首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究基于2013年夏季“大洋一号”船大洋第30航次西南印度洋海区科学考察走航线路,对西南印度洋21°S到38°S海域表层浮游动物群落进行连续采样调查,研究了该海域表层中型浮游动物群落结构和物种多样性及空间分布格局。结果显示,研究海域表层中型浮游动物群落组成包括:桡足类、磷虾类、端足类、十足类、介形类、毛颚动物、被囊类、异足类、翼足类、刺胞动物及多毛类等11大类,总计50属69种;优势类群为桡足类(69%)和磷虾类(27%)。多样性指数随经度和纬度的变化特征:H′、D多样性指数及J均匀度指数随纬度的升高均呈下降趋势;在经度梯度上,几种多样性指数也大致呈现出东高西低的趋势。聚类分析表明,研究区可大致以36°S附近为界划分为南部和北部两大类群,分别以北部桡足类(平均粒径小),南部磷虾类(平均粒径大)Euphausia属为优势群落。群落相似性结果反映出,南部类群与南极克罗克海峡和南极长城湾水域群落,北部类群与西北印度洋海域群落的联通性不高。  相似文献   

2.
Mesopelagic zooplankton may meet their nutritional and metabolic requirements in a number of ways including consumption of sinking particles, carnivory, and vertical migration. How these feeding modes change with depth or location, however, is poorly known. We analyzed fatty acid (FA) profiles to characterize zooplankton diet and large particle (>51 μm) composition in the mesopelagic zone (base of euphotic zone ?1000 m) at two contrasting time-series sites in the subarctic (station K2) and subtropical (station ALOHA) Pacific Ocean. Total FA concentration was 15.5 times higher in zooplankton tissue at K2, largely due to FA storage by seasonal vertical migrators such as Neocalanus and Eucalanus. FA biomarkers specific to herbivory implied a higher plant-derived food source at mesotrophic K2 than at oligotrophic ALOHA. Zooplankton FA biomarkers specific to dinoflagellates and diatoms indicated that diatoms, and to a lesser extent, dinoflagellates were important food sources at K2. At ALOHA, dinoflagellate FAs were more prominent. Bacteria-specific FA biomarkers in zooplankton tissue were used as an indicator of particle feeding, and peaks were recorded at depths where known particle feeders were present at ALOHA (e.g., ostracods at 100–300 m). In contrast, depth profiles of bacterial FA were relatively constant with depth at K2. Diatom, dinoflagellate, and bacterial biomarkers were found in similar proportions in both zooplankton and particles with depth at both locations, providing additional evidence that mesopelagic zooplankton consume sinking particles. Carnivory indices were higher and increased significantly with depth at ALOHA, and exhibited distinct peaks at K2, representing an increase in dependence on other zooplankton for food in deep waters. Our results indicate that feeding ecology changes with depth as well as by location. These changes in zooplankton feeding ecology from the surface through the mesopelagic zone, and between contrasting environments, have important consequences for the quality and quantity of organic material available to deeper pelagic and benthic food webs, and for organic matter sequestration.  相似文献   

3.
During the 1990s many studies on zooplankton in the Japan Sea have been carried out. In this review, I have synthesized the study of horizontal distribution, seasonal and annual variations of zooplankton biomass, and ecological characteristics of major component species in the southern Japan Sea, which area is influenced by the warm Tsushima Current. The zooplankton biomass (annual mean) in the southern Japan Sea was lower than in the subarctic Pacific, including the northern Japan Sea, and similar to biomass levels in Kuroshio waters. Temporal variations in zooplankton biomass showed both seasonal and year-to-year components. Seasonal biomass increases to a maximum in spring with a weak secondary peak in autumn. As for long-term changes, 3–6 year cycles were identified, with the dynamics of the surface warm Tsushima Current and the subsurface cold water playing important roles in determining the yearly zooplankton community structure and biomass. Cold water species in the southern Japan Sea had extensive diel vertical migrations whose range is restricted in summer by the development of a thermocline. Among these species, the herbivores Euphausia pacifica and Metridia pacifica encounter a lower food supply, resulting in lower growth rates. The vertical dispersal of epipelagic carnivorous zooplankton such as Sagitta elegans and Themisto japonica to the deep-sea is probably facilitated by reduced interspecific competition. Their interaction with Japan Sea Proper Water, characterized by near-zero temperatures in the meso- and bathypelagic zones suppresses growth rates of the mesopelagic zooplankton. The lack of micronektonic predators in the mesopelagic zone may allow the persistence of slow growing populations.  相似文献   

