phytoliths were extracted from sediments in a 197-m core in Hawkes Bay, New Zealand. They provide a continuous vegetation–climate record spanning the time period from at least the last interglacial (marine oxygen isotope stage 5) to the present. The phytolith record demonstrates that grass/cyperaceae grew during warmer periods and woody taxa dominated the site during colder periods.During the present interglacial, the Poukawa basin is occupied by a shallow lake surrounded by an extensive fen. During colder–drier periods, the floor of the basin dried out and woody taxa occupied the basin floor. This contrasts with the pollen record, which demonstrates a converse pattern. The apparent discrepancy reflects the purely local provenance of the phytolith assemblage.Significant changes in phytolith assemblages occur at the same depth as major tephras, indicating a sharp decline in trees and shrubs and a surge in grass and cyperaceae. A series of successional changes follow each major tephra fall. Initially, the woody taxa are killed off and replaced by grass and cyperaceae that rapidly colonise the fresh surface. Trees and or shrubs succeed the grass and cyperaceae after a significant lag.  相似文献   

15.
There is a continuous record of planktonic foraminifers for oxygen isotope stages 50 to 26 (ca. 1.5–1.0 Ma) in the early Pleistocene Omma Formation near Kanazawa City, Central Japan, on the Sea of Japan coast. The warm-water species Globigerinoides ruber entered the Sea of Japan with the Tsushima Current during all interglacial periods and went locally extinct in the succeeding glacial periods. This implies that the marine climate of the Sea of Japan varied predominantly with the 41,000-year period of Earth's orbital obliquity. However, the relative abundances of G. ruber in marine isotope stages 47, 43 and 31 are significantly higher than those in other interglacial stages. These stages correspond to periods when eccentricity-modulated precession extremes were aligned with obliquity maxima. The Tsushima Current is a branch of the warm Kuroshio Current which is the strong northwestern component of the subtropical North Pacific Ocean gyre. Our data imply that the early Pleistocene climate in the northwestern Pacific was influenced not only by obliquity cycles but also by eccentricity cycles. This study also supports the climate model regarding eccentricity's role in the origin of low-frequency climate changes before the late Pleistocene ice ages.  相似文献   

16.
Oxygen and carbon isotopic gradients in surface waters were reconstructed for the past 450 kyr by analysis of the planktic foraminifer Neogloboquadrina pachyderma in cores located at approximately 43°, 47°, and 54°S across the Polar Frontal Zone in the South Atlantic sector of the Southern Ocean. Comparison of the oxygen isotopic records for peak interglacial conditions during the past 450 kyr reveals that Marine Isotope Stage (MIS) 11 was not substantially warmer than other interglacials at high southern latitudes, although the period of warmth lasted longer. The carbonate and carbon isotope chemistry of surface and deep water represent the truly distinctive aspects of Stage 11 in the Southern Ocean. Peak carbonate production occurred at high southern latitudes during MIS 11, resulting in light-colored, high-carbonate sediments deposited throughout the Southern Ocean above the lysocline. Carbon isotopic values of benthic foraminifera in cores bathed by Circumpolar Deep Water (CPDW) were highest during MIS11, suggesting strong input of North Atlantic Deep Water (NADW) to the Southern Ocean. Planktic δ13C values at high southern latitudes were also highest during MIS 11, which may reflect upwelling of CPDW with a greater contribution of NADW, lower whole-ocean nutrient inventories, higher gas exchange rates, and/or lowered alkalinity of Antarctic surface waters (resulting from carbonate precipitation south of the Polar Front).  相似文献   

17.
In this study, more than 13 yr of merged altimetry sea level anomalies (SLA) data were used to analyze the trends of sea level variations in the South China Sea (SCS). The result shows that the mean sea level over the SCS has a rise rate of 11.3 mm/yr during 1993–2000 and a fall rate of 11.8 mm/yr during 2001–2005. The geographical distribution of the sea level variations over the SCS is asymmetric with a pronounced variation existing in the deep water. The trends of thermosteric sea level variations were also examined using Ishii data and MITgcm assimilation data. The result indicates that the thermal change of the upper layer of the SCS has a significant contribution to the sea level variations. Heat budget analysis suggests that heat advection may be a key factor influencing the thermal change. Apart from thermal contribution, the effect of water exchange on the sea level variations was also studied.  相似文献   

