首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

This study analyzes the impact of anthropogenic climate change in the hydroclimatology of Senegal with a focus over the lake of Guiers basin for the middle (2041–2060) and late twenty-first century (2080–2099). To this end, high-resolution multimodel ensemble based on regional climate model experiments considering two Representative Concentration Pathways (RCP4.5 and RCP8.5) is used. The results indicate that an elevated warming, leading to substantial increase of atmospheric water demand, is projected over the whole of Senegal. In the Lake basin, these increases in potential evapotranspiration (PE) range between 10 and 25 % in the near future and for RCP4.5 while for the far future and RCP8.5, they exceed 50 %. In addition, mean precipitation unveils contrasting changes with wetter (10 to 25 % more) conditions by the middle of the century and drier conditions (more than 50 %) during the late twenty-first century. Such changes cause more/less evapotranspiration and soil moisture respectively during the two future periods. Furthermore, surface runoff shows a tendency to increase in most areas amid few locations including the Lake basin with substantial reduction. Finally, it is found that while semi-arid climates develop in the RCP4.5 scenario, generalized arid conditions prevail over the whole Senegal for RCP8.5. It is thus evident that these future climate conditions substantially threaten freshwater availability for the country and irrigated cropping over the Lake basin. Therefore, strong governmental politics are needed to help design response options to cope with the challenges posed by the projected climate change for the country.

  相似文献   

2.
This paper examines changes in rainfall effectiveness indices of the Awun basin in Nigeria during the late twenty-first century for agricultural applications with outputs from high-resolution regional climate model (RCM) simulations. The RCM simulations are driven by two global climate models for a reference period (1985–2004) and a future period (2080–2099) and for RCP4.5 (a scenario with some mitigation) and RCP8.5 (a business as usual scenario) forcings. Simulations are provided for the control (1985–2004) and scenario (2080–2099) periods. Observations from synoptic station are used for bias-correction. Three indices being local onset date, seasonality index (SI), and hydrologic ratio (HR) are analyzed. Onset and HR are tested with two evapotranspiration (ETp) models. Farmers’ perceptions are also collected to validate trends of rainfall indices for the present-day climate. We found that onset dates do not depend much on the ETp models used, and farmers’ perceptions are consistent with predicted rainfall patterns. Present-day climate trend shows an early onset. However, onset is projected to be late in future and the delay will be magnified under the business as usual scenario. Indeed, average onset date is found on the 5th May for present-day while in the future, a delay about 4 and 8 weeks is projected under RCP4.5 and RCP8.5 scenarios respectively. SI is between 0.80 and 0.99, and HR is less than 0.75 for all scenarios, meaning respectively that (i) the rainy season will get shorter and (ii) the area will get drier in the future compared to the present-day. Local stakeholders are forewarned to prepare for potential response strategies. A continuous provision of forecast-based rainfall indices to support farmer’s decision making is also recommended.  相似文献   