4.
Vertical carbon fluxes between the surface and 2500 m depth were estimated from in situ profiles of particle size distributions and abundances me/asured off Cape Blanc (Mauritania) related to deep ocean sediment traps. Vertical mass fluxes off Cape Blanc were significantly higher than recent global estimates in the open ocean. The aggregates off Cape Blanc contained high amounts of ballast material due to the presence of coccoliths and fine-grained dust from the Sahara desert, leading to a dominance of small and fast-settling aggregates. The largest changes in vertical fluxes were observed in the surface waters (<250 m), and, thus, showing this site to be the most important zone for aggregate formation and degradation. The degradation length scale (L), i.e. the fractional degradation of aggregates per meter settled, was estimated from vertical fluxes derived from the particle size distribution through the water column. This was compared with fractional remineralization rate of aggregates per meter settled derived from direct ship-board measurements of sinking velocity and small-scale O2 fluxes to aggregates measured by micro-sensors. Microbial respiration by attached bacteria alone could not explain the degradation of organic matter in the upper ocean. Instead, flux feeding from zooplankton organisms was indicated as the dominant degradation process of aggregated carbon in the surface ocean. Below the surface ocean, microbes became more important for the degradation as zooplankton was rare at these depths.  相似文献   

5.
Spreading of warm water from the Kuroshio Extension into the Perturbed Area   总被引:1,自引:0,他引:1  
The path of the Kuroshio Extension describes two stationary meanders with crests at approximately 144°E and 150°E. The short-term meridional fluctuations of the warm water spreading northward from the first crest at the surface and its vertical structure were analyzed by using 5-day-mean surface temperature maps published by JAFIC, montly 100-m-depth temperature maps edited by the JMA, and CTD data obtained by the R.Vs.Kofu-Maru, Hakuho-Maru andTansei-Maru cruises from 1990 to 1994. A Northern Boundary of the Spreak Kuroshio Water (NBSKW) and a Southern Boundary of the Spread Kuroshio Water (SBSKW) at the surface were defined as the northern and southern boundary of the pronounced meriodional temperature gradients, respectively. The vertical structure of the Spread Kuroshio Water was analyzed in terms of its T-S properties. The location of the NBSKW at the surface corresponds well with the northern boundary of the subsurface high salinity water that represents the Spread Kuroshio Water. The short-term meridional fluctuations of the northern and southern boundary of the Spread Kuroshio Water at the surface were studied through the spectral analysis of the maximum latitude of the two lines defined. We obtained the following results: (1) the meridional fluctuations of the NBSKW and SBSKW at the first creast have major periods between 16 and 38 days; (2) the 50 day running mean of the SBSKW at the first crest, for the purpòse of this study, can be generally used as indicative of the location of the Kuroshio axis; and (3) the northward extent of the Spread Kuroshio Water and the velocity of the meridional shift suggest seasonal variability that could be related with their vertical structure.  相似文献   

6.
The present study investigates the way an ocean filled with homogeneous warm water is cooled by prescribing cold water formation inside the ocean in the southern part of the southern hemisphere using multi-level numerical models. Cooling of the whole ocean starts with introduction of the cold water from the formation region into the deepest part of the ocean in the equatorial and eastern boundary regions by Kelvin wave-type density currents. The cold water along the eastern boundary extends westward as a Rossby wave-type density current setting up an interior poleward flow, and hits the western boundary to form a northward flowing boundary current in the northern hemisphere. Only then does the western boundary current cross the equator. Cooling of the rest of the ocean basin is accomplished by upwellings in the interior and also along the coasts. During this introduction the cold water is mixed with surrounding warm waters, and the thermocline, rather than forming just below the top level where heating is imposed, tends to spread down to deeper depths. Consequently the circulation at a steady state has a significant vertical structure such that the maximum upwelling in the interior occurs in the mid-depths, and only the deeper part of the deep ocean yields the Stommel and Arons circulation pattern. In the equatorial region higher vertical mode motions dominate, and a set of alternating zonal jets forms along the equator.  相似文献   