18.
A sediment core from the high latitude of the Northern Atlantic (Nordic seas) was intensively studied by means of biogeochemical, sedimentological, and micropaleontological methods. The proxy records of interglacial marine oxygen isotope stage (MIS) 11 are directly compared with records from the Holocene (MIS 1), revealing that many features of MIS 11 are rather atypical for an interglaciation at these latitudes.Full-interglacial conditions without deposition of ice-rafted debris existed in MIS 11 for about 10 kyr (∼398–408 ka). This time is marked by the lightest d18O values in benthic foraminifera, indicating a small global ice volume, and by the appearance of subpolar planktic foraminifera, indicating a northward advection of Atlantic surface water. A comparison with MIS 1, using the same proxies, implies that surface temperatures were lower and global ice volume was larger during MIS 11. A comparative study of the ratio between planktic and benthic foraminifera also reveals strong differences among the two intervals. These data imply that the coupling between surface and bottom bioproductivity, i.e., the vertical transportation of the amount of fresh organic matter, was different in MIS 11. This is corroborated by a benthic fauna in MIS 11, which contains no epifaunally-living species. Despite comparable values in carbonate content (%), reflectance analyses of the total sediment (greylevel) show much higher values for MIS 11 than for MIS 1. These high values are attributed to increased corrosion of foraminiferal tests, directly affecting the sediment greylevel. The reason for this enhanced carbonate corrosion in MIS 11 remains speculative, but may be linked to the global carbon cycle.  相似文献   

19.
The relationship between the Ricker Hills Tillite (RHT), which represents the northernmost outcrop of lithified continental glacial deposits in Victoria Land, is discussed with respect to the glacial landscape assemblage of the Ricker Hills, a nunatak at the internal border of the Transantarctic Mountains. A warm-based ice sheet deposited the tillite and induced syn- to post-depositional glacial deformation under wet conditions both of the tillite and of the bedrock. The thickness of the ice sheet on the nunatak is estimated to have been 600 m, at most. The area had been deeply eroded before deposition of the RHT as documented by the low elevation of tillite outcrops located in overdeepened depressions of the nunatak. Micropaleontological analysis evidences only the presence of Permian to Jurassic palynomorphs. X-ray diffraction and SEM–EDS analyses of clay minerals in the RHT indicate continental chemical weathering under wet conditions after the RHT deposition. As documented by clay mineral assemblage variation in CRP drillholes, the progressive cooling of the Antarctic continent allowed chemical weathering in “warm” conditions until the Late Oligocene period in southern Victoria Land, leading to a chronological constrain for RHT deposition. Conservatively estimating the sea level to have been between the tillite outcrops and the erosional trimline limiting horns in the Ricker Hills, at the time of RHT deposition, we suggest that the maximum uplift of the area would not have exceeded 900–1500 m since at least Late Oligocene.  相似文献   

20.
A rock magnetic study was performed on sediment cores from six locations in Lake Baikal. For a comprehensive approach of the processes influencing the rock magnetic signal, additional data are presented such as total organic carbon (TOC), total sulphur (TS), opal, water content and relative variations in iron and titanium measured on selected intervals. In glacial sediments, the magnetic signal is dominated by magnetite, which is considered to be of detrital origin. This predominance of magnetite is interrupted by distinct horizons of authigenic greigite, probably confined to reductive microenvironments. In interglacial stages, besides dilution by biogenic silica and a decreasing detrital input, the weakness of the rock magnetic signal is also due to a reductive dissolution of magnetic particles. The magnetic assemblage is strongly linked to the redox history of interglacial sediment. In the oxidised bottom sediments of Lake Baikal, a biogenic magnetite is observed [Peck, J.A., King, J.W., 1996. Magnetofossils in the sediments of lake Baikal, Siberia. Earth Planet. Sci. Lett. 140 (1–4), 159–172]. After burial under the redox front, the magnetite is preferentially dissolved, and detrital hematite remains dominant when the sedimentation rate is low and when the residence time of the magnetite close to the redox boundary is long. During these low sedimentation rate conditions, the redox front is preserved [Granina, L., Müller, B. and Wehrli, B., 2004. Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal. Chem. Geol. 205 (1-2), 55-72]. At constant sedimentation rate and fast burial, the magnetite is preserved or transformed into greigite when sulphate-reducing conditions are reached in the sediment. In interglacial sediments, the magnetic assemblages depict changes in the sedimentation rate, which are traced using the ratio of magnetite over hematite (S-ratio). At the beginning of interglacials, the sedimentation rate is constant with an assemblage magnetite+greigite (high S-ratio), and at the end of some interglacials, the sedimentation rate decreases with a predominance of hematite (low S-ratio).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号