首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
This study investigates relationships between Atlantic sea surface temperature (SST) and the variability of the characteristics of the South American Monsoon System (SAMS), such as the onset dates and total precipitation over central eastern Brazil. The observed onset and total summer monsoon precipitation are estimated for the period 1979?C2007. SST patterns are obtained from the Empirical Orthogonal Function. It is shown that variations in SST on interannual timescales over the South Atlantic Ocean play an important role in the total summer monsoon precipitation. Negative (positive) SST anomalies over the topical South Atlantic along with positive (negative) SST anomalies over the extratropical South Atlantic are associated with early (late) onsets and wet (dry) summers over southeastern Brazil and late (early) onset and dry (wet) summers over northeastern Brazil. Simulations from Phase 3 of the World Climate Research Programme Coupled Model Intercomparison Project (CMIP-3) are assessed for the 20th century climate scenario (1971?C2000). Most CMIP3 coupled models reproduce the main modes of variability of the South Atlantic Ocean. GFDL2.0 and MIROC-M are the models that best represent the SST variability over the South Atlantic. On the other hand, these models do not succeed in representing the relationship between SST and SAMS variability.  相似文献   

2.
CMIP6 Evaluation and Projection of Temperature and Precipitation over China   总被引:2,自引:0,他引:2  
This article evaluates the performance of 20 Coupled Model Intercomparison Project phase 6(CMIP6)models in simulating temperature and precipitation over China through comparisons with gridded observation data for the period of 1995–2014,with a focus on spatial patterns and interannual variability.The evaluations show that the CMIP6 models perform well in reproducing the climatological spatial distribution of temperature and precipitation,with better performance for temperature than for precipitation.Their interannual variability can also be reasonably captured by most models,however,poor performance is noted regarding the interannual variability of winter precipitation.Based on the comprehensive performance for the above two factors,the“highest-ranked”models are selected as an ensemble(BMME).The BMME outperforms the ensemble of all models(AMME)in simulating annual and winter temperature and precipitation,particularly for those subregions with complex terrain but it shows little improvement for summer temperature and precipitation.The AMME and BMME projections indicate annual increases for both temperature and precipitation across China by the end of the 21st century,with larger increases under the scenario of the Shared Socioeconomic Pathway 5/Representative Concentration Pathway 8.5(SSP585)than under scenario of the Shared Socioeconomic Pathway 2/Representative Concentration Pathway 4.5(SSP245).The greatest increases of annual temperature are projected for higher latitudes and higher elevations and the largest percentage-based increases in annual precipitation are projected to occur in northern and western China,especially under SSP585.However,the BMME,which generally performs better in these regions,projects lower changes in annual temperature and larger variations in annual precipitation when compared to the AMME projections.  相似文献   

3.
While most models project large increases in agricultural drought frequency and severity in the 21st century, significant uncertainties exist in these projections. Here, we compare the model-simulated changes with observation-based estimates since 1900 and examine model projections from both the Coupled Model Inter-comparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5). We use the self-calibrated Palmer Drought Severity Index with the Penman-Monteith potential evapotranspiration (PET) (sc_PDSI_pm) as a measure of agricultural drought. Results show that estimated long-term changes in global and hemispheric drought areas from 1900 to 2014 are consistent with the CMIP3 and CMIP5 model-simulated response to historical greenhouse gases and other external forcing, with the short-term variations within the model spread of internal variability, despite that regional changes are still dominated by internal variability. Both the CMIP3 and CMIP5 models project continued increases (by 50–200 % in a relative sense) in the 21st century in global agricultural drought frequency and area even under low-moderate emissions scenarios, resulting from a decrease in the mean and flattening of the probability distribution functions (PDFs) of the sc_PDSI_pm. This flattening is especially pronounced over the Northern Hemisphere land, leading to increased drought frequency even over areas with increasing sc_PDSI_pm. Large differences exist in the CMIP3 and CMIP5 model-projected precipitation and drought changes over the Sahel and northern Australia due to uncertainties in simulating the African Inter-tropical convergence zone (ITCZ) and the subsidence zone over northern Australia, while the wetting trend over East Africa reflects a robust response of the Indian Ocean ITCZ seen in both the CMIP3 and CMIP5 models. While warming-induced PET increases over all latitudes and precipitation decreases over subtropical land are responsible for mean sc_PDSI_pm decreases, the exact cause of its PDF flattening needs further investigation.  相似文献   