7.
Spatial and temporal distribution patterns of zooplankton are highly variable in the Northern Benguela Upwelling System. We studied the distribution of zooplankton (size class ≥ 0.33 mm) and used field data from four cruises that took place between March 2008 and February 2011, as well as simulation results of a regional ecosystem model. Remotely sensed sea surface temperatures (SST) and surface chlorophyll concentrations were analysed to investigate environmental influences on zooplankton biomass. The Intense Benguela Upwelling Index showed a distinct seasonal signal throughout the years and the highest upwelling peaks in August/September. Even though surface chlorophyll concentrations were very variable throughout the year, the highest concentrations were always detected in September, following the upwelling of nutrient‐rich water. In field catches, zooplankton biomass concentration in the upper 200 m was highest above the outer shelf and shelf‐break in December 2010 and February 2011, i.e. 6 months after the upwelling peaks. In contrast, zooplankton biomass simulated by the model in the surface water was highest in September. In March/April, biomass maxima were typically measured in the field at intermediate water depths, but the vertical distribution was also affected by extensive oxygen minimum zones. The ecosystem model reproduced this vertical pattern. Although general trends were similar, simulation data of zooplankton standing stocks overestimated the field data by a factor of 3. In upwelling systems, food webs are generally considered to be short and dominated by large cells. However, our field data indicate more small‐sized zooplankton organisms above the shelf than offshore.  相似文献   

8.
Four surveys of airborne expendable bathythermograph with horizontal spacing of about 35 km and vertical spacing of 1 m extending from the surface down to 400 m deep are used to analyze thermal finestructures and their seasonality in frontal zones of the southern Yellow Sea and the East China Sea. Finestructure characteristics are different not only among fronts but also along the same front, implying different mixing mechanisms. Summer thermocline intrusions with thickness from few to 40 meters, generated by the vertically-sheared advection, are identified along the southern tongue of the Cheju-Yangtze Front (especially south of Cheju Island). The finestructures south of the Yangtze Bank (i.e. the western tip of the southern tongue) produced by strong along-frontal currents are not as rich as elsewhere in the southern tongue. The Cheju-Tsushima Front presents mixed finestructures due to confluent currents from various origins. The irregular-staircase finestructures in the Kuroshio region (below the seasonal thermocline), driven by double-diffusive mixing, show seasonal invariance and vertical/horizontal coherence. The strength of mixing related to finestructure is weaker in the Kuroshio region than in the Cheju-Tsushima Front or south of Cheju Island. The profiles in the Tsushima Warm Current branching area show large (∼50 m thick), irregular-staircase structures at the upper 230 m depth, which coincides roughly with the lower boundary of the maximum salinity layer. The finestructure at depths deeper 230 m is similar to that in the Kuroshio region. The possible mechanisms for generating the finestructures are also discussed.  相似文献   

9.
Pelagic-Benthic Coupling in the Nordic Seas: The Role of Episodic Events   总被引:3,自引:0,他引:3  
Abstract. The consequences of the following episodic phenomena for the pelagic-benthic coupling in the Nordic Seas are illustrated: (1) Advection of water masses between fjords and shelf environments, (2) freshwater run-off and vertical stability, (3) dynamics of the marginal ice zone in the central and northern Barents Sea and the Polar Ocean, (4) drift patterns of sinking particles along the North Norwegian coast, (5) advection of zooplankton into subarctic fjords and the southern Barents Sea, zooplankton overwintering and composition, and (6) transport of organic particulate matter from the Barents Sea shelf. It is shown that physical processes in the north-eastern North Atlantic and Polar Ocean can be strongly variable on time scales of days to decades. They have a significant influence on the dynamics of pelagic-benthic coupling. The physical oceanography influences the vertical and horizontal particle flux not only directly (mixing, advection, up- and down-welling), but also indirectly through its impact on the biota (for example radiation, wind, ice cover, freshwater run-off and overwintering, advection and retention of zooplankton). Understanding pelagic-benthic coupling at high latitudes depends even more on a best possible understanding of the physical oceanography and the time scales involved than elsewhere.  相似文献   

