首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.  相似文献   

2.
Novel approaches to garnet analysis have been used to assess rates of intergranular diffusion between different matrix phases and garnet porphyroblasts in a regionally metamorphosed staurolite‐mica‐schist from the Barrovian‐type area in Scotland. X‐ray maps and chemical traverses of planar porphyroblast surfaces reveal chemical heterogeneity of the garnet grain boundary linked to the nature of the adjacent matrix phase. The garnet preserves evidence of low temperature retrograde exchange with matrix minerals and diffusion profiles documenting cation movement along the garnet boundaries. Garnet–quartz and garnet–plagioclase boundaries preserve evidence of sluggish Mg, Mn and Fe diffusion at comparable rates to volume diffusion in garnet, whereas diffusion along garnet–biotite interfaces is much more effective. Evidence of particularly slow Al transport, probably coupled to Fe3+ exchange, is locally preserved on garnet surfaces adjacent to Fe‐oxide phases. The Ca distribution on the garnet surface shows the most complex behaviour, with long‐wavelength heterogeneities apparently unrelated to the matrix grain boundaries. This implies that the Ca content of garnet is controlled by local availability and is thought likely to reflect disequilibrium established during garnet growth. Geochemical anomalies on the garnet surfaces are also linked to the location of triple junctions between the porphyroblasts and the matrix phases, and imply enhanced transport along these channels. The slow rates of intergranular diffusion and the characteristics of different boundary types may explain many features associated with the prograde growth of garnet porphyroblasts. Thus, minerals such as quartz, Fe‐oxides and plagioclase whose boundaries with garnet are characterized by slow intergranular diffusion rates appear to be preferentially trapped as inclusions within porphyroblasts. As such grain boundary diffusion rates may be a significant kinetic impediment to metamorphic equilibrium and garnet may struggle to maintain chemical and textural equilibrium during growth in pelites.  相似文献   

3.
Metamorphic equilibration requires chemical communication between minerals and may be inhibited through sluggish volume diffusion and or slow rates of dissolution in a fluid phase. Relatively slow diffusion and the perceived robust nature of chemical growth zoning may preclude garnet porphyroblasts from readily participating in low‐temperature amphibolite facies metamorphic reactions. Garnet is widely assumed to be a reactant in staurolite‐isograd reactions, and the evidence for this has been assessed in the Late Proterozoic Dalradian pelitic schists of the Scottish Highlands. The 3D imaging of garnet porphyroblasts in staurolite‐bearing schists reveals a good crystal shape and little evidence of marginal dissolution; however, there is also lack of evidence for the involvement of either chlorite or chloritoid in the reaction. Staurolite forms directly adjacent to the garnet, and its nucleation is strongly associated with deformation of the muscovite‐rich fabrics around the porphyroblasts. “Cloudy” fluid inclusion‐rich garnet forms in both marginal and internal parts of the garnet porphyroblast and is linked both to the production of staurolite and to the introduction of abundant quartz inclusions within the garnet. Such cloudy garnet typically has a Mg‐rich, Mn‐poor composition and is interpreted to have formed during a coupled dissolution–reprecipitation process, triggered by a local influx of fluid. All garnet in the muscovite‐bearing schists present in this area is potentially reactive, irrespective of the garnet composition, but very few of the schists contain staurolite. The staurolite‐producing reaction appears to be substantially overstepped during the relatively high‐pressure Barrovian regional metamorphism reflecting the limited permeability of the schists in peak metamorphic conditions. Fluid influx and hence reaction progress appear to be strongly controlled by subtle differences in deformation history. The remaining garnet fails to achieve chemical equilibrium during the reaction creating distinctive patchy compositional zoning. Such zoning in metamorphic garnet created during coupled dissolution–reprecipitation reactions may be difficult to recognize in higher grade pelites due to subsequent diffusive re‐equilibration. Fundamental assumptions about metamorphic processes are questioned by the lack of chemical equilibrium during this reaction and the restricted permeability of the regional metamorphic pelitic schists. In addition, the partial loss of prograde chemical and textural information from the garnet porphyroblasts cautions against their routine use as a reliable monitor of metamorphic history. However, the partial re‐equilibration of the porphyroblasts during coupled dissolution–reprecipitation opens possibilities of mapping reaction progress in garnet as a means of assessing fluid access during peak metamorphic conditions.  相似文献   