3.
基于美国冰雪资料中心(NSIDC)提供的卫星遥感雪水当量资料,评估了26个CMIP5(Coupled Model Inter-comparison Project)耦合模式对1981~2005年欧亚大陆冬季雪水当量的模拟能力,在此基础上应用多模式集合平均结果,预估了21世纪欧亚大陆雪水当量的变化情况。结果表明,CMIP5耦合模式对欧亚大陆冬季雪水当量空间分布具有一定的模拟能力,能够再现出欧亚大陆冬季雪水当量由南向北递增、青藏高原积雪多于同纬度其他地区的特征;就雪水当量的幅值而言,几乎所有模式均显著低估了西伯利亚中部雪水当量的大值中心,对中国东北地区雪水当量的模拟也显著偏低,但模式对乌拉尔山以西的东欧平原、我国北方及蒙古地区冬季雪水当量的模拟却比卫星遥感资料显著偏大,此外模式对堪察加半岛及以北的西伯利亚东北部地区的雪水当量也明显偏大。对于青藏高原地区,虽然部分模式可以模拟出青藏高原东部的雪水当量大值区,但大多数模式对青藏高原西部雪水当量的模拟却明显偏大,存在虚假的大值中心。对遥感反演资料的EOF(Empirical Orthogonal Function)分解表明,对于EOF第一个模态所对应欧亚大陆全区一致的年代际变化特征,仅有少数模式具有一定的模拟能力,大多数模式以及多模式集合的结果均未能予以反映;对应于欧亚大陆雪水当量年际变化的EOF第二模态而言,仅有少数模式(如俄罗斯的INMCM4)具有一定的再现能力,绝大多数模式对该模态及其时间演变的特征没有模拟能力。比较CMIP5多模式的集合预估结果与1981~2005年基准时段的雪水当量,可以发现在RCP4.5排放情景下,西伯利亚中东部地区的雪水当量相对于基准时段显著增加,区域平均的增加量在21世纪前、中、后期分别为4.1mm、5.4 mm和6.8 mm,且随时间增加得更显著;对90°E以西的欧洲大陆和青藏高原地区,其雪水当量则相对减少,减少的幅度和显著性也随时间而增大。就雪水当量的相对变化而言,在欧亚大陆东北部存在雪水当量相对变化的大值区,在21世纪后期相对变化显著区大都在5%~10%;但在青藏高原、斯堪的纳维亚半岛进和东欧平原,并没有发现雪水当量相对变化的髙值区,这是由于这些区域冬季雪水当量的幅值较大的缘故。RCP8.5情景下欧亚大陆雪水当量的变化特征与RCP4.5相类似,只是变化的幅度更大。  相似文献   

4.
Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at ?0.15 W m?2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m?2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060–2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with ?0.34 and ?0.28 W m?2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between ?12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed ?3 W m?2.  相似文献   

5.
An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951–2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971–2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40–80 % by mid century relative to 1971–2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000–2,500 m, SWE reductions amount to 10–60 % by mid century and to 30–80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.  相似文献   

6.
The influence of changes in winds over the Amundsen Sea has been shown to be a potentially key mechanism in explaining rapid loss of ice from major glaciers in West Antarctica, which is having a significant impact on global sea level. Here, Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model data are used to assess twenty-first century projections in westerly winds over the Amundsen Sea (U AS ). The importance of model uncertainty and internal climate variability in RCP4.5 and RCP8.5 scenario projections are quantified and potential sources of model uncertainty are considered. For the decade 2090–2099 the CMIP5 models show an ensemble mean twenty-first century response in annual mean U AS of 0.3 and 0.7 m s?1 following the RCP4.5 and RCP8.5 scenarios respectively. However, as a consequence of large internal climate variability over the Amundsen Sea, it takes until around 2030 (2065) for the RCP8.5 response to exceed one (two) standard deviation(s) of decadal internal variability. In all scenarios and seasons the model uncertainty is large. However the present-day climatological zonal wind bias over the whole South Pacific, which is important for tropical teleconnections, is strongly related to inter-model differences in projected change in U AS (more skilful models show larger U AS increases). This relationship is significant in winter (r = ?0.56) and spring (r = ?0.65), when the influence of the tropics on the Amundsen Sea region is known to be important. Horizontal grid spacing and present day sea ice extent are not significant sources of inter-model spread.  相似文献   

7.
本文基于一套在5个全球气候模式结果驱动下,RegCM4区域气候模式对东亚25km水平分辨率的集合预估,分析了中、高温室气体典型排放路径(RCP4.5和RCP8.5)下,21世纪不同时期新疆地区的未来气候变化.对模式当代气候模拟结果的检验表明,区域模式的模拟集合(ensR)总体上能够很好地再现当代新疆平均气温、降水和极端...  相似文献   

8.
It was recently reported a regional warming in the intra-Americas region where sea surface temperature exhibited increases exceeding 0.15 °C/decade and an accelerated air temperature rise that could impact building energy demands per capita (EDC). Reanalysis data is used herein to quantify the impacts of these warming trends on EDC. Results of the analysis depict a Southern Greater Antilles and inland South America with a positive annual EDC rate of 1–5 kWh per year. The Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP) 2.6 and 4.5 scenarios were selected to analyze energy demand changes in the twenty-first century. A multi-model ensemble forecasts an EDC increase of 9.6 and 23 kWh/month in the RCP2.6 and RCP4.5 at the end of the twenty-first century, which may increase average building cooling loads in the region by 7.57 GW (RCP2.6) and 8.15 GW (RCP4.5), respectively. Furthermore, 4 of 9 (RCP2.6) and 7 of 9 (RCP4.5) of the major countries in this region have EDCs ranging between 1887 and 2252 kWh/year at the end of this century. Therefore, increased energy production and improved energy infrastructure will be required to maintain ideal indoor building conditions at the end of the twenty-first century in these tropical coastal regions as consequence of a warmer climate.  相似文献   