10.
Structural, mass-wasting and sedimentation processes along an active dextral shear zone beneath the Gulf of Saros and the NE Aegean Sea were investigated on the basis of new high-resolution swath bathymetric data and multi-channel seismics. A long history of dextral shearing operating since the Pliocene culminated in the formation of a NE-SW-trending, ca. 800-m-deep basin (the so-called inner basin) in this region, which is bordered by a broad shelf along its northern and eastern sides and a narrow shelf at the southern side. The western extension of the North Anatolian Fault Zone (the Ganos Fault) cuts the eastern shelf along a narrow deformation zone, and ends sharply at the toe of the slope, where the strain is taken up by two NE-SW-oriented fault zones. These two fault zones cut the basin floor along its central axis and generate a new, Riedel-type pull-apart basin (the so-called inner depression). According to the bathymetric and seismic data, these basin boundary fault zones are very recent features. The northern boundary of the inner depression is a through-going fault comprising several NE-SW- and E-W-oriented, overlapping fault segments. The southern boundary fault zone, on the other hand, consists of spectacular en-echelon fault systems aligned in NE–SW and WNW–ESE directions. These en-echelon faults accommodate both dextral and vertical motions, thereby generating block rotations along their horizontal axis. As the basin margins retreat, the basin widens continuously by mass-wasting of the slopes of the inner basin. The mass-wasting, triggered by active tectonics, occurs by intense landsliding and channel erosion. The eroded material is transported into the deep basin, where it is deposited in a series of deep-sea fans and slumps. The high sedimentation rate is reflected in an over 1,500-m-thick basin fill which has accumulated in Pliocene–Quaternary times.  相似文献   

11.
Nearly 36,000 vertical temperature profiles collected by 15 king penguins are used to map oceanographic fronts south of New Zealand. There is good correspondence between Antarctic Circumpolar Current (ACC) front locations derived from temperatures sampled in the upper 150 m along the penguin tracks and front positions inferred using maps of sea surface height (SSH). Mesoscale features detected in the SSH maps from this eddy-rich region are also reproduced in the individual temperature sections based on dive data. The foraging strategy of Macquarie Island king penguins appears to be influenced strongly by oceanographic structure: almost all the penguin dives are confined to the region close to and between the northern and southern branches of the Polar Front. Surface chlorophyll distributions also reflect the influence of the ACC fronts, with the northern branch of the Polar Front marking a boundary between low surface chlorophyll to the north and elevated values to the south.  相似文献   

12.
Surface and bottom water samples were collected from 39 widely spaced stations in Lake Rotorua in February 1967 and from 12 stations in Lake Rotoiti in March 1967. In Lake Rotorua, data obtained from these samples showed that small horizontal differences existed between the southern and northern parts of the lake probably related to the higher inflow of plant nutrients at the southern end and to the prevailing southerly wind concentrating phytoplankton populations at the northern end. Lake Rotoiti, which differed from Lake Rotorua in being thermally stratified, showed no important horizontal differences, Vigorous mixing in the strata probably being accomplished by deep seiches except in the shallow western basin of the lake, where the inflow from Lake Rotorua occurs. Serial vertical hauls for a zooplankton survey of Lake Rotoiti were taken from three stations in March 1967. The distribution of zooplankton was complex because diurnal vertical migrations of the animals were combined with horizontal movement of the water layers.  相似文献   

