首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
High-resolution pollen analyses ( 50 yr) from sediment cores retrieved at Chernyshov Bay in the NW Large Aral Sea record shifts in vegetational development from subdesertic to steppe vegetation in the Aral Sea basin during the late Holocene. Using pollen data to quantify climatic parameters, we reconstruct and date for the first time significant changes in moisture conditions in Central Asia during the past 2000 yr. Cold and arid conditions prevailed between ca. AD 0 and 400, AD 900 and 1150, and AD 1500 and 1650 with the extension of xeric vegetation dominated by steppe elements. These intervals are characterized by low winter and summer mean temperatures and low mean annual precipitation (Pmm < 250 mm/yr). Conversely, the most suitable climate conditions occurred between ca. AD 400 and 900, and AD 1150 and 1450, when steppe vegetation was enriched by plants requiring moister conditions (Pmm  250–500 mm/yr) and some trees developed. Our results are fairly consistent with other late Holocene records from the eastern Mediterranean region and the Middle East, showing that regional rainfall in Central Asia is predominantly controlled by the eastern Mediterranean cyclonic system when the North Atlantic Oscillation (NAO) is in a negative phase.  相似文献   

2.
We investigated mineral aerosol (dust) deposition in the Aral Sea with intention to understand the variability of dust in central Asia and its implications for atmospheric circulation change in the late Holocene. Using an 11.12-m sediment core of the lake, we calculated bulk sediment fluxes at high time-resolution and analyzed grain-size distributions of detrital sediments. A refined age-depth model was established by combined methods of radiocarbon dating and archeological evidence. Besides, a principal component analysis (PCA) of grain-size fractions and elements (Fe, Ti, K, Ca, Sr) was used to assess the potential processes controlling detrital inputs. The results suggest that two processes are mainly relevant for the clastic input as the medium silt fractions and Ti, Fe and K are positively correlated with Component 1 (C1), and the fine size fractions (<6 μm) are positively correlated with Component 2 (C2). Taking the results of the PCA, geological backgrounds, clastic input processes into account, we propose that the medium silt fractions and, in particular, the grain-size fraction ratio (6–32 μm/2–6 μm), can serve as indicators of the variability of airborne dust in the Aral Sea region. On the contrary, the fine size fractions appear to be contributed mainly by the sheetwash processes. The bulk sediment deposition fluxes were extremely high during the Little Ice Age (LIA; AD 1400–1780), which may be related to the increased dust deposition. As indicated by the variations of grain-size ratio and Ti, the history of dust deposition in central Asia can be divided into five distinct periods, with a remarkably low deposition during AD 1–350, a moderately high value from AD 350–720, a return to relatively low level between AD 720 and AD 1400 (including the Medieval Warm Period (MWP, AD 755–1070)), an exceptionally high deposition from AD 1400 to 1940s and an abnormally low value since 1940s. The temporal variations in the dust deposition are consistent with the changes in the Siberian High (SH) and mean atmospheric temperature of the northern hemisphere during the past 2000 years, with low/high annual temperature anomalies corresponding to high/low dust supplies in the Aral Sea sediments, respectively. The variations in the fine size fraction also show a broadly similarity to a lacustrine δ18O record in Turkey (Jones et al., 2006), implying that there was less moisture entering western central Asia from the Mediterranean during the LIA than during the MWP.  相似文献   

3.
Formerly the world's fourth largest lake by area, the Aral Sea is presently undergoing extreme desiccation due to large-scale irrigation strategies implemented in the Soviet era. As part of the INTAS-funded CLIMAN project into Holocene climatic variability and the evolution of human settlement in the Aral Sea basin, fossil diatom assemblages contained within a sediment core obtained from the Aral Sea have been applied to a diatom-based inference model of conductivity (r2 = 0.767, RMSEP = 0.469 log10 μS cm 1). This has provided a high-resolution record of conductivity and lake level change over the last ca. 1600 yr. Three severe episodes of lake level regression are indicated at ca. AD 400, AD 1195–1355 and ca. AD 1780 to the present day. The first two regressions may be linked to the natural diversion of the Amu Darya away from the Aral Sea and the failure of cyclones formed in the Mediterranean to penetrate more continental regions. Human activity, however, and in particular the destruction of irrigation facilities are synchronous with these early regressions and contributed to the severity of the observed low stands.  相似文献   