4.
The present study aims at evaluating and comparing precipitation over the Amazon in two sets of historical and future climate simulations based on phase 3 (CMIP3) and 5 (CMIP5) of the Coupled Model Intercomparison Project. Thirteen models have been selected in order to discuss (1) potential improvements in the simulation of present-day climate and (2) the potential reduction in the uncertainties of the model response to increasing concentrations of greenhouse gases. While several features of present-day precipitation—including annual cycle, spatial distribution and co variability with tropical sea surface temperature (SST)—have been improved, strong uncertainties remain in the climate projections. A closer comparison between CMIP5 and CMIP3 highlights a weaker consensus on increased precipitation during the wet season, but a stronger consensus on a drying and lengthening of the dry season. The latter response is related to a northward shift of the boreal summer intertropical convergence zone in CMIP5, in line with a more asymmetric warming between the northern and southern hemispheres. The large uncertainties that persist in the rainfall response arise from contrasted anomalies in both moisture convergence and evapotranspiration. They might be related to the diverse response of tropical SST and ENSO (El Niño Southern Oscillation) variability, as well as to spurious behaviours among the models that show the most extreme response. Model improvements of present-day climate do not necessarily translate into more reliable projections and further efforts are needed for constraining the pattern of the SST response and the soil moisture feedback in global climate scenarios.  相似文献   

5.
The South Pacific Convergence Zone (SPCZ) is evaluated in historical simulations from 26 Coupled Model Intercomparison Project Phase 5 (CMIP5) models, and compared with previous generation CMIP3 models. A subset of 24 CMIP5 models are able to simulate a distinct SPCZ in the December to February (DJF) austral summer, although the position of the SPCZ in these models is too zonal compared with observations. The spatial pattern of SPCZ precipitation is improved in CMIP5 models relative to CMIP3 models, although the spurious double ITCZ precipitation band in the eastern Pacific is intensified in many CMIP5 models. All CMIP5 models examined capture some interannual variability of SPCZ latitude, and 19 models simulate a realistic correlation with El Niño–Southern Oscillation. In simulations of the twenty-first century under the RCP8.5 emission scenario, no consistent shift in the mean position of the DJF SPCZ is identified. Several models simulate significant shifts northward, and a similar number of models simulate significant southward shifts. The majority of CMIP5 models simulate an increase in mean DJF SPCZ precipitation, and there is an intensification of the eastern Pacific double ITCZ precipitation band in many models. Most models simulate regions of increased precipitation in the western part of the SPCZ and near the equator, and regions of decreased precipitation at the eastern edge of the SPCZ. Decomposition of SPCZ precipitation changes into dynamic and thermodynamic components reveals predominantly increased precipitation due to thermodynamic changes, while dynamic changes lead to regions of both positive and negative precipitation anomalies.  相似文献   

6.
We compare the ability of coupled global climate models from the phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6, respectively) in simulating the temperature and precipitation climatology and interannual variability over China for the period 1961–2005 and the climatological East Asian monsoon for the period1979–2005. All 92 models are able to simulate the geographical distribution of the above variables reasonably well.Compared with earlier CMIP5 models, current CMIP6 models have nationally weaker cold biases, a similar nationwide overestimation of precipitation and a weaker underestimation of the southeast–northwest precipitation gradient, a comparable overestimation of the spatial variability of the interannual variability, and a similar underestimation of the strength of winter monsoon over northern Asia. Pairwise comparison indicates that models have improved from CMIP5 to CMIP6 for climatological temperature and precipitation and winter monsoon but display little improvement for the interannual temperature and precipitation variability and summer monsoon. The ability of models relates to their horizontal resolutions in certain aspects. Both the multi-model arithmetic mean and median display similar skills and outperform most of the individual models in all considered aspects.  相似文献   