13.
Export of particles was studied at the equator during an El Nin˜o warm event (October 1994) as part of the French ORSTOM/FLUPAC program. Particulate mass, carbon (organic and inorganic) (C), nitrogen (N), and phosphorus (P) export fluxes were measured at the equator in the western and central Pacific during two 6–7 day-long time-series stations located in the warm pool (TS-I at 0°, 167°E) and in the equatorial HNLC situation (TS-II at 0°, 150°W), using drifting sediment traps deployed for 48 h at four depths (between, approximately, 100 and 300 m).The particulate organic carbon (POC) fluxes at the base of the euphotic zone (0.1 % light level), were approximately four times lower at TS-I than at TS-11 (4.1 vs. 17.0 mmol C m-2 day-1). Conversely, fluxes measured at 300 m were similar at both sites (3.6vs. 3.7 mmol C m−2 day−1 at TS-I and TS-11, respectively). This change in export fluxes was in good agreement with food-web dynamics in the euphotic zone characterized by an increase in plankton biomasses and metabolic rates and a shift towards larger size from TS-1 to TS-II. The POC flux profiles indicated high remineralization (up to 78%) of the exported particles at TS-II, between 100 and 200 m in the Equatorial Undercurrent. According to zooplankton ingestion estimates from 100 – 300 m, 60% of this POC loss could be accounted for by zooplankton grazing. At TS-I, no marked increase of flux with depth was observed, and we assume that loss of particles was compensated by in-situ particle production by zooplankton. Fluxes of particulate nitrogen and phosphorus followed the same general patterns as the POC fluxes. The elemental and pigment composition of the exported particles was not very different between the two stations. In particular, the POCYN flux molar ratio at the base of the euphotic zone was low, 6.9 and 6.2 at TS-1 and TS-II, respectively.For particulate inorganic carbon (mainly carbonate) flux, values at the base of the euphotic zone averaged 0.9 mmol C m-2 day-1 at TS-I and 2.3 mmol C m-2 day-1 at TS-11 (corresponding to a 2.6-fold increase) and showed low depth changes at both stations.POC export flux (including active flux associated with the interzonal migrants) at the 0.1 % light level depth represented only 8% of primary production (1°C uptake) measured at TS-1 and 19% at TS-II. For the time and space scales considered in the present study, new primary production, as measured by the 15N method, was in good agreement with the total export flux in the HNLC situation, thus leading to negligible dissolved organic carbon (DOC) or nitrogen (DON) losses from the photic zone. Conversely, export flux was found to be only 50% (C units) and 60% (N) of new production in the oligotrophic system, either because of an overestimation by the 15N method or of a significant export of DOC and DON.Comparison with other oceanic regions shows that export flux in the warm pool was within the same range as in the central gyres. On the other hand, comparison with EgPac data in the central Pacific suggests that there is no straightforward relation between the magnitude of the export and surface nitrate concentrations.  相似文献   

14.
Phytoplankton communities, production rates and chlorophyll levels, together with zooplankton communities and biomass, were studied in relation to the hydrological properties in the euphotic zone (upper 100 m) in the Cretan Sea and the Straits of the Cretan Arc. The data were collected during four seasonal cruises undertaken from March 1994 to January 1995.The area studied is characterised by low nutrient concentrations, low 14C fixation rates, and impoverished phytoplankton and zooplankton standing stocks. Seasonal fluctuations in phytoplankton densities, chlorophyll standing stock and phytoplankton production are significant; maxima occur in spring and winter and minima in summer and autumn. Zooplankton also shows a clear seasonal pattern, with highest abundances occurring in autumn–winter, and smallest populations in spring–summer. During summer and early autumn, the phytoplankton distribution is determined by the vertical structure of the water column.Concentrations of all nutrients are very low in the surface waters, but increase at the deep chlorophyll maximum (DCM) layer, which ranges in depth from about 75–100 m. Chlorophyll-a concentrations in the DCM vary from 0.22–0.49 mg m−3, whilst the surface values range from 0.03–0.06 mg m−3. Maxima of phytoplankton, in terms of cell populations, are also encountered at average depths of 50–75 m, and do not always coincide with chlorophyll maxima. Primary production peaks usually occur within the upper layers of the euphotic zone.There is a seasonal succession of phytoplankton and zooplankton species. Diatoms and ‘others’ (comprising mainly cryptophytes and rhodophytes) dominate in winter and spring and are replaced by dinoflagellates in summer and coccolithophores in autumn. Copepods always dominate the mesozooplankton assemblages, contributing approximately 70% of total mesozooplankton abundance, and chaetognaths are the second most abundant group.  相似文献   

15.
Geomorphological features (derived from 16,000 lkm of echo‐sounding and bathymetric data) and deep‐seated tectonic structures of the continental margin off NW India are presented. The shelf break over the entire region occurs between 80 to 154 m water depth, and adjacent to Saurashtra and Bombay High the depth and orientation of the shelf edge show marked variations. The boundary of the slope is shallower in the northern portion (about 1450 m in the vicinity of the Indus) than in the southern region (2900 m off Bombay).