4.
We explore the hypothesis that the abrupt drainage of Laurentide lakes and associated rapid switch of the North Atlantic thermohaline circulation 8200 yr ago had a catastrophic influence on Neolithic civilisation in large parts of southeastern Europe, Anatolia, Cyprus, and the Near East. The event at 8200 cal yr BP is observed in a large number of high-resolution climate proxies in the Northern Hemisphere, and in many cases corresponds to markedly cold and arid conditions. We identify the relevant archaeological levels of major Neolithic settlements in Central Anatolia, Cyprus, Greece and Bulgaria, and examine published stratigraphic, architectural, cultural and geoarchaeological studies for these sites. The specific archaeological events and processes we observe at a number of these sites during the study interval 8400–8000 cal yr BP lead us to refine some previously established Neolithisation models. The introduction of farming to South-East Europe occurs in all study regions (Thrace, Macedonia, Thessaly, Bulgaria) near 8200 cal yr BP. We observe major disruptions of Neolithic cultures in the Levant, North Syria, South-East Anatolia, Central Anatolia and Cyprus, at the same time. We conclude that the 8200 cal yr BP aridity event triggered the spread of early farmers, by different routes, out of West Asia and the Near East into Greece and Bulgaria.  相似文献   

5.
Kent C.  Elena  W.L.  Keith N. 《Gondwana Research》2009,15(3-4):228-242
The goal of this study is to evaluate the global age distribution of granitoid magmatism and juvenile continental crust production with U/Pb isotopic ages from igneous and detrital zircons, and with Nd isotopic data. Granitoid age peaks, which are largely defined by TIMS data, are narrow and precise in contrast to detrital peaks that are often broad and hump-shaped due to the larger uncertainties of SHRIMP and LAM-ICPMS data. Granitic age peaks do not always have detrital counterparts and vice versa. Possible contributing factors to this mismatch are removal of crustal sources by erosion, inadequate sampling of granitoids because of cover by younger rocks, or small age peaks hidden by large age peaks in detrital spectra.Seven igneous peaks are found on five or more cratons or continents (3300, 2700, 2680, 2500, 2100, 1900 and 1100 Ma) and seven detrital peaks occur on three or more continents (2785, 2700, 2600, 2500, 1900, 1650 and 1200 Ma). Nd isotope distributions suggest important additions of juvenile continental crust at 2700, 2500, 2120, 1900, 1700, 1650, 800, 570 and 450 Ma. Tight clusters of craton ages occur for Superior–Karelia, Sao Francisco–Nain, and Kaapvaal–Siberia in the early Archean and for Wyoming–Kaapvaal–Slave, Superior–Nain, and West Africa–Amazonia in the late Archean. The global 2700-Ma peak is not a simple spike, but involves several peaks between 2760 and 2650 Ma. Events older than 3700 Ma are limited to the Yilgarn, Slave, Nain and North China cratons, and events between 2600 and 2500 Ma are widespread only in East Asia, Central and East Africa, and India.Single, short-lived mantle plume events at 2700 and 1900 Ga (or any other time) cannot easily account for prolonged episodes of granitoid magmatism during the Precambrian. The causes of geographically widespread and geographically restricted events are probably not the same.  相似文献   

6.
We present two new quantitative July mean temperature (Tjul) reconstructions from the Arctic tree-line region in the Kola Peninsula in north-western Russia. The reconstructions are based on fossil pollen records and cover the Younger Dryas stadial and the Holocene. The inferred temperatures are less reliable during the Younger Dryas because of the poorer fit between the fossil pollen samples and the modern samples in the calibration set than during the Holocene. The results suggest that the Younger Dryas Tjul in the region was 8.0–10.0°C, being 2.0–3.0°C lower than at present. The Holocene summer temperature maximum dates to 7500–6500 cal yr BP, with Tjul about 1.5°C higher than at present. These new records contribute to our understanding of summer temperature changes along the northern-European tree-line region. The Holocene trends are consistent in most of the independent records from the Fennoscandian–Kola tree-line region, with the beginning of the Holocene thermal maximum no sooner than at about 8000 cal yr BP. In the few existing temperature-related records farther east in the Russian Arctic tree line, the period of highest summer temperature begins already at about 10,000 cal yr BP. This difference may reflect the strong influence of the Atlantic coastal current on the atmospheric circulation pattern and the thermal behaviour of the tree-line region on the Atlantic seaboard, and the more direct influence of the summer solar insolation on summer temperature in the region east of the Kola Peninsula.  相似文献   

7.
A long-term flood record from the Buffels River, the largest ephemeral river of NW South Africa (9250 km2), was reconstructed based on interpretation of palaeoflood, documentary and instrumental rainfall data. Palaeoflood data were obtained at three study reaches, with preserved sedimentary evidence indicating at least 25 large floods during the last 700 yr. Geochronological control for the palaeoflood record was provided by radiocarbon and optically stimulated luminescence (OSL) dating. Annual resolution was obtained since the 19th century using the overlapping documentary and instrumental records. Large floods coincided in the past within three main hydroclimatic settings: (1) periods of regular large flood occurrence (1 large flood/~30 yr) under wetter and cooler prevailing climatic conditions (AD 1600–1800), (2) decreasing occurrence of large floods (1 large flood/~100 yr) during warmer conditions (e.g., AD 1425–1600 and after 1925), and (3) periods of high frequency of large floods (~ 4–5 large floods in 20–30 yr) coinciding with wetter conditions of decadal duration, namely at AD 1390–1425, 1800–1825 and 1915–1925. These decadal-scale periods of the highest flood frequency seem to correspond in time with changes in atmospheric circulation patterns, as inferred when comparing their onset and distribution with temperature proxies in southern Africa.  相似文献   

