首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
秦岭是长期多阶段发展的复杂大陆碰撞造山带。本文报道了位于造山带中部佛坪变质结晶杂岩系的SHRIMP锆英石U-Pb年龄和全岩Sm-Nd年龄同位素分析结果。变质岩SHRIMP锆英石U-Pb年龄十分复杂,除有少量太古宇形成的锆英石外,还存在大量元古宇至显生宇的锆英石。并在2000Ma,1200Ma,800Ma,400Ma,200Ma左右形成峰期。片麻岩Nd模式年龄tDM 1372~2081Ma。佛坪变质结晶岩系主体可能形成于古元古代,年龄2000Ma左右。在后期强烈地质作用中有少量地幔物质加入。岩系形成于新太古代的意见笔者没有得到证实。秦岭造山带中部可能存在或存在过太古宙结晶基底岩石。  相似文献   

2.
The structure, microstructure and petrology of a small area close to the village of Bard in Val d'Aosta (Italy) has been studied in detail. The area lies across the contact between the Gneiss Minuti (GM) and the Eclogitic Micaschist (EMS) Complexes of the Lower element of the Sesia portion of the Sesia-Lanzo Zone (Western Alps). Both complexes have undergone high-pressure metamorphism, but the metamorphic assemblages indicate a sudden increase in pressure in going across the contact from the GM to the EMS. Therefore, we interpret the contact as a thrust dividing the lower element of the Sesia into two sub-elements. This interpretation is supported by structural evidence.
The early Alpine (90-70 Ma) metamorphic history is best preserved in the EMS and is one of increasing pressure associated with thrusting. The maximum P/T recorded in the EMS is >1500 MPa (>15kbar) and 550°C and in the GM is < 1500-1300 MPa (< 15-13 kbar) and 500-550°C. We suggest that the rocks were probably in an active Benioff zone during this time.
From then on the histories of the GM and EMS are the same. Deformation continued and the thrust and thrust slices were folded during decreasing pressure. We interpret the first postthrusting deformation in terms of uplift associated with continued shortening of the crust and underplating after the Benioff zone had become inactive and a new Benioff zone had developed further to the north-west.
A still later deformation and the Lepontine metamorphism (38 Ma) are related to continued uplift. Much of this deformation is characterized by structures indicative of vertical shortening and lateral spreading as the mountains rose above the general level of the surface.  相似文献   

3.
Based on lithological, structural and geophysical characteristics, the Proterozoic Grenville Orogen of southern Ontario and New York has been divided into domains that are separated from each other by ductile shear zones. In order to constrain the timing of metamorphism, U-Pb ages were determined on metamorphic and igneous sphenes from marbles, calc-silicate gneisses, amphibolites, granitoids, skarns and pegmatites. In addition, U-Pb ages were obtained for monazites from metapelites and for a rutile from an amphibolite. These mineral ages constrain the timing of mineral growth, the duration of metamorphism and the cooling history of the different domains that make up the southern part of the exposed Grenville Orogen. Based on the ages from metamorphic minerals, regional and contact metamorphism occurred in the following intervals:Central Granulite Terrane:Adirondack Highlands: 1150 Ma; 1070–1050 Ma; 1030–1000 MaCentral Metasedimentary Belt:Adirondack Lowlands 1170–1130 MaFrontenac domain 1175–1150 MaSharbot Lake domain ca. 1152 MaFlzevir domain: 1240 Ma; 1060–1020 MaBancroft domain: ca. 1150 Ma; 1045–1030 MaCentral Gneiss Belt: ca. 1450 Ma; ca. 1150 Ma; 1100–1050 MaGrenville FrontTectonic Zone ca. 1000 Ma.Combination of mineral ages with results from thermobarometry indicates that metamorphic pressures and temperatures recorded by thermobarometers were reached polychronously in the different domains that are separated by major shear zones. Some of these shear zones such as the Robertson Lake shear zone and the Carthage-Colton shear zone represent major tectonic boundaries. The Grenville Orogen is made up of a collage of crustal terranes that have distinct thermal and tectonic histories and that were accreted laterally by tectonic processes analogous to those observed along modern active continental margins. The subsequent history of the orogen is characterized by slow time-integrated cooling rates of 3±1°C/Ma and denudation rates of 120±40m/Ma.  相似文献   