4.
Garnet porphyroblasts in sillimanite‐bearing pelitic schists contain complex textural and compositional zoning, with considerable variation both within and between adjacent samples. The sillimanite‐bearing schists locally occur in regional Barrovian garnet zone assemblages and are indicative of a persistent lack of equilibrium during prograde metamorphism. Garnet in these Dalradian rocks from the Scottish Highlands preserves evidence of a range of metamorphic responses including initial growth and patchy coupled dissolution–reprecipitation followed by partial dissolution. Individual porphyroblasts each have a unique and variable response to prograde metamorphism and garnet with mainly flat compositional profiles co‐exists with those containing largely unmodified characteristic bell‐shaped Mn profiles. This highlights the need for caution in applying traditional interpretations of effective volume diffusion eliminating compositional variation. Cloudy garnet with abundant fluid inclusions is produced during incomplete modification of the initial porphyroblasts and these porous garnet are then particularly prone to partial replacement in sillimanite‐producing reactions. The modification of garnet via a dissolution–reprecipitation process releases Ca into the effective whole‐rock composition, displacing the pressure–temperature positions of subsequent isograd reactions. This represents the first report of internal metasomatism controlling reaction pathways. The behaviour of garnet highlights the importance of kinetic factors, especially deformation and fluids, in controlling reaction progress and how the resulting variability influences subsequent prograde history. The lack of a consistent metamorphic response, within and between adjacent schists, suggests that on both local and regional scales these rocks have largely not equilibrated at peak metamorphic conditions.  相似文献   

5.
Deformation-induced garnet zoning   总被引:1,自引:0,他引:1  
Hyeong Soo Kim   《Gondwana Research》2006,10(3-4):379-388
Compositional zoning patterns in garnet porphyroblasts from kyanite-bearing samples of the Devonian Littleton Formation, north-central Massachusetts, reveal complex patterns of growth that are related to multiple deformation and metamorphic events. Garnet porphyroblasts exhibit asymmetrical and irregular zoning patterns in XMn, XCa and Fe/(Fe + Mg). Zoning reversals in Mn and Fe/(Fe + Mg) and patch distribution in Ca appear to occur around the boundaries of the textural zones. Also, the compositions of the garnet at the textural boundaries are variable for all traverses. These observations suggest that the garnet zoning was not only modified from diffusion processes, but was also influenced by pre-existing microfabrics through the effects of preferential dissolution and resorption in partial disequilibrium. Relationships between chemical and textural truncations indicate that the zoning patterns of garnet were strongly modified from preferential dissolution and precipitation during the development of successive foliations that occurred in zones of high strain/stress (cleavage seams) and zones of low strain/stress, respectively.  相似文献   

6.
A spatial association is observed between the size distribution of garnet porphyroblasts and the size distribution of quartz veins in greenschist facies metapelites from Troms, North Norway. The size distribution of quartz veins reflects the flow regime of metamorphic fluids. The hypothesis that the flow regime of metamorphic fluids is also responsible for the size distribution of garnet crystals was tested by ascribing empirical acceleration parameters to the nucleation and growth rates of garnet crystals.
In regions where fluid flow was interpreted as pervasive', acceleration parameters for nucleation were high, whereas in regions where fluid flow was interpreted as channelled', acceleration parameters for growth were high. Accelerated crystal growth is further implied from the chemical zoning and crystal morphologies of garnets collected near discrete veins.
This spatial association may imply that fluid flow can be instrumental in controlling garnet crystallization. Fluid flow could affect garnet crystallization kinetics by facilitating thermal advection and/or mass transfer. In the study area, rhodochrosite (MnCO3) veins provide evidence for mass transfer of Mn by fluid flow. An influx of Mn would expand the stability field of garnet to lower temperatures. The resulting thermal overstep could accelerate nucleation and/or growth of garnets.
The corollary of this study is that size distributions and chemical zoning of garnets, or other porphyroblast phases, can be used to study metamorphic fluid flow.  相似文献   