The steep slope off the Gulf of Kachchh has relatively smooth physiography due to higher input of fluvial sediment and burial of structures. The gentler slope off Saurashtra and the Bombay High area has numerous complex features, the most prominent among them being benches at depths of 180–230 m (width 2–10 km) and 650–780 m and a series of bathymetric highs and lows. Slope breaks are also observed between 400 and 600 m off Bombay and between 560 and 960 m off Saurashtra. These features are surface manifestations of the anticlinal features extending along the shelf in this region. Unevenness (order of 100–300 m) due to slumping is also observed at the base of the slope.

Based on the correlation between tectonic structures of this area and these subphysiographic features, extension of the Saurashtra Anticline onto the slope, a new strike slip fault (the southern boundary fault of Narmada graben) and an along‐shelf anticlinal structure off Saurashtra are delineated.  相似文献   

16.
应用WOA13季节平均数据和BELLHOP模型,在季节、声源频率等因素确定的情况下,分10 m表面声源和250 m水下声源,分析北大西洋冬季东、西部海区的声波导情况。在给出不同海区位置的声速场和声波导具体信息的基础上,研究其规律:最小声速值和声道轴深度由直布罗陀海峡向外递减扩散,表层声速值和声速梯度由南向北递减,声跃层存在于低纬度海区,混合层在低纬度通常在100 m以内,在高纬度增加至100 m以上。10 m深度表面声源的汇聚区反转深度随纬度增加逐渐减少,西部海区深于东部海区;西部海区的汇聚区跨度大于东部海区,东西部跨度最大值出现在25°N和15°N,传播损失基本一致。250 m水下声源的汇聚区反转深度浅于10 m深度表面声源时,同样是西部海区大于东部海区,汇聚区跨度呈低-高-低规律,东西部跨度最大值出现在35°N和25°N;东部海区25°N以南、西部海区15°N以南,不同接收深度上的传播损失差异较大,以北差异较小。同时简要叙述了声影区对目标探测的影响。  相似文献   

17.
A relation between migration of the Kuroshio front and fluctuation of distribution of volume transport in the Tokara Strait was described, using sea level records at five tide gauge stations around the strait and data which were composed of sea surface temperature, XBT casts, sea surface salinity and velocities at 20 m, 75 m and 150 m depths taken en route a ferryboat. The Kuroshio front extends to about 150 m depth. The sea surface salinity and the horizontal velocities abruptly change at the front. There is a good correlation in a period range from half a month to two months between the migration of the front, which is not only at the surface but also in the subsurface, and the sea level fluctuation at Nakano-shima. A northward migration of the front with a period range from 17 to 50 days decreases the transport in the southern strait between Naze and Nakano-shima but increases in the northern strait between Nakano-shima and Sata-misaki. The northward migration intensifies inflow into Kagoshima Bay and the Ohsumi Branch Current. Correlation between the transport in the northern strait and the Ohsumi Branch Current is significant in the period range from 30 to 50 days. In this significant period range, the former leads the latter by about 3 days.  相似文献   