7.
青藏高原中东部夏季降水主要表现为东北和东南反位相变化的双极型特征。采用经验正交函数(empirical orthogonal function,EOF)分解方法,系统性地评估参与第五次耦合模式比较计划 (Coupled Model Intercomparison Project Phase 5,CMIP5)历史模拟试验的 47 个模式对青藏高原中东部夏季降水双极型变化特征的模拟能力。结果表明,大多数模式基本可以反映青藏高原中东部夏季降水东北部和东南部反位相的变化特征。模式间 EOF 分析结果表明在35°N 以南的东西向模拟偏差是 CMIP5 模式模拟降水空间型态的主要偏差,且大多数模式对时间系数的模拟效果差于空间型态。文中定义了一个综合评估指标 Snew 来定量描述模式对空间型态、时间系数以及方差贡献的综合模拟效果。由定量评估结果来看,MIROC-ESM、HadGEM2-CC 和 ACCESS1-0 (FIO-ESM、 HadGEM2-AO 和 MIROC-ESM-CHEM)模式对观测降水的 EOF1(EOF2)模态的综合模拟能力相对较好,而 GISS 系列模式、CESM1-CAM5 和 MPI-ESM-LR (CMCC-CESM、MPI-ESM-MR 和 GFDL- CM3)模式对观测降水的 EOF1(EOF2)模态的综合模拟效果较差。由 EOF1 和 EOF2 的综合评估结果来看,MIROC-ESM-CHEM模式对观测降水的 EOF1 和 EOF2 模态的综合模拟效果最好。  相似文献   

8.
The ability of coupled climate models from the WCRP-CMIP3 multi-model dataset to reproduce the interannual seasonal variability of precipitation in South America and the influence of the Southern Annular Mode (SAM) and El Niño-Southern Oscillation (ENSO) on such variability is examined. Models are able to reproduce the northward migration of the precipitation variability maximum during autumn and winter and its later return towards the south during spring and summer as well as the high variability throughout the year in southern Chile. Nevertheless, most of them have problems in representing accurately the variability associated with the South Atlantic convergence zone during summer and the typical maximum of variability in the subtropical continent during autumn and winter. The annular-like structure characteristic of the SAM influence on the Southern Hemisphere circulation is basically simulated by all models, but they have serious deficiencies in representing the observed relationship between SAM and both precipitation and circulation anomalies in South America. In addition, most of the models are not able to reproduce the typical wavetrains observed in the circulation anomalies in the Southern Hemisphere associated to ENSO. Only few models, previously identified as those with reasonable ENSO representation at the equatorial Pacific, have evidences of such wavetrains. Coherently, they exhibit the best representation of the ENSO signal in the South American precipitation. Results show that considerable improvement in the model representation of the climate variability in South America and in the associated large-scale teleconnections is still needed.  相似文献   

9.
Climate extremes indices are evaluated for the northeast United States and adjacent Canada (Northeast) using gridded observations and twenty-three CMIP5 coupled models. Previous results have demonstrated observed increases in warm and wet extremes and decreases in cold extremes, consistent with changes expected in a warming world. Here, a significant shift is found in the distribution of observed total annual precipitation over 1981-2010. In addition, significant positive trends are seen in all observed wet precipitation indices over 1951-2010. For the Northeast region, CMIP5 models project significant shifts in the distributions of most temperature and precipitation indices by 2041-2070. By the late century, the coldest (driest) future extremes are projected to be warmer (wetter) than the warmest (wettest) extremes at present. The multimodel interquartile range compares well with observations, providing a measure of confidence in the projections in this region. Spatial analysis suggests that the largest increases in heavy precipitation extremes are projected for northern, coastal, and mountainous areas. Results suggest that the projected increase in total annual precipitation is strongly influenced by increases in winter wet extremes. The largest decreases in cold extremes are projected for northern and interior portions of the Northeast, while the largest increases in summer warm extremes are projected for densely populated southern, central, and coastal areas. This study provides a regional analysis and verification of the latest generation of CMIP global models specifically for the Northeast, useful to stakeholders focused on understanding and adapting to climate change and its impacts in the region.  相似文献   