7.
A dramatic demonstration of the role of intergranular solubility in promoting chemical equilibration during metamorphism is found in the unusual zoning of garnet in pelitic schist exposed at Harpswell Neck, Maine, USA. Many garnet crystals have irregular, patchy distributions of Mn, Cr, Fe and Mg in their inclusion‐rich interiors, transitioning to smooth, concentric zoning in their inclusion‐poor outer rims; in contrast, zoning of Ca and Y is comparatively smooth and concentric throughout. We re‐assess the disputed origin of these zoning features by examining garnet growth in the context of the thermal and structural history of the rocks, and by evaluating the record of fluid–rock interaction revealed in outcrop‐scale veining and fluid‐inclusion assemblages. The transition in the character of garnet zoning correlates with the onset of a synkinematic, simple‐shear‐dominated phase of garnet growth and with a shift in the composition of the intergranular fluid from CO2‐rich to H2O‐rich. Compositional variations in garnet are therefore best explained by a two‐stage growth history in which intergranular diffusive fluxes reflect differences in the concentration of dissolved species in these two contrasting fluids. Interiors of garnet crystals grew in the presence of a CO2‐rich fluid, in which limited solubility for Mn and Cr (and perhaps Fe and Mg) produced patchy disequilibrium overprint zoning, while appreciable solubility for Ca and Y permitted their rock‐wide equilibration. Rims grew in the presence of an H2O‐rich fluid, in which high intergranular concentrations for all elements except Cr enabled diffusion over length scales sufficient for rock‐wide equilibration. This striking example of partial chemical equilibrium during reaction and porphyroblast growth implies that thermal effects may commonly be subsidiary in importance to solubilities in the intergranular medium as determinants of length scales for metamorphic equilibration.  相似文献   

8.
《Journal of Structural Geology》2002,24(6-7):1109-1123
This study uses compositional analyses of garnet porphyroblasts to test a previously published microstructure-based model of garnet growth in the Fleur de Lys Supergroup. X-ray maps reveal significant compositional anomalies within garnet, including zoning reversals and steepened compositional gradients. These anomalies occur at the margin of the proposed first stage of garnet growth (G1), and coincide with truncations of inclusion trails and changes in the inclusion assemblage. Intervals of reversed composition zoning and steepened compositional gradients across this boundary are interpreted to represent a hiatus in garnet growth, possibly accompanied by garnet consumption, during which changes in the garnet-forming reaction, PT conditions and deformation kinematics occurred. The junction of the proposed second and third stages of garnet growth (G2 and G3) coincides with the transition between successive crenulation cleavages, without substantial microstructural truncations or changes in the inclusion assemblage. The G2–G3 boundary is generally marked by uninterrupted normal zoning, with subtle compositional anomalies in some samples. This boundary may in fact record continuous garnet growth, or alternatively mark a relatively short intra-orogenic pause in garnet growth with minimal affect on zoning patterns. Individual porphyroblasts with contrasting inclusion trail microstructures also have different zoning patterns, and this supports the previous recognition of contrasting growth histories between individual porphyroblasts. A combined structural–metamorphic model is presented that integrates the timing of garnet growth and foliation development, reaction history and the PTt path in the Fleur de Lys Supergroup.  相似文献   

9.
We employ garnet isopleth thermobarometry to derive the P–T conditions of Permian and Cretaceous metamorphism in the Wölz crystalline Complex of the Eastern Alps. The successive growth increments of two distinct growth zones of the garnet porphyroblasts from the Wölz Complex indicate garnet growth in the temperature interval of 540°C to 560°C at pressures of 400 to 500 MPa during the Permian and temperatures ranging from 550°C to 570°C at pressures in the range of 700 to 800 MPa during the Cretaceous Eo-Alpine event. Based on diffusion modelling of secondary compositional zoning within the outermost portion of the first garnet growth zone constraints on the timing of the Permian and the Eo-Alpine metamorphic events are derived. We infer that the rocks remained in a temperature interval between 570°C and 610°C over about 10 to 20 Ma during the Permian, whereas the high temperature stage of the Eo-Alpine event only lasted for about 0.2 Ma. Although peak metamorphic temperatures never exceeded 620°C, the prolonged thermal annealing during the Permian produced several 100 µm wide alteration halos in the garnet porphyroblasts and partially erased their thermobarometric memory. Short diffusion profiles which evolved around late stage cracks within the first garnet growth zone constrain the crack formation to have occurred during cooling below about 450°C after the Eo-Alpine event.  相似文献   