9.
This is the second of the two-part paper series on the analysis and evaluation of the Fifth phase of Coupled Model Intercomparison Project (CMIP5) simulation of contemporary climate as well as IPCC, AR5 Representative Concentrations Pathways (RCP), 4.5 and 8.5 scenarios projections of the Greater Horn of Africa (GHA) Climate. In the first part (Otieno and Anyah in Clim Dyn, 2012) we focused on the historical simulations, whereas this second part primarily focuses on future projections based on the two scenarios. Six Earth System Models (ESMs) from CMIP5 archive have been used to characterize projected changes in seasonal and annual mean precipitation, temperature and the hydrological cycle by the middle of twenty-first century over the GHA region, based on IPCC, 5th Assessment Report (AR5) RCP4.5 and RCP8.5 scenarios. Nearly all the models outputs analyzed reproduce the correct mean annual cycle of precipitation, with some biases among the models in capturing the correct peak of precipitation cycle, more so, March–April–May (MAM) seasonal rainfall over the equatorial GHA region. However, there is significant variation among models in projected precipitation anomalies, with some models projecting an average increase as others project a decrease in precipitation during different seasons. The ensemble mean of the ESMs indicates that the GHA region has been experiencing a steady increase in both precipitation and temperature beginning in the early 1980s and 1970s respectively in both RCP4.5 and RCP8.5 scenarios. Going by the ensemble means, temperatures are projected to steadily increase uniformly in all the seasons at a rate of 0.3/0.5 °C/decade under RCP4.5/8.5 scenarios over northern GHA region leading to an approximate temperature increase of 2/3 °C by the middle of the century. On the other hand, temperatures will likely increase at a rate of 0.3/0.4 °C/decade under RCP4.5/8.5 scenarios in both equatorial and southern GHA region leading to an approximate temperature increase of 2/2.5 °C by the middle of twenty-first century. Nonetheless, projected precipitation increase varied across seasons and sub-regions. With the exception of the equatorial region, that is projected to experience precipitation increase during DJF season, most sub-regions are projected to experience precipitation increase within their peak seasons, with the highest rate of increase experienced during DJF and OND seasons over southern and equatorial GHA regions respectively. Notably, as precipitation increases, the deficit (E < P) between evaporation (E) and precipitation (P) increased over the years, with a negatively skewed distribution. This generally implies that there is a high likelihood of an increased deficit in local moisture supply. This remarkable change in the general hydrological cycle (i.e. deficit in local moisture) is projected to be also coincident with intensified westerly anomaly influx from the Congo basin into the region. However, better understanding of the detailed changes in hydrological cycle will require comprehensive water budget analyses that require daily or sub-daily variables, and was not a specific focus of the present study.  相似文献   

10.
依据政府间气候变化委员会(IPCC)第五次评估报告(AR5)未来不同排放情景(RCPs)下的多模式(CMIP5)气温和降水预估结果,构建基于气温和降水的未来径流量预估模型,并以宜昌站为例分析了不同模式不同排放情景下未来80年(2020~2099年)长江上游年径流量的变化趋势。多模式集合平均预估结果表明:在99%的置信水平下,未来80年长江上游年径流量在RCP2.6排放情景下呈不显著增加趋势,在RCP4.5排放情景下呈不显著减小趋势,而在RCP8.5排放情景下则呈显著减小趋势;在RCP2.6、RCP4.5和RCP8.5排放情景下未来80年长江上游年径流量预估均值相对于1961~2000年分别减少6.42%、10.99%和13.25%;同时,未来80年长江上游年径流量变化具有一定的年代际特征,在RCP2.6和RCP4.5排放情景下21世纪初期偏多、中期偏少而后期变化并不明显,在RCP8.5排放情景下则是21世纪中期以前偏多而中期以后明显偏少。本研究方法可为未来气候变化情景预估分析提供技术参考,本研究成果可供气候变化背景下长江上游乃至长江流域水资源开发利用及对策分析提供决策依据。   相似文献   