10.
Future projections of the Indian summer monsoon rainfall (ISMR) and its large-scale thermodynamic driver are studied by using CMIP5 model outputs. While all models project an increasing precipitation in the future warming scenario, most of them project a weakening large-scale thermodynamic driver arising from a weakening of the upper tropospheric temperature (UTT) gradient over south Asian summer monsoon region. The weakening of the UTT gradient under global warming scenarios is related to the increase in sea surface temperature (SST) over the equatorial Indian Ocean (EIO) leading to a stronger increase of UTT over the EIO region relative to the northern Indian region, a hypothesis supported by a series of Atmospheric General Circulation Model (AGCM) experiments forced by projected SSTs. To diagnose the inconsistency between the model projections of precipitation and the large-scale thermodynamic driver, we have examined the rate of total precipitation explained by convective and stratiform precipitations in observations and in CMIP5 models. It is found that most models produce too much (little) convective (stratiform) precipitation compared to observations. In addition, we also find stronger precipitable water—precipitation relationship in most CMIP5 models as compared to observations. Hence, the atmospheric moisture content produced by the model immediately gets converted to precipitation even though the large-scale thermodynamics in models weaken. Therefore, under global warming scenarios, due to increased temperature and resultant increased atmospheric moisture supply, these models tend to produce unrealistic local convective precipitation often not in tune with other large-scale variables. Our results questions the reliability of the ISMR projections in CMIP5 models and highlight the need to improve the convective parameterization schemes in coupled models for the reliable projections of the ISMR.  相似文献   

11.
The release of new data constituting the Coupled Model Intercomparison Project—Phase 5 (CMIP5) database is an important event in both climate science and climate services issues. Although users’ eagerness for a fast transition from CMIP3 to CMIP5 is expected, this change implies some challenges for climate information providers. The main reason is that the two sets of experiments were performed in different ways regarding radiative forcing and hence continuity between both datasets is partially lost. The objective of this research is to evaluate a metric that is independent of the amount and the evolution of radiative forcing, hence facilitating comparison between the two sets for surface temperature over eastern North America. The link between CMIP3 and CMIP5 data sets is explored spatially and locally (using the ratio of local to global temperatures) through the use of regional warming patterns, a relationship between the grid-box and the global mean temperature change for a certain time frame. Here, we show that local to global ratios are effective tools in making climate change information between the two sets comparable. As a response to the global mean temperature change, both CMIP experiments show very similar warming patterns, trends, and climate change uncertainty for both winter and summer. Sensitivity of the models to radiative forcing is not assessed. Real inter-model differences remain the largest source of uncertainty when calculating warming patterns as well as spatially-based patterns for the pattern scaling approach. This relationship between the datasets, which may escape users when they are provided with a single radiative forcing pathway, needs to be stressed by climate information providers.  相似文献   

12.
中国降水季节性的预估   总被引:2,自引:1,他引:1  
姚世博  姜大膀  范广洲 《大气科学》2018,42(6):1378-1392
本文使用国际耦合模式比较计划第五阶段(CMIP5)中共46个全球气候模式的数值试验数据,通过评估择优选取了14个模式来预估21世纪中国各季节降水百分率及其变率。结果表明,模式集合平均能够较好地模拟各季节降水百分率及其变率,但模式与观测间、各模式间都存在一定不同,空间上西部差异较大,季节上夏季差异明显。21世纪中国降水百分率整体表现为夏季大冬季小,但存在区域性,如华南春季降水百分率大于夏季。与1986~2004年相比,中国降水百分率整体表现为在夏季显著减少,冬春季显著增加,但高原则与之相反。此外,模式对于长江中下游地区降水百分率的预估存在较大不确定性。RCP8.5情景下降水季节性变幅要大于RCP4.5情景。降水季节性的变率在四季均表现出一定的增加趋势,但21世纪早、中和末期与1986~2004年相比并无显著差异(置信水平为95%)。  相似文献   