10.
X‐ray composition maps and quantitative analyses for Mn, Ca and Cr have been made for six pelitic and calc‐pelitic garnet crystals and Al, Fe and Cr analyses maps have been made for two kyanite crystals, from lower and mid/upper amphibolite facies rocks from the Grenville Province of western Labrador, using an electron microprobe analyser and a laser ablation ICP‐MS. Garnet with spiral (‘snowball’) internal fabrics (Si) has spiral zoning in major elements, implying that growth was concentrated in discrete regions of the crystal at any one time (spiral zoning). Cr zoning is parallel to Si in low amphibolite facies garnet with both straight and spiral internal fabrics, indicating that the garnet overprinted a fabric defined by Cr‐rich (mica±chlorite±epidote) and Cr‐poor (quartz±plagioclase) layers during growth (overprint zoning) and that Cr was effectively immobile. In contrast, in mid/upper amphibolite facies garnet porphyroblasts lacking Si, Cr zoning is concentric, implying that Cr diffusion occurred. Cr zoning in kyanite porphyroblasts appears superficially similar to oscillatory zoning, with up to three or four annuli of Cr enrichment and/or depletion present in a single grain. However, the variable width, continuity, Cr concentration and local bifurcation of individual annuli suggest that an origin by overprint zoning may be more likely. The results of this study explain previously observed nonsystematic Cr zoning in garnet and irregular partitioning of Cr between coexisting metamorphic mineral pairs. In addition, this study points to the important role of crystal growth rate in determining the presence or absence of inclusions and the type of zoning exhibited by both major and trace elements. During fast growth, inclusions are preferentially incorporated into the growing porphyroblast and slow diffusing elements such as Cr are effectively immobile, whereas during slow growth, inclusions are not generally included in the porphyroblast and Cr zoning is concentric.  相似文献   

11.
Three-dimensional quantitative textural analysis coupled with numerical modelling has been used to assess the dominant mechanisms governing crystallization of garnet porphyroblasts in rocks from diverse regional metamorphic environments. In every case, spatial dispositions, crystal size distributions, and compositional zoning patterns of porphyroblasts indicate the dominance of diffusion-controlled nucleation and growth mechanisms.
Nine samples from three geological areas were studied: a suite of semi-pelitic rocks from the Picuris Mountains, New Mexico (USA); a suite of mafic samples from the Llano Uplift, Texas (USA); and a kyanite schist from Mica Dam, British Columbia (Canada). The semi-pelitic suite exhibits post-deformational garnet growth, whereas garnet in the mafic suite and in the kyanite schist grew synkinematically in rocks displaying weak and strong penetrative fabrics, respectively.
For each sample, the centres and radii of thousands of garnet crystals were located and measured in three dimensions, using images produced by high-resolution computed X-ray tomography. Statistical measures of the degree of ordering and clustering of nucleation sites, and estimates of crystal isolation for each porphyroblast, were then computed from the measured spatial dispositions. These measures can be reproduced in simple numerical models only by diffusion-controlled nucleation and growth mechanisms. Normalized radius-rate relations computed from compositional zoning patterns in the garnets require thermally accelerated diffusion-controlled growth, providing independent confirmation of the conclusions based on textural analysis. The unexpected similarity of results from all samples indicates that diffusion-controlled nucleation and growth mechanisms may govern porphyroblast crystallization in many metamorphic regimes.  相似文献   