4.
邹雷  刘平华  田忠华  冀磊  施建荣 《地球科学》2019,44(4):1406-1423
波罗斯坦庙杂岩是东阿拉善地块典型的中-高级变质杂岩之一,它的深入研究对进一步认识阿拉善地块起源、形成与演化过程具有十分重要的科学意义.通过对波罗斯坦庙杂岩中石英闪长质片麻岩、斜长角闪岩与花岗伟晶岩的野外观察、岩石学与锆石U-Pb定年发现,波罗斯坦庙杂岩中石英闪长质片麻岩、斜长角闪岩与花岗伟晶岩的岩浆锆石加权平均年龄分别为284±2 Ma、278±3 Ma,276±2 Ma、271±3 Ma与242±7 Ma,该组年龄被解释为其原岩成岩时代.石英闪长质片麻岩与斜长角闪岩中变质锆石加权平均年龄分别为274±6 Ma、272±5 Ma与269±3 Ma、268±2 Ma,代表它们遭受了晚古生代变质作用的时间.综合以上分析与前人研究资料,初步认为以往曾被认为是新太古代-古元古代的波罗斯坦庙杂岩,实际上可能是一个古元古代-晚古生代中-高级变质杂岩,并遭受了280~260 Ma角闪岩相变质作用,指示它们曾被卷入到中亚造山带晚古生代造山作用过程.   相似文献   

5.
The Lepontine Gneiss Complex of southern Switzerland and northern Italy is characterized by high-grade metamorphism and intensive deformation of Alpine age with migmatites prevalent in the area with the highest metamorphic grade. Petrological and structural observations are generally inconclusive but indicate in some places an Alpine age for the migmatite formation. To determine the time of migmatite formation a geochronologic study was undertaken in one of the best exposed areas, the Valle Bodengo, Italy. Rb-Sr whole-rock errorchrons of intrusive migmatite phases and of two rather homogeneous granitoid gneiss bodies yield apparent ages between 280 and 350 m.y. They suggest a Hercynian or older igneous history for these rocks. The U-Pb ages of the euhedral zircons are highly discordant, but they do point to the presence of zircon components more than 450 m.y. old. The concordia-intercept ages are incompatible with the Rb-Sr data and the low initial 87Sr/86Sr ratios of about 0.706. These low initial ratios suggest that either the bulk of the granitoid material is not much older than Hercynian, or older crustal material was isotopically homogenized on a regional scale with rocks that had low Rb/Sr and 87Sr/86Sr ratios (e.g. the lower crust or upper mantle) during a Hercynian metamorphism. Rb-Sr small-scale whole-rock isochrons and tie lines of adjacent, lithologically different rock phases give Alpine ages, the best isochron yielding 22 m.y. This coincides with concordant U-Pb ages of monazites of 23 to 24 m.y. Rb-Sr mineral isoohrons (muscovite, biotite, feldspars, apatite) give ages of 18–21 m.y. Our interpretation is that this age pattern resulted due to rapid cooling after the climax of the last phase of the Alpine metamorphism and we conclude that high-grade metamorphic conditions existed during the upper Oligocene or early Miocene. Other investigators have suggested that the Alpine metamorphism had a climax 35–40 m.y. ago and that the younger mineral ages are a result of simple continuous cooling due to uplift. Based on this study and other recent geochronological studies in the Lepotine Gneiss Complex we suggest that there had to be a thermal maximum at about 20–25 m.y. The example of Valle Bodengo demonstrates that the areal coincidence of the zone of highest-grade metamorphism with the occurrence of migmatites does not necessarily mean that metamorphism and migmatite formation were coeval and related to each other.  相似文献   