11.
Based on the simulations of 31 global models in CMIP5, the performance of the models in simulating the Hadley and Walker circulations is evaluated. In addition, their change in intensity by the end of the 21 st century(2080–2099) under the RCP4.5 and RCP8.5 scenarios, relative to 1986–2005, is analyzed from the perspective of 200 h Pa velocity potential.Validation shows good performance of the individual CMIP5 models and the multi-model ensemble mean(MME) in reproducing the meridional(zonal) structure and magnitude of Hadley(Walker) circulation. The MME can also capture the observed strengthening tendency of the winter Hadley circulation and weakening tendency of the Walker circulation. Such secular trends can be simulated by 39% and 74% of the models, respectively. The MME projection indicates that the winter Hadley circulation and the Walker circulation will weaken under both scenarios by the end of the 21 st century. The weakening amplitude is larger under RCP8.5 than RCP4.5, due to stronger external forcing. The majority of the CMIP5 models show the same projection as the MME. However, for the summer Hadley circulation, the MME shows little change under RCP4.5 and large intermodel spread is apparent. Around half of the models project an increase, and the other half project a decrease. Under the RCP8.5 scenario, the MME and 65% of the models project a weakening of the summer southern Hadley circulation.  相似文献   

12.
利用国际耦合模式比较计划第5阶段(CMIP5)中的21个气候模式的RCP4.5和RCP8.5情景预估结果,分析了全球变暖1.5℃和2℃阈值时青藏高原气温年和季节的变化特征。结果表明,对应1.5℃和2℃全球变暖,青藏高原变暖幅度明显更大,就整体而言,在RCP4.5/RCP8.5情景下,高原区域平均的平均、最高、最低气温变暖分别为2.11℃/2.10℃和2.96℃/2.85℃、2.02℃/2.02℃和2.89℃/2.77℃、2.34℃/2.34℃和3.20℃/3.14℃,冬季平均气温的变暖幅度(2.19℃/2.31℃和3.13℃/3.05℃)较其他季节更大;从空间分布形势上看,年变暖呈西南高东北低的分布,而春、冬变暖呈南高北低的分布,夏、秋变暖则呈西高东低的分布。到达同一温升阈值时,RCP4.5与RCP8.5情景下高原气温的响应也存在区域差异。高原年与各季平均气温对全球变暖1.5℃与2℃的响应差异均>0.5℃,其中冬季最明显,区域平均差异可达0.94℃,局地差异超过1.1℃。  相似文献   

13.
Estimates of possible climate changes and cryolithozone dynamics in the 21st century over the Northern Hemisphere land are obtained using the IAP RAS global climate model under the RCP scenarios. Annual mean warming over the northern extratropical land during the 21st century amounts to 1.2–5.3°C depending on the scenario. The area of the snow cover in February amounting currently to 46 million km2 decreases to 33–42 million km2 in the late 21st century. According to model estimates, the near-surface permafrost in the late 21st century persists in northern regions of West Siberia, in Transbaikalia, and Tibet even under the most aggressive RCP 8.5 scenario; under more moderate scenarios (RCP 6.0, RCP 4.5, and RCP 2.6), it remains in East Siberia and in some high-latitude regions of North America. The total near-surface permafrost area in the Northern Hemisphere in the current century decreases by 5.3–12.8 million km2 depending on the scenario. The soil subsidence due to permafrost thawing in Central Siberia, Cisbaikalia, and North America can reach 0.5–0.8 m by the late 21st century.  相似文献   