12.
Abstract This work uses a simplified model of equilibrium to predict the assemblage sequence and compositional zoning in garnet that should result from prograde metamorphism of common bulk compositions of pelitic rocks. An internally-consistent set of model thermodynamic data are derived for natural mineral compositions from natural assemblages. Equilibrium assemblages can be calculated for pelitic compositions with excess quartz and either muscovite or K-feldspar at any pressure and water pressure. The compositions and abundances of phases in equilibrium assemblages can be calculated where the elements Mg, Fe and Mn are exchanged among phases. The prograde metamorphic assemblage sequences and the effects of pressure on assemblages, predicted by the simulation method presented here, are similar enough to natural observations to suggest that the simulations can be used to analyse natural equilibrium and growth processes. The calculated phase diagrams at moderate and high crustal pressures explain the mineral assemblage sequence produced by prograde metamorphism in common pelitic compositions. Garnet appears by continuous reaction of biotite and chlorite as the garnet-biotite-chlorite divariant field migrates toward higher Mg/Fe ratios over the bulk composition. Staurolite appears in common bulk compositions when garnet and chlorite become incompatible. An aluminum silicate phase can appear when staurolite and chlorite react. Staurolite breaks down at an extremum point to produce garnet. Continuous reaction of biotite and sillimanite causes growth of abundant garnet. The reaction sequence involving garnet, staurolite and aluminum silicates is probably different at low pressure, but the main reason that staurolite and garnet are rare is the restricted compositional range over which their assemblages exist. Andalusite appears by the divariant reaction of chlorite and cordierite appears at low temperature in low pressure assemblages for common bulk compositions by the extremumpoint breakdown reaction of chlorite. Compositional zoning of garnet and the systematic variation of biotite composition in metamorphic sequences indicate that garnet is probably fractionated during growth. Fractionation of garnet causes garnet-consuming, univariant reactions to become multivariant. The metastable persistence of garnet should reduce the abundance and stability range of staurolite. Fractionation of even small quantities of garnet should deplete the equilibrating bulk composition of Mn, but have little effect otherwise. The simulations show that the prograde assemblage sequence in pelitic rocks can be complex in detail, with some assemblages lasting over temperature intervals of only a few degrees. The major prograde reactions that release water are the breakdown of chlorite to form garnet at low grade and the breakdown of muscovite at high grade. The volume of water released by formation of garnet at high grade is also important. These reactions have the capacity to buffer water pressure. The density of anhydrous pelitic rock increases markedly when chlorite breaks down and by the continuous reaction forming garnet at high grade. The heat content is controlled principally by heat capacity and continuous reactions. Discontinuous reactions have little thermal buffering capacity. Simulations of garnet fractionation show that commonly-observed garnet zoning profiles can be formed by garnet growth in the assemblage garnet-biotite-chlorite in common bulk compositions. A reversal of Fe-zoning in garnet can occur when garnet resumes growth above staurolite grade in the assemblage garnetbiotite-sillimanite. Discontinuities in zoning profiles can be caused only by disequilibrium. The disequilibrium can be due to either metastable persistence during a hiatus in growth or to growth by irreversible reaction. Because the appearance of garnet is controlled by a continuous rather than a discontinuous reaction, the appearance of garnet is very sensitive to bulk composition. The early development of garnet is also sensitive to the pressure and water pressure of metamorphism. As a consequence the first garnet isograd is of limited thermometric value. Metastable persistence of kyanite and manite at high grades could reduce the abundance of garnet and allow biotite to persist. Metastable persistence would also limit the of cordierite formation.  相似文献   

13.
Macroscopic textures resulting from different atomic-scale mechanisms for metamorphic crystallization display different degrees of order, clustering, intergrowth and relative isolation of porphyroblasts. Data on the sizes and locations of thousands of crystals in a three-dimensional volume are required to identify reliably the mechanisms governing nucleation and growth of porphyroblasts from these textural features. These data can now be acquired by means of high-resolution computed X-ray tomography. Numerical models that simulate porphyroblast formation governed by either interface-controlled or diffusion-controlled reaction mechanisms indicate that quantitative textural analysis can discriminate between these possibilities. These numerical models also allow a comparison between textures predicted for different crystallization mechanisms and textures measured in natural samples, from which inferences can be drawn concerning the relative importance of these mechanisms in nature. An independent test of the validity of such inferences is possible for porphyroblasts such as garnet that may preserve prograde growth zoning and allow the examination of normalized radius–rate relations.  相似文献   