6.
In the Central Zone of the Limpopo Belt (South Africa), Palaeoproterozoic granulite-facies metamorphism was superimposed on an earlier Archaean orogenic history. Previously determined ages of  2030–2020 Ma obtained from high-temperature chronometers (zircon, garnet, monazite) are generally thought to provide the best estimate of the peak of Palaeoproterozoic granulite-facies metamorphism in the Central Zone, whereas ages as young as  2006 Ma from late melt patches suggest that temperatures remained above the wet solidus for an extended period. We present a new MC-ICP-MS 207Pb–206Pb age of 2030.9 ± 1.5 Ma for titanite found in amphibolite- to greenschist-facies alteration zones developed adjacent to quartz vein systems and related pegmatites that cut a strongly deformed Central Zone metabasite. This age could potentially date cooling of rocks at this locality to temperatures below the wet solidus. Alternatively, the titanite could be inherited from the metabasite host, and the age determined from it date the peak of metamorphism. Integration of the geochronology with LA-ICP-MS trace element data for minerals from the metabasite, the hydrothermal vein systems and comparable rocks elsewhere shows that the titanite formed during the amphibolite-facies hydrothermal alteration, not at the metamorphic peak or during the greenschist-facies phase of veining. This suggests that high-grade rocks in the Central Zone have cooled differentially through the wet solidus, and provides timing constraints on when Palaeoproterozoic reworking in the Central Zone began. This study illustrates the potential of combined geochronological and high-resolution geochemical studies to accurately match mineral ages to distinct crustal processes.  相似文献   

7.
郯庐断裂带南段张八岭群变质岩的原岩时代及其构造意义   总被引:4,自引:0,他引:4  
赵田  朱光  林少泽  宋利宏 《地质论评》2014,60(6):1265-1283
大别造山带东缘郯庐断裂带上分布着绿片岩相变质的张八岭群。对于它们的原岩时代长期没有同位素年代学数据,而其变形与变质原因也一直没有明确的认识。本次工作中选择了该带上8处张八岭群变火山岩进行了锆石LA-ICP-MS U-Pb定年。结果表明,它们的原岩时代为748~750 Ma,属于新元古代中期的南华纪,为扬子板块下部盖层而非前人认为的变质基底。结合张八岭群的变形与变质特征及前人白云母40Ar/39Ar定年结果,并与大别造山带进行对比,本文认为大别造山带东南缘张八岭群的变形与变质是造山带内俯冲与折返的结果,而其东缘郯庐断裂带内张八岭群的变形与变质是碰撞造山期该断裂带左行走滑活动所致。这些认识再次为郯庐断裂带起源于华北与扬子板块的碰撞过程中提供了重要的证据,也支持其造山期起源于陆内转换断层或斜向汇聚边界。  相似文献   

8.
The Lepontine dome represents a unique region in the arc of the Central and Western Alps, where complex fold structures of upper amphibolite facies grade of the deepest stage of the orogenic belt are exposed in a tectonic half-window. The NW-verging Mont Blanc, Aar und Gotthard basement folds and the Lower Penninic gneiss nappes of the Central Alps were formed by ductile detachment of the upper European crust during its Late Eocene–Early Oligocene SE-directed underthrust below the upper Penninic and Austroalpine thrusts and the Adriatic plate. Four underthrust zones are distinguished in the NW-verging stack of Alpine fold nappes and thrusts: the Canavese, Piemont, Valais and Adula zones. Up to three schistosities S1–S3, folds F1–F3 and a stretching lineation XI with top-to-NW shear indicators were developed in the F1–F3 fold nappes. Spectacular F4 transverse folds, the SW-verging Verzasca, Maggia, Ziccher, Alpe Bosa and Wandfluhhorn anticlines and synclines overprint the Alpine nappe stack. Their formation under amphibolite facies grade was related to late ductile folding of the southern nappe roots during dextral displacement of the Adriatic indenter. The transverse folding F4 was followed since 30 Ma by the pull-apart exhumation and erosion of the Lepontine dome. This occurred coevally with the formation of the dextral ductile Simplon shear zone, the S-verging backfolding F5 and the formation of the southern steep belt. Exhumation continued after 18 Ma with movement on the brittle Rhone-Simplon detachment, accompanied by the N-, NW- and W-directed Helvetic and Dauphiné thrusts. The dextral shear is dated by the 29–25 Ma crustal-derived aplite and pegmatite intrusions in the southern steep belt. The cooling by uplift and erosion of the Tertiary migmatites of the Bellinzona region occurred between 22 and 18 Ma followed by the exhumation of the Toce dome on the brittle Rhone–Simplon fault since 18 Ma.  相似文献   