14.
未来气候变化对东北玉米品种布局的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
为探求未来气候变化对我国东北玉米品种布局的影响,基于玉米生产潜力和气候资源利用率,结合区域气候模式输出的2011—2099年RCP_4.5,RCP_8.5两种气候背景气象资料和1961—2010年我国东北地区91个气象站的观测数据,分析了未来气候变化情况下,东北玉米品种布局、生产潜力、气候资源利用率的时空变化。结果表明:未来东北地区玉米可种植边界北移东扩,南部为晚熟品种,新扩展区域以早熟品种为主,不能种植区域减少。未来玉米生产潜力为南高北低,增加速率均高于历史情景,水分适宜度最低,而历史情景下温度是胁迫玉米生产的关键因子。未来东北玉米对气候资源利用率整体下降,其中RCP8.5情景利用率最低。  相似文献   

15.
The regional air quality modeling system RAMS-CMAQ was applied to simulate the aerosol concentration for the period 2045–2050 over China based on the downscaled meteorological field of three RCP scenarios from CESM (NCAR's Community Earth System Model) in CMIP5. The downscaling simulation of the meteorological field of the three RCP scenarios showed that, compared with that under RCP2.6, the difference in near-surface temperature between North and South China is weakened and the wind speed increases over North and South China and decreases over central China under RCP4.5 and RCP8.5. Under RCP2.6, from 2045 to 2050, the modeled average PM2.5 concentration is highest, with a value of 40–50 µg m−3, over the North China Plain, part of the Yangtze River Delta, and the Sichuan Basin. Meanwhile, it is 30–40 µg m−3 over central China and part of the Pearl River Delta. Compared with RCP2.6, PM2.5 increases by 4–12 µg m−3 under both RCP4.5 and RCP8.5, of which the SO42− and NH4+ concentration increases under both RCP4.5 and RCP8.5; the NO3 concentration decreases under RCP4.5 and increases under RCP8.5; and the black carbon concentration changes very slightly, and organic carbon concentration decreases, under RCP4.5 and RCP8.5, with some increase over part of Southwest and Southeast China under RCP8.5. The difference between RCP4.5 and RCP2.6 and the difference between RCP8.5 and RCP2.6 have similar annual variation for different aerosol species, indicating that the impact of climate change on different species tends to be consistent.摘要基于来自于 CMIP5 中 CESM 模式的三种 RCP 情景下的气象场的降尺度模拟, 应用区域空气质量模式系统 RAMS-CMAQ 模拟 2045-2050 年中国地区气溶胶浓度.三种 RCP 情景下气象场的降尺度模拟表明, 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, 华北和华南的近地表温度差减小, 风速在华北和华南地区增加, 在中部地区下降. RCP2.6 情景下, 模拟的 2045 年到 2050 年平均的 PM 2.5浓度在华北平原, 长三角的部分地区和四川盆地最高, 约为 40-50 µg m–3, 在中国中部和珠三角的部分地区约为 30-40 µg m–3. 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, PM2.5增加了 4-12 µg m–3, 其中在 RCP4.5 和 RCP8.5 下, SO42–和 NH4+的浓度增加, 在 RCP4.5 下, NO3–浓度降低, 在 RCP8.5 下, NO3–浓度升高, 在 RCP4.5 和 RCP8.5 下, BC 浓度变化很小, 而 OC 浓度下降, 其中在 RCP8.5 下, 西南和东南部分地区的 OC 有所增加.不同的气溶胶物种浓度在 RCP4.5 和 RCP2.6 之间的差异以及 RCP8.5 和 RCP2.6 之间的差异具有相似的年度变化, 这表明气候变化对不同物种的影响趋于一致.  相似文献   