14.
The strong partitioning of many trace elements into garnet and their slow diffusivities in both garnet and the rock matrix means that their distribution may record valuable petrogenetic information not documented by major elements in metamorphic rocks. Complex trace element growth zoning in garnet porphyroblasts from a garnet-grade metapelite from the Barrovian sequence of the Sikkim Himalaya is assessed using quantified LA-ICP-MS raster mapping coupled with X-ray micro-computed tomography. The data document systematic changes in the zoning patterns from early- to late-nucleated crystals, and also suggest that the REE+Y chemistry incorporated into garnet is dependent on persistent disequilibrium in the rock volume. There is evidence for HREE+Y diffusion haloes surrounding growing garnets and a heterogeneous HREE+Y distribution in the rock matrix. Annuli superimposed on oscillatory zoning are not consistent with formation during some rock-wide event, but are dependent on the spatial disposition of the garnet. Annuli are interpreted to reflect an integrated history of varying growth rates and the incorporation of pre-existing heterogeneities due to relatively slow matrix diffusivities. Conversely, smooth zoning of many transition metals indicate that their distribution in garnet may be controlled by equilibrium partitioning between garnet and the rock matrix. Significant rotation of garnet porphyroblasts during growth is revealed due to immobility of Cr over the duration of the crystallisation interval and overprinting of the heterogenous precursor Cr distribution. Strain rate estimates derived from this zoning are on the order of \(10^{-11}\)\(10^{-12}\, \hbox {s}^{-1}\).  相似文献   

15.
Porphyroblast inclusion fabrics are consistent in style and geometry across three Proterozoic metamorphic field gradients, comprising two pluton-related gradients in central Arizona and one regional gradient in northern New Mexico. Garnet crystals contain curved ‘sigmoidal’ inclusion trails. In low-grade chlorite schists, these trails can be correlated directly with matrix crenulations of an older schistosity (S1). The garnet crystals preferentially grew in crenulation hinges, but some late crenulations nucleated on existing garnet porphyroblasts. At higher grade, biotite, staurolite and andalusite porphyroblasts occur in a homogeneous S2 foliation primarily defined by matrix biotite and ilmenite. Biotite porphyroblasts have straight to sigmoidal inclusion trails that also represent the weakly folded S1 schistosity. Staurolite and andalusite contain distinctive inclusion-rich and inclusion-poor domains that represent a relict S2 differentiated crenulation cleavage. Together, the inclusion relationships document the progressive development of the S2 fabric through six stages. Garnet and biotite porphyroblasts contain stage 2 or 3 crenulations; staurolite and andalusite generally contain stage 4 crenulations, and the matrix typically contains a homogeneous stage 6 cleavage. The similarity of inclusion relationships across spatially and temporally distinct metamorphic field gradients of widely differing scales suggests a fundamental link between metamorphism and deformation. Three end-member relationships may be involved: (1) tectonic linkages, where similar P-T-time histories and similar bulk compositions combine to produce similar metamorphic and structural signatures; (2) deformation-controlled linkages, where certain microstructures, particularly crenulation hinges, are favourable environments for the nucleation and/or growth of porphyroblasts; and (3) reaction-controlled linkages, where metamorphic reactions, particularly dehydration reactions, are associated with an increase in the rate of fabric development. A general model is proposed in which (1) garnet and biotite porphyroblasts preferentially grow in stage 2 or 3 crenulation hinges, and (2) chlorite-consuming metamorphic reactions lead to pulses in the rate of fabric evolution. The data suggest that fabric development and porphyroblast growth may have been quite rapid, of the order of several hundreds of thousands of years, in these rocks. These microstructures and processes may be characteristic of low-pressure, first-cycle metamorphic belts.  相似文献   

16.
A detailed analysis of chemical zoning in two garnet crystals from Harpswell Neck, Maine, forms the basis of an interpretation of garnet nucleation and growth mechanisms. Garnet apparently nucleates initially on crenulations of mica and chlorite and quickly overgrows the entire crenulation, giving rise to complex two‐dimensional zoning patterns depending on the orientation of the thin section cut. Contours of Ca zoning cross those of Mn, Fe and Mg, indicating a lack of equilibrium among these major garnet constituents. Zoning of Fe, Mg and Mn is interpreted to reflect equilibrium with the rock matrix, whereas Ca zoning is interpreted to be controlled by diffusive transport between the matrix and the growing crystal. Image analysis reveals that the growth of garnet is more rapid along triple‐grain intersections than along double‐grain boundaries. Moreover, different minerals are replaced by garnet at different rates. The relative rate of replacement by garnet along double‐grain boundaries is ordered as muscovite > chlorite > plagioclase > quartz. Flux calculations reveal that replacement is limited by diffusion of Si along double‐grain boundaries to or from the local reaction site. It is concluded that multiple diffusive pathways control the bulk replacement of the rock matrix by garnet, with Si and Al transport being rate limiting in these samples.  相似文献   