13.
Regional and seasonal temperature and precipitation over land are compared across two generations of global climate model ensembles, specifically, CMIP5 and CMIP3, through historical twentieth century skills and multi-model agreement, and twenty first century projections. A suite of diagnostic and performance metrics, ranging from spatial bias or model-consensus maps and aggregate time series plots, to measures of equivalence between probability density functions and Taylor diagrams, are used for the intercomparisons. Pairwise and multi-model ensemble comparisons were performed for 11 models, which were selected based on data availability and resolutions. Results suggest little change in the central tendency or variability or uncertainty of historical skills or consensus across the two generations of models. However, there are regions and seasons, at different levels of aggregation, where significant changes, performance improvements, and even degradation in skills, are suggested. The insights may provide directions for further improvements in next generations of climate models, and in the meantime, help inform adaptation and policy.  相似文献   

14.
Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6),and 30 models from phase 5 of CMIP(CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean(CMIP6-MME) can simulate well the spatial pattern of annual mean temperature,maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The arealmean bias for total precipitation has been reduced from 127%(CMIP5-MME) to 79%(CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME.  相似文献   

15.
Decadal variability in the climate system from the Atlantic Multidecadal Oscillation (AMO) is one of the major sources of variability at this temporal scale that climate models must properly incorporate because of its climate impact. The current analysis of historical simulations of the twentieth century climate from models participating in the CMIP3 and CMIP5 projects assesses how these models portray the observed spatiotemporal features of the sea surface temperature (SST) and precipitation anomalies associated with the AMO. A short sample of the models is analyzed in detail by using all ensembles available of the models CCSM3, GFDL-CM2.1, UKMO-HadCM3, and ECHAM5/MPI-OM from the CMIP3 project, and the models CCSM4, GFDL-CM3, UKMO-HadGEM2-ES, and MPI-ESM-LR from the CMIP5 project. The structure and evolution of the SST anomalies of the AMO have not progressed consistently from the CMIP3 to the CMIP5 models. While the characteristic period of the AMO (smoothed with a binomial filter applied fifty times) is underestimated by the three of the models, the e-folding time of the autocorrelations shows that all models underestimate the 44-year value from observations by almost 50 %. Variability of the AMO in the 10–20/70–80 year ranges is overestimated/underestimated in the models and the variability in the 10–20 year range increases in three of the models from the CMIP3 to the CMIP5 versions. Spatial variability and correlation of the AMO regressed precipitation and SST anomalies in summer and fall indicate that models are not up to the task of simulating the AMO impact on the hydroclimate over the neighboring continents. This is in spite of the fact that the spatial variability and correlations in the SST anomalies improve from CMIP3 to CMIP5 versions in two of the models. However, a multi-model mean from a sample of 14 models whose first ensemble was analyzed indicated there were no improvements in the structure of the SST anomalies of the AMO or associated regional precipitation anomalies in summer and fall from CMIP3 to CMIP5 projects.  相似文献   

16.
Considering the importance of black carbon(BC), this study began by comparing the 20 th century simulation of South Asian summer climate in IPCC CMIP3, based on the scenario of models with and without BC. Generally, the multi-model mean of the models that include BC reproduced the observed climate relatively better than those that did not. Then, the 21st century South Asian summer precipitation was projected based on the IPCC CMIP3 projection simulations. The projected precipitation in the present approach exhibited a considerable difference from the multimodel ensemble mean(MME) of IPCC AR4 projection simulations, and also from the MME of the models that ignore the effect of BC. In particular, the present projection exhibited a dry anomaly over the central Indian Peninsula,sandwiched between wet conditions on the southern and northern sides of Pakistan and India, rather than homogeneous wet conditions as seen in the MME of IPCC AR4. Thus, the spatial pattern of South Asian summer rainfall in the future may be more complicated than previously thought.  相似文献   