18.
The composition, distribution, abundance, biomass and size structure of mesozooplankton, collected using Bongo nets in the top 300 m layer along a transect between the Antarctic continent and Cape Town, were investigated during the second South African Antarctic Marine Ecosystem Study (SAAMES II) in Jan.–Feb. 1993. Small (<10 mm) and medium (20–50 mm) size groups of zooplankton consistently dominated across the Southern Ocean. The highest zooplankton densities were recorded at the Antarctic Polar Front (APF) and at the Subtropical Convergence (STC). Minor peaks in zooplankton densities were observed in the southern vicinity of the Subantarctic Front (SAF) and APF. Elevated zooplankton stocks were also found within the Marginal Ice Zone (MIZ) and the Polar Frontal Zone. The lowest densities were recorded in the permanently open zone (MIZ–APF) and in the Subantarctic zone (SAF–STC). Copepods were generally important along the entire transect and formed the bulk of zooplankton stock within the MIZ and in the Polar Frontal Zone (APF–SAF), accounting for at least 40–95% of total abundance and biomass. Euphausiids were also a prominent group along the transect. Their contribution was highest (up to 80% of total biomass) between the MIZ and the APF, mainly because of the occurrence of swarms of the Antarctic krill Euphausia superba. Tunicates, Pyrosoma sp. and Salpa fusiformis, were found in great numbers only in the region of the STC and further north, while Salpa thompsoni was abundant at the southern boundary of the APF. Chaetognaths dominated samples numerically and by mass in the Subantarctic Zone. Results obtained from cluster and ordination analyses show that zooplankton community structure was well correlated with the position of various biogeographical zones separated by the main frontal systems of the Southern Ocean. Two major groupings of stations, separated by the SAF, were identified in these analyses. This front separated the Antarctic and the subantarctic/subtropical assemblages, confirming its important role as a biogeographical boundary.  相似文献   

19.
In this study an analytical tide model of uniform width with three sub-regions is presented. The three-subregions model takes into account step-like variations in depths in the direction of the channel as a way to examine the M2 tide of the East China Sea (ECS) as well as the Yellow Sea (YS). A modified Proudman radiation condition has been applied at the northern open head, while the sea surface elevation is specified at the southern open boundary. It is seen that, due to the presence of an abrupt change in depth, co-amplitude lines of the M2 tide are splitted to the east and west near the end of the ECS shelf region. Variations in depths, bottom friction and the open head boundary conditions all contribute to the determination of formation of amphidromes as well as overall patterns of M2 tidal distribution. It is seen that increasing water depth and bottom friction in the ECS shelf results in the westward shift of the southern amphidrome. There is however no hint at all of the well-known degenerated tidal pattern being formed. It is inferred that a lateral variation of water depth has to be somehow incorporated to represent the tidal patterns in ECS in a realistic manner. Regarding the radiation factor introduced by Fang et al. (1991), use of a value larger than one, possibly with a phase shift, appears to be a proper way of incorporating the reflected waves from the northern Yellow Sea (NYS). Key words - analytical model, M2 tide, Kelvin wave, Yellow Sea, East China Sea  相似文献   

20.
Zooplankton in the coastal upwelling region off northern Chile may play a significant biogeochemical role by promoting carbon flux into the subsurface OMZ (oxygen minimum zone). This work identifies the dominant zooplankton species inhabiting the area influenced by the OMZ in March 2000 off Iquique (20°S, northern Chile). Abundance and vertical distribution studies revealed 17 copepod and 9 euphausiid species distributed between the surface and 600 m at four stations sampled both by day and by night. Some abundant species remained in the well-oxygenated upper layer (30 m), with no evidence of diel vertical migration, apparently restricted by a shallow (40–60 m) oxycline. Other species, however, were found closely associated with the OMZ. The large-sized copepod Eucalanus inermis was found below the oxycline and performed diel vertical migrations into the OMZ, whereas the very abundant Euphausia mucronata performed extensive diel vertical migrations between the surface waters and the core of the OMZ (200 m), even crossing it. A complete assessment of copepods and euphausiids revealed that the whole sampled water column (0–600 m) is occupied by distinct species having well-defined habitats, some of them within the OMZ. Ontogenetic migrations were evident in Eucalanidae and E. mucronata. Estimates of species biomass showed a substantial (>75% of total zooplankton biomass) daily exchange of C between the photic layer and the OMZ. Both E. inermis and E. mucronata can actively exchange about 37.8 g C m−2 d−1 between the upper well-oxygenated (0–60 m) layer and the deeper (60–600 m) OMZ layer. This migrant biomass may contribute about 7.2 g C m−2 d−1 to the OMZ system through respiration, mortality, and production of fecal pellets within the OMZ. This movement of zooplankton in and out of the OMZ, mainly as a result of the migratory behavior of E. mucronata, suggests a very efficient mechanism for introducing large amounts of freshly produced carbon into the OMZ system and should, therefore, be considered when establishing C budgets for coastal upwelling systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号