9.
HP metamorphic belt of the western Alps   总被引:1,自引:0,他引:1  
The understanding of the subduction-related processes benefited by the studies of the high-pressure (HP) meta-morphic rocks from the western Alps. The most stimu-lating information was obtained from the inner part of the western Alpine belt, where most tectonic units show an early Alpine eclogite-facies recrystallisation. This is especially true for the Austroalpine Sesia Zone and the Penninic Dora-Maira massif. From the Sesia zone,which consists of a wide spectrum of continental crust lithologies recrystallised to quartz-eclogite-facies min-eral assemblages, the first finding of a jadeite-bearingmeta-granitoid has been described, supporting evidencethat even continental crust may subduct into the mantle.From the Dora-Maira massif the first occurrence of regional metamorphic coesite has been reported, open-ing the new fertile field of the ultrahigh-pressure meta-morphism (UHPM), which is now becoming the rule in the collisional orogenic belts.  相似文献   

10.
 The Sesia-Lanzo Zone is a polymetamorphic unit containing Hercynian granulite relics overprinted by eclogite and greenschist facies metamorphism and deformation during the Alpine orogeny. Different parts of the unit record different stages on the P-T-deformation evolution, allowing multi-system isotopic studies to unravel the precise timing of the metamorphic history. New Rb–Sr white mica and U–Pb sphene data constrain the age of eclogite facies metamorphism and deformation to 60–70 Ma. This substantially alters the common view of early- to mid-Cretaceous eclogite facies metamorphism in this unit. The new results are more consistent with the established geotectonic framework for the Alpine orogeny, since they do not require a prolonged period of depressed geothermal gradient at a time when the region was in extension. It is also more concordant with recent studies of other units that demonstrate post-Cretaceous high-pressure metamorphism. Step-heated 40Ar–39Ar analysis of phengites yields good plateaux giving ages older than the corresponding Rb–Sr age. Such anomalously high ages indicate the presence of radiogenic argon-rich fluids in the grain boundary network under the fluid/pressure conditions acting during this high-pressure metamorphic event. The U–Pb sphene ages are variable in polymetamorphic rocks, and show inheritance of older Pb or sphene crystals into the high-pressure event. Two monometamorphic assemblages yield concordant ages at 66±1 Ma, reflecting crystallisation of the eclogite facies assemblage. The Gneiss Minuti Complex (GMC) lies structurally below the Eclogitic Micaschists, and its pervasive greenschist facies fabric yields tightly clustered Rb–Sr white mica ages at 38–39 Ma. This greenschist event did not affect the majority of the EMC. The 40Ar–39Ar ages of micas formed at this time were very disturbed, whereas micas surviving from an earlier higher pressure assemblage had their 40Ar–39Ar system reset. The greenschist event did not strongly affect U–Pb systematics in Hercynian age sphenes, suggesting that the GMC did not uniformly suffer an eclogite facies metamorphism during the Alpine cycle, but was juxtaposed against the EMC later in the orogeny. This model still requires that the locus of deformation and metamorphism (and possibly fluid flux) moved outboard with time, leaving the Sesia-Lanzo basement as a shear-bounded unreactive block within the orogenic wedge. Received: 12 October 1995/Accepted:25 June 1996  相似文献   

11.
Granitic metapegmatites of two crystalline units of the western Bohemian massif, the Zone of Erbendorf-Vohenstrauss in Germany (ZEV), and the Zone of Teplá-Doma?lice in the Czech Republic (ZTD) have been dated by means of U–Pb and Rb–Sr methods. Ages interpreted to reflect emplacement and crystallisation of the pegmatites were found consistently to be approximately 480?Ma, as constrained by U–Pb analyses of primary magmatic zircon, monazite, garnet and columbite, and by Rb–Sr analyses of large pegmatitic muscovites. Later Devonian amphibolite-facies metamorphism caused ductile shearing of the pegmatites, leading to partial recrystallisation of pegmatitic material. A metamorphic, fine-grained generation of muscovite yielded consistent Rb–Sr ages of 371–376?Ma for both the ZEV and the ZTD, interpreted as dating the end of deformational activity. The Rb–Sr system of the large pegmatitic muscovites turned out to remain closed up to metamorphic temperatures of >600?°C. Deformation at elevated temperatures is identified as the dominant mechanism for opening of the Rb–Sr system of primary muscovites: apparent ages grade towards Devonian ages as the muscovites become more deformed and fragmented. The data derived from the metapegmatites point to a similar or common tectonometamorphic evolution for the ZEV and the ZTD since the Ordovician. Furthermore, the magmatic formation of granitic pegmatites implies an upper crustal position of the intruded rocks in Lower Ordovician times, clearly documenting the existence of two distinct metamorphic cycles. In contrast to this, in the neighbouring part of the Moldanubian, only unmetamorphosed granitic pegmatites with intrusion ages around 320?Ma are observed.  相似文献   