17.
In this paper we consider crystallization of solid solutions and formation of growth zoning in minerals. To ascertain the role of various mechanisms producing zoning we have constructed kinetic models of nonsteady solid solution crystal growth. The equations obtained describe the temporal evolution of the solute and crystal composition. Since these equations are not solvable analytically we have solved them numerically by a fourth-order Runge–Kutta method. On the basis of this solution we can compute the zoning profiles for different crystallization modes and conditions. The constructed models have been used for study of mechanisms of zoning formation in metamorphic garnets. We conclude that the main mechanism of production of growth zoning is fractionation. The role of change of distribution coefficient in equilibrium crystallization is negligible. The modelling of zoning profiles reveals that simple arc-shaped profiles originate from crystallization in a closed system while complicated nonmonotonic profiles appear with crystallization in open systems under fluid flow. The duration of metamorphic garnet crystallization is estimated.  相似文献   

18.
Detailed electron microprobe analyses of phyllosilicates in crenulated phyllites from south‐eastern Vermont show that grain‐scale zoning is common, and sympathetic zoning in adjacent minerals is nearly universal. We interpret this to reflect a pressure‐solution mechanism for cleavage development, where precipitation from a very small fluid reservoir fractionated that fluid. Multiple analyses along single muscovite, biotite and chlorite grains (30–200 μm in length) show zoning patterns indicating Tschermakitic substitutions in muscovite and both Tschermakitic and di/trioctahedral substitutions in biotite and chlorite. Using cross‐cutting relationships and mineral chemistry it is shown that these patterns persist in cleavages produced at metamorphic conditions of chlorite‐grade, chlorite‐grade overprinted by biotite‐grade and biotite‐grade. Zoning patterns are comparable in all three settings, requiring a similar cleavage‐forming mechanism independent of metamorphic grade. Moreover, the use of 40Ar/39Ar geochronology demonstrates this is true regardless of age. Furthermore, samples with chlorite‐grade cleavages overprinted by biotite porphyroblasts suggest the closure temperatures for the diffusion of Al, Si, Mg and Fe ions are greater than the temperature of the biotite isograd (>~400 °C). Parallel and smoothly fanning tie lines produced by coexisting muscovite–chlorite, and muscovite–biotite pairs on compositional diagrams demonstrate effectively instantaneous chemical equilibrium and probably indicate simultaneous crystallization. These results do not support theories suggesting cleavages form in fluid‐dominated systems. If crenulation cleavages formed in systems in which the chemical potentials of all major components are fixed by an external reservoir, then the compositions of individual grains defining these cleavages would be uniform. On the contrary, the fine‐scale chemical zoning observed probably reflects a grain‐scale process consistent with a pressure‐solution mechanism in which the aqueous activities of major components are defined by local dissolution and precipitation. Thus the role of fluids was probably limited to one of catalysing pressure‐solution and fluids apparently did not drive cleavage development.  相似文献   