16.
“一带一路”区域未来气候变化预估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用耦合模式比较计划第5阶段(CMIP5)提供的18个全球气候模式的模拟结果,预估了3种典型浓度路径(RCP2.6、RCP4.5、RCP8.5)下“一带一路”地区平均气候和极端气候的未来变化趋势。结果表明:在温室气体持续排放情景下,“一带一路”地区年平均气温在未来将会持续上升,升温幅度随温室气体浓度的增加而加大。在高温室气体排放情景(RCP8.5)下,到21世纪末期,平均气温将普遍升高5℃以上,其中北亚地区升幅最大,南亚和东南亚地区升幅最小。对于降水的变化,预估该区域大部分地区的年降水量将增加,其中西亚和北亚增加最为明显,而且在21世纪中期,RCP2.6情景下的增幅要比RCP4.5和RCP8.5情景下的偏大,而在21世纪后期,RCP8.5情景下降水的增幅比RCP2.6和RCP4.5情景下的偏大。未来极端温度也将呈升高的趋势,增温幅度高纬度地区大于低纬度地区、高排放情景大于低排放情景。而且在高纬度区域,极端低温的增暖幅度要大于极端高温的增幅。连续干旱日数在北亚和东亚总体呈现减少趋势,而在其他地区则呈增加趋势。极端强降水在“一带一路”区域总体上将增强,增强最明显的地区位于南亚、东南亚和东亚。  相似文献   

17.
王一格  姜大膀  华维 《大气科学》2020,44(3):552-564
本文择优选取了国际耦合模式比较计划第五阶段(CMIP5)中19个气候模式的试验数据,预估了RCP4.5和RCP8.5典型浓度路径情景下21世纪末(2080~2099年)西北太平洋地区(0°~40°N,100°E~180°)台风环境场和台风生成潜力指数(IGP)变化。结果表明,相对于1986~2005年参考时段,21世纪末西北太平洋海洋表面温度(SST)增加,垂直风切变(VWS)和向外长波辐射(OLR)均在其与台风频数呈显著负相关的区域减少,有利于台风生成和发展;由大陆向南海延伸的低压系统减弱,不利于台风活动。总体上,在RCP8.5情景下台风环境场的变化较RCP4.5情景相对更大。利用信噪比进一步考察了模式间差异性,SST变化的信噪比在大部分地区大于3.0,在低压系统控制区海平面气压变化的信噪比大于1.0,模式间一致性较好;对于VWS和OLR,信噪比小于0.6,模式间差异较大;但在与台风频数显著负相关的地区,对OLR变化方向的模拟在模式间高度一致。与以上环境场变化相对应,未来西北太平洋IGP显著增加。  相似文献   

18.
A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986–2005 and 2080–2099 for global temperature (heat uptake) are, for RCP8.5: 3.8 K (2.3 × 1024 J); for RCP6.0: 2.3 K (1.6 × 1024 J); for RCP4.5: 2.0 K (1.6 × 1024 J); for RCP2.6: 1.1 K (1.3 × 1024 J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs.  相似文献   

19.
This study examines the projections of hydroclimatic regimes and extremes over Andean basins in central Chile (~ 30–40° S) under a low and high emission scenarios (RCP2.6 and RCP8.5, respectively). A gridded daily precipitation and temperature dataset based on observations is used to drive and validate the VIC macro-scale hydrological model in the region of interest. Historical and future simulations from 19 climate models participating in CMIP5 have been adjusted with the observational dataset and then used to make hydrological projections. By the end of the century, there is a large difference between the scenarios, with projected warming of ~ + 1.2 °C (RCP2.6), ~ +?3.5 °C (RCP8.5) and drying of ~ ? 3% (RCP2.6), ~ ? 30% (RCP8.5). Following the strong drying and warming projected in this region under the RCP8.5 scenario, the VIC model simulates decreases in annual runoff of about 40% by the end of the century. Such strong regional effect of climate change may have large implications for the water resources of this region. Even under the low emission scenario, the Andes snowpack is projected to decrease by 35–45% by mid-century. In more snowmelt-dominated areas, the projected hydrological changes under RCP8.5 go together with more loss in the snowpack (75–85%) and a temporal shift in the center timing of runoff to earlier dates (up to 5 weeks by the end of the century). The severity and frequency of extreme hydroclimatic events are also projected to increase in the future. The occurrence of extended droughts, such as the recently experienced mega-drought (2010–2015), increases from one to up to five events per 100 years under RCP8.5. Concurrently, probability density function of 3-day peak runoff indicates an increase in the frequency of flood events. The estimated return periods of 3-day peak runoff events depict more drastic changes and increase in the flood risk as higher recurrence intervals are considered by mid-century under RCP2.6 and RCP8.5, and by the end of the century under RCP8.5.  相似文献   

20.
A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号