12.
Three meta-acidic rocks from the western Italian Alps, a magnesiochloritoid-bearing metapelite from the Monte Rosa massif, a coesite-pyrope-quartzite from the Dora Maira massif and the Monte Mucrone granite in the Sesia Zone, have been studied by U-Pb zircon, Rb-Sr on whole-rock, apatite and phengite and Sm-Nd wholerock methods. The mineral parageneses of the investigated rocks indicate high- to very-high-pressure and medium-to-high-temperature metamorphism. This combined isotopic study has enabled us to constrain the ages of magmatic and metamorphic events and also to compare the behaviour of U-Pb zircon systems in three intensely metamorphosed areas of the Pennine domain. The U-Pb zircon data have yielded a magmatic age for the Monte Mucrone granite at 286±2 Ma. This result confirms the occurence of late-Hercynian magmatism in the Sesia Zone, as in other Austro-Alpine units and in other areas of the European crystalline basement. In the Monte Rosa massif, a geologically meaningless lower intercept age of 192±2 Ma has been interpreted as an artefact due to a complex evolution of the U-Pb zircon system. The magmatic shape of the zircons implies a magmatic or volcano-sedimentary protolith for this rock, originally considered as a metasediment. The very-high-pressure metamorphism in the Dora Maira quartzite has produced an opening of the U-Pb zircon system at 121+12–29 Ma. The Rb-Sr data support the occurence of high-grade metamorphism during Cretaceous times. Phengites model ages are slightly younger than the U-Pb zircon lower intercept ages due to cooling phenomena or possible response of the phengites to a later deformation. The Nd model ages from the whole-rock samples, as well as the U-Pb upper intercept ages from zircons of all three investigated rocks, indicate the presence of Proterozoic crustal components inherited from the precursors of these meta-acidic rocks. The studied zircon populations and their U-Pb systems apparently showed open-system behaviour only when affected by extreme metamorphic conditions (700–750° C, > 28 kbar), whereas eclogite-facies conditions of 500–550° C and 14–16 kbar were not enough to disturb significantly the U-Pb zircon evolution. It is also probable that the sedimentary or magmatic origin of the protoliths of these meta-acidic rocks, which involved different characteristics such as grain-size and fluid phase concentration and composition, could be another important factor controlling the U-Pb zircon system behaviour during metamorphic events.  相似文献   

13.
The Sonnblick Dome is one of several domal structures affecting the interface between basement and cover within the Pennine Zone of the Tauern Window in the eastern Alps. Rb-Sr isotopic data, comprising 19 biotite and 22 white mica ages from variably deformed granitic gneisses, provide new evidence of the thermal and tectonic history of the dome and its relationships with other parts of the south-east Tauern Window. White mica ages generally cluster between 26 and 30 Ma although there are values up to 82 Ma, which appear to reflect incomplete equilibration during Tertiary metamorphism under low amphibolite facies conditions; six closely spaced samples from an intensely sheared gneiss lamella are more tightly grouped between 26 and 27.6 Ma and provide the best estimate of the age of syntectonic crystallization. Biotite ages are systematically younger, ranging from 19 to 23.5 Ma, reflecting closure during post-metamorphic cooling. Sonnblick Dome and the Hochalm Dome approximately 20 km further east, where closure of Rb-Sr in biotite did not occur until 16.5 Ma; the metamorphic peak here is also probably younger, possibly as late as 22 Ma. The Sonnblick Dome was formed before 27 Ma and the deformation style had changed to extension before biotite closure by 19 Ma. In contrast, rapid updoming in the Hochalm Dome was previously dated at 16.5 Ma and the differences in thermal history can be linked to differences in deformation history. Overall the geochronological data from the south-east Tauern Window demonstrate the heterogeneity of thermal history on a geographical scale of 10 km and emphasize the importance of tectonic displacements in controlling temperature within orogenic belts.  相似文献   