19.
刘焰  吕永增 《地学前缘》2011,18(2):100-115
藏北羌塘地体中部产出一变质杂岩带,因其地貌突起,将羌塘地体一分为二,故常称其为羌中隆起带。虽然在该变质杂岩带中先后识别出蓝片岩、榴辉岩等变质岩,但对该变质杂岩带演化过程的认识却存在截然不同的观点,一种观点认为该变质杂岩带是原位的古特提斯板块缝合带的标志;另一观点则针锋相对,认为该变质杂岩带系外来的、底辟上升的杂岩带,不能作为古板块缝合带的证据。在该变质杂岩带中部的绒马乡,石榴蓝闪片岩呈大小不一的岩片和/或透镜体产出于石榴石多硅白云母石英片岩内,主要由石榴石变斑晶和由蓝闪石、绿泥石、白云母、绿帘石、石英、钠长石、金红石/钛铁矿、磷灰石、黑云母等矿物构成的基质组成。石榴石变斑晶粒径达2 mm,具典型的生长环带:核部富锰,锰铝榴石分子摩尔分数可达22%,至边部,铁铝榴石和镁铝榴石分子含量显著升高,而锰铝榴石分子含量则快速下降。石榴石变斑晶内部包体发育,可再细分为两类,一类包体产出于核部,包括被解释为硬柱石假象的细粒钠云母,绿帘石所构成的细粒板状集合体和细粒富铁蓝闪石、石英及金红石等包体;另一类包体则为数量较少的自形大颗粒绿帘石包体,产出于石榴石边部,在其内部还有细粒蓝闪石、金红石与石英等包体产出。基质中的角闪石可识别出3期:核部为富铁的蓝闪石,幔部为贫铁的蓝闪石,最外部为冻蓝闪石。基质中的绿帘石和绿泥石常为自形,绿帘石内常见细粒蓝闪石、石英、金红石等包体,而绿泥石边部常有黑云母的冠状体。在PEXPLE程序计算的p T视剖面图中,石榴石核部形成的p T条件为20 GPa、470 ℃,对应硬柱石榴辉岩相,而石榴石边部形成的p T条件为17~18 GPa、530~540 ℃,对应绿帘石榴辉岩相。岩相学观察与p T视剖面模拟研究充分反映了绒马地区石榴蓝闪片岩分别经历了硬柱石榴辉岩相、绿帘石榴辉岩相和近等温快速降压的退变质等变质过程,系冷洋壳快速俯冲与折返的产物,因此,文中支持该变质杂岩带为原位古特提斯板块缝合带的观点。硬柱石转变为绿帘石时,在俯冲通道中释放了大量的流体。T O视剖面研究进一步表明这种矿物相转变只发生于高氧逸度条件下,暗示所释放的流体可能也是高氧逸度流体。该高氧逸度流体可交代上覆地幔楔,并诱发后者发生部分熔融作用形成高氧逸度岩浆,如果这一推测是合理的,则羌塘地块内部应该存在斑岩型铜金矿床。 关键词:羌塘地体; 石榴蓝闪片岩; 视剖面模拟; 富氧流体  相似文献   

20.
Polycrystalline garnets are common in metamorphic rocks and may form as a result of close spacing of nuclei (if clustering is early) or impingement of larger grains (if clustering occurs later in the growth history). The timing of clustering relative to garnet growth is relevant to understanding the formation and evolution of porphyroblasts and evaluating the significance (if any) of clustering. Electron backscattered diffraction (EBSD) analysis of garnet-bearing metamorphic rocks reveals the presence of polycrystalline garnet in nine localities examined in this study: the northern Appalachians (Vermont, Maine, New York, USA); North American Cordillera (North Cascades Range, Washington; Snake Range, Nevada, USA); western Rocky Mountains (British Columbia, Canada); southern Menderes Massif (Turkey); Santander Massif (Colombia); and the Sanandaj–Sirjan zone (Hamadan, Iran). In some samples, polycrystals comprise ~20–30% of garnets analyzed, and chemical and textural evidence suggests that early coalescence of garnet polycrystals is common. Some early-coalescing polycrystals exhibit growth zoning that is concentric about the geometric center of the polycrystal. In thin section, these garnets may be undetectable as polycrystals based on morphology or zoning. In some polycrystals, zoning is unrelated to the location of internal grain boundaries; in others, Fe–Mn–Mg zoning has a different pattern than that of Ca; zoning patterns may vary on the scale of a single thin section. In addition, some polycrystals are characterized by high-angle misorientation boundaries that may be in special (non-random) orientations, an observation that indicates that these polycrystals are not random clusters of grains. The presence of internal grain boundaries may affect diffusion pathways and length scales, and may facilitate communication of porphyroblast interiors with matrix phases, thereby influencing reaction history of the rock and the composition/zoning of garnet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号