17.
Observations as well as most climate model simulations are generally in accord with the hypothesis that the hydrologic cycle should intensify and become highly volatile with the greenhouse-gas-induced climate change, although uncertainties of these projections as well as the spatial and seasonal variability of the changes are much larger than for temperature extremes. In this study, we examine scenarios of changes in extreme precipitation events in 24 future climate runs of ten regional climate models, focusing on a specific area of the Czech Republic (central Europe) where complex orography and an interaction of other factors governing the occurrence of heavy precipitation events result in patterns that cannot be captured by global models. The peaks-over-threshold analysis with increasing threshold censoring is applied to estimate multi-year return levels of daily rainfall amounts. Uncertainties in scenarios of changes for the late 21st century related to the inter-model and within-ensemble variability and the use of the SRES-A2 and SRES-B2 greenhouse gas emission scenarios are evaluated. The results show that heavy precipitation events are likely to increase in severity in winter and (with less agreement among models) also in summer. The inter-model and intra-model variability and related uncertainties in the pattern and magnitude of the change is large, but the scenarios tend to agree with precipitation trends recently observed in the area, which may strengthen their credibility. In most scenario runs, the projected change in extreme precipitation in summer is of the opposite sign than a change in mean seasonal totals, the latter pointing towards generally drier conditions in summer. A combination of enhanced heavy precipitation amounts and reduced water infiltration capabilities of a dry soil may severely increase peak river discharges and flood-related risks in this region.  相似文献   

18.
利用耦合模式比较计划(CMIP3)提供的20世纪气候模拟试验(20C3M)及A1B情景预估试验,讨论了全球增暖情景下21世纪中期中国气候的可能变化。结果表明,A1B情景下,中国夏季降水变化在-0.1~1.1mm/d,冬季降水变化在-0.2~0.2mm/d。模式对降水变化的预估存在较大不确定性。无论冬夏,预估的全国表面气温都将升高,升温幅度在1.2~2.8℃;随纬度升高,增暖幅度相应增大。模式对表面气温变化的预估能力强于对降水变化的预估能力。在A1B情景下,东亚夏季风增强,而冬季风则略为减弱,东亚夏季风雨带到达最北后南撤的时间较之20C3M滞后约一个月。  相似文献   

19.
Dai  Aiguo 《Climate Dynamics》2021,56(11):4027-4049

Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamflow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacific coasts of Canada. Streamflow records largely confirm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacific Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90 % of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.

  相似文献   

20.
European temperatures and their projected changes under the 8.5 W/m2 Representative Concentration Pathway scenario are evaluated in an ensemble of 33 global climate models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Respective contributions of large-scale dynamics and local processes to both biases and changes in temperatures, and to the inter-model spread, are then investigated from a recently proposed methodology based on weather regimes. On average, CMIP5 models exhibit a cold bias in winter, especially in Northern Europe. They overestimate summer temperatures in Central Europe, in association with a greater diurnal range than observed. The projected temperature increase is stronger in summer than in winter, with the highest summer warming occurring over Mediterranean regions. Links between biases and sensitivities are evidenced in winter, suggesting a potential influence of snow cover biases on the projected surface warming. A brief analysis of daily temperature extremes suggests that the intra-seasonal variability is projected to decrease (slightly increase) in winter (summer). Then, in order to understand model discrepancies in both present-day and future climates, we disentangle effects of large-scale atmospheric dynamics and regional physical processes. In particular, in winter, CMIP5 models simulate a stronger North-Atlantic jet stream than observed and, in contrast with CMIP3 results, the majority of them suggests an increased frequency of the negative phase of the North-Atlantic Oscillation under future warming. While large-scale circulation only has a minor contribution to ensemble-mean biases or changes, which are primarily dominated by non-dynamical processes, it substantially affects the inter-model spread. Finally, other sources of uncertainties, including the North-Atlantic warming and local radiative feedbacks related to snow cover and clouds, are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号