14.
秦岭岩群被认为是出露于北秦岭地体内最古老的前寒武纪基底岩石,记录了北秦岭造山带的地壳形成和演化历史。本文报道丹凤-西峡地区五件秦岭岩群片麻岩锆石U-Pb年龄结果,限定其形成和变质时代,探讨北秦岭地体的构造归属。定年结果表明,岩浆成因锆石颗粒的年龄集中在1400~1600Ma左右和850~950Ma左右,记录两期主要岩浆活动。6粒锆石具有变质成因特征,低Th/U比值(0.03),206Pb/238U年龄变化在510~465Ma之间,加权平均值477±18Ma。这一古生代变质叠加时代与北秦岭地体南北缘高压变质作用时代基本一致,说明秦岭岩群遭受到北秦岭造山带俯冲-碰撞造山过程的变质作用。秦岭岩群主要形成于中元古代晚期至新元古代早期,基底岩石缺乏早元古代和太古代岩浆活动的记录。在岩浆作用时代上,北秦岭地体与广泛发育新元古代中-晚期岩浆作用的扬子陆块北缘有差别,也不同于晚太古代-早元古代的华北陆块南缘,可能是中-新元古代形成的独立微陆块。  相似文献   

15.
胶北地块粉子山群石榴云母片岩中石榴石变斑晶内包裹物迹线明显,保留了岩石形成过程中的多期变质变形信息。电子探针成分面扫描图显示石榴石成分环带明显,可分为核部、幔部和边部。石榴石中MgO、FeO、MnO和CaO含量变化特征表明其核部到边部温度先升高后降低,对应进变质及退变质过程。根据原位独居石Y元素成分面扫描图显示,部分独居石颗粒由核部到边部Y含量呈现逐渐降低趋势,说明测得的232.6±1.1Ma~229.5±3.7Ma的独居石U-Pb年龄,对应石榴石的进变质生长过程。结合1869±72Ma的锆石U-Pb年龄数据,可推断粉子山群石榴云母片岩至少经历了古元古代及三叠纪两期变质事件的改造。粉子山群石榴云母片岩卷入了苏鲁超高压变质带的俯冲碰撞造山事件。电子探针成分分析结果表明粉子山群石榴云母片岩中的石榴石属于铁铝榴石,反映出经受中级区域变质作用的特征。说明粉子山群石榴云母片岩虽然参与了三叠纪苏鲁超高压变质带的俯冲碰撞造山过程,但俯冲深度较浅。这可用大陆俯冲过程中上盘的俯冲剥蚀来解释,并可为陆-陆碰撞俯冲剥蚀模式提出的扬子板片在240~220Ma的深俯冲作用过程中拽动胶北地块向下俯冲又折返的运动过程提供佐证,但胶北地块是否经历了深俯冲超高压变质作用,还需要进一步验证。  相似文献   

16.
中国桐柏大别构造带变质演化的岩石学证迹   总被引:2,自引:0,他引:2  
桐柏大别构造带是秦岭造山带的东延部分,经历过多期次不同体制的构造运动,现今的桐柏大别山区是由一系列变质地体拼合而成,地体与地体之间为断层或韧性剪切带所围限各地体有自身变质变形史和PTt轨迹,但却有着碰撞造山带所共有的后造山抬升过程。本文揭示了随县群、红安岩群及大别杂岩中柯石英榴辉石、蓝晶铝直闪石片岩及紫苏石榴黑云母片麻岩的退变质再平衡结构特点。报道了大别山麻粒岩相变质年龄为1699Ma。各类岩石减压退变质再平衡结构,标志着后造山的隆升过程及其对桐柏大别构造带变质演化的启示。  相似文献   

17.
大别山北部榴辉岩及英云闪长质片麻岩的锆石U-Pb年龄分析表明:北部榴辉岩相峰期变质时代为226~230Ma左右;北部塔儿河一带英云闪长质片麻岩经历过印支期变质事件;大别山北部与南部超高压岩石中一致的(226~230Ma)高压或超高压变质年龄表明,北部镁铁-超镁铁质岩带中部分岩石也曾作为扬子俯冲陆壳的一部分,在印支期发生过高压或超高压变质作用;本区锆石发生过两期变质增生事件,一是印支期高压或超高压变质,另一期是燕山期热变质事件;榴辉岩及英云闪长质片麻岩的原岩形成时代为晚元古代;锆石U-Pb年龄可用多期变质增生模型来解释。  相似文献   

18.
Fission track dating on detrital zircons of Alpine debris in the Swiss molasse basin provides information about the erosion history of the Central Alps and the thermal evolution of source terrains. During Oligocene times, only sedimentary cover nappes, and Austroalpine basement units were eroded. Incision into Austroalpine basement units is indicated by increasing importance of Cretaceous cooling ages in granite pebbles upsection. Erosion of Penninic basement units started between 25 and 20 Ma. Early Oligocene zircon FT ages show that Penninic basement units were exposed at ∼20 Ma. Deeper Penninic units of the Lepontine Dome became exposed first at ∼14 Ma, contemporaneously with the opening of the Tauern window in the Eastern Alps. A middle Miocene cooling rate of 40 °C Myr−1 is deduced for the Lower Penninic units of the Lepontine Dome.  相似文献   

19.
华夏地块显生宙的变质作用期次和特征   总被引:12,自引:0,他引:12  
华夏地块主要存在四期变质作用。加里东期变质作用呈北东向展布于华夏的大部分地区,变质作用可达麻粒岩相,且麻粒岩断续分布平行于造山带,此期变质作用是在挤压造山构造背景下发生,很可能与扬子地块向冈瓦那大陆北缘聚合–碰撞,造成大陆边缘沉积物变形–变质有关。根据粤东梅县片麻岩和兴宁混合岩的LA–ICPMS锆石U–Pb定年以及邻区独居石U–Pb年代学的研究,海西的变质作用主要发生在260~280 Ma,年轻于欧洲典型的海西期造山时代。华夏地块的海西期变质作用分布局限,它们可能形成于拉张构造背景。印支期变质岩在华夏有较广泛的分布,西南端大容山—十万大山的印支期变质作用可达麻粒岩相,其他地区的变质作用具有中低压相系的特征,记录了造山后期伸展构造背景。LA–ICPMS锆石U–Pb定年指示华夏中部粤中地区的印支期变质作用发生在231~232 Ma。燕山期变质岩主要分布于东南沿海和台湾中央山脉,显示了双变质带的特点,表明与太平洋板块向东南沿海俯冲作用密切相关。从印支期到燕山期,变质带的方向发生了转变,说明影响华夏地块变质作用的构造域发生了改变。  相似文献   

20.
唐俊  郑永飞  吴元保  龚冰 《地球科学》2005,30(6):692-706
在苏鲁超高压变质带东北端山东威海地区皂埠镇发现锆石δ18O值低至-7.8‰左右的花岗片麻岩, 与前人在苏鲁超高压变质带西南端江苏东海青龙山地区发现的锆石δ18O值为-7‰~-9‰左右的花岗片麻岩一致.对这些低δ18O值花岗片麻岩进行了锆石SHRIMP法UPb定年和系统的激光氟化法矿物氧同位素分析, 结果对低δ18O值锆石成因和花岗片麻岩的原岩性质提供了制约.研究得到: (1) 这些低δ18O值锆石以新元古代岩浆锆石为主, 但部分岩浆锆石在印支期超高压变质作用过程中发生了不同程度的重结晶作用.δ18O值为-7.08‰的岩浆核锆石UPb定年得到的花岗片麻岩原岩谐和年龄和不一致线上交点年龄分别为(760±49) Ma和(751±27) Ma, 变质谐和年龄和不一致线下交点年龄分别为(232±4) Ma和(241±33) Ma, 指示其原岩为新元古代花岗岩并经历了印支期变质作用; (2) 锆石δ18O值在局部范围内变化于-7.76‰~5.40‰之间, 低δ18O值岩浆锆石表明它们是从新元古代低δ18O值岩浆中直接结晶形成, 锆石δ18O值的局部变化表明其原岩岩浆的氧同位素组成具有不均一性, 指示低δ18O值岩浆源区物质曾经在地表与极度亏损18O的大气降水发生过不同程度的高温水岩反应; (3) 低δ18O值花岗片麻岩在印支期板块俯冲和折返过程中基本没有与外部发生显著的氧同位素交换, 在退变质作用过程中花岗片麻岩内部缓冲流体对原岩岩浆锆石的δ18O值影响不大.威海皂埠镇地区和东海青龙山地区的花岗片麻岩在原岩时代、变质时代和氧同位素组成等方面基本相同, 指示它们应具有相同的原岩性质, 并经历了相同的变质作用和水岩相互作用过程.因此, 极度亏损18O的新元古代双峰式基性-酸性岩浆岩可能分布于整个大别-苏鲁造山带.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号