8.
Palynological analyses (pollen and dinocysts) of a sediment core taken in the Kara-Bogaz Gol have been used to reconstruct rapid and catastrophic environmental changes over the last two centuries (chronology based on 210Pb). A natural cyclicity (65 years) of water level changes in the Caspian Sea (CS) and in the Kara-Bogaz Gol (KBG) and anthropogenic factors (building of a dam separating the CS and the KBG waters) combine to induce rapid changes in water levels of the KBG, in the salinity of its waters and in vegetation cover of its surroundings. The impact of low water levels on the dinocysts is marked by a lower diversity and the survival of two species that are typical of the KBG, the Caspian Sea species present in the KBG having disappeared. During periods of higher water levels (AD 1871–1878), the lake is surrounded by a steppe-like vegetation dominated by Artemisia; whereas during periods of low water levels (AD 1878–1913 and AD 1955–1998), the emerged shore are colonised by Chenopodiaceae. The period of AD 1913–1955 corresponding to decreasing water levels has an extremely low pollen concentration and a maximum of reworking of arboreal taxa. During the last low-level period, humans responded by abandoning the shores of the bay. What happened to the KBG can be used as an example of what may happen in the future for the Aral Sea.A problem of reworking of Tertiary dinocysts into modern deposits has been detected owing to the knowledge of the modern dinoflagellate assemblages recently made available through a water survey. A comparison to modern surface pollen samples from Central Asia (Anzali, Caspian Sea south and central basins, Aral Sea, Lake Balkhash, Lake Issyk-Kul and the Chinese Tien-Shan range) allows us to establish the potential reworking of at least five arboreal pollen taxa possibly by run-off and dust storms.  相似文献   

9.
The geological, structural and tectonic evolutions of the Yenisey Ridge fold-and-thrust belt are discussed in the context of the western margin of the Siberian craton during the Neoproterozoic. Previous work in the Yenisey Ridge had led to the interpretation that the fold belt is composed of high-grade metamorphic and igneous rocks comprising an Archean and Paleoproterozoic basement with an unconformably overlying Mesoproterozoic–Neoproterozoic cover, which was mainly metamorphosed under greenschist-facies conditions. Based on the existing data and new geological and zircon U–Pb data, we recognize several terranes of different age and composition that were assembled during Neoproterozoic collisional–accretional processes on the western margin of the Siberian craton. We suggest that there were three main Neoproterozoic tectonic events involved in the formation of the Yenisey Ridge fold-and-thrust belt at 880–860 Ma, 760–720 Ma and 700–630 Ma. On the basis of new geochronological and petrological data, we propose that the Yeruda and Teya granites (880–860 Ma) were formed as a result of the first event, which could have occurred in the Central Angara terrane before it collided with Siberia. We also propose that the Cherimba, Ayakhta, Garevka and Glushikha granites (760–720 Ma) were formed as a result of this collision. The third event (700–630 Ma) is fixed by the age of island-arc and ophiolite complexes and their obduction onto the Siberian craton margin. We conclude by discussing correlation of these complexes with those in other belts on the margin of the Siberian craton.  相似文献   

10.
The Permian–Jurassic Mahanadi and Pranhita–Godavari Rifts are part of a drainage system that radiated from the Gamburtsev Subglacial Mountains in central Antarctica. From 12 samples we analysed detrital zircons for U–Pb ages, Hf-isotopes, and trace elements to determine the age, rock type and source of the host magma, and TDM model age. Clusters, in decreasing order of abundance, are (1) 820–1000 Ma, host magmas felsic granitoids with alkaline rock, (2) 1500–1700 Ma felsic granitoids, (3) 500 to 700 Ma mafic granitoids with alkaline rock, (4) 2400–2550 Ma granitoids, and (5) 1000–1200 Ma felsic and mafic granitoids, mafic rock, and alkaline rock. TDM ranges from 1.5 to 3.5 Ga. Joint paleoslope measurements and zircon ages indicate that the Eastern Ghats Mobile Belt (EGMB) and lateral belts and conjugate Antarctica are potential provenances. Zircons from the Gondwana Rifts differ from those in other Gondwanaland sandstones in their predominant 820–1000 Ma and 1500–1700 Ma ages (from the EGMB and conjugate Rayner–MacRobertson Belt) that dilute the 500–700 Ma (Pan-Gondwanaland) ages. The 1000–1200 Ma zircons reflect the assembly of Rodinia, the 500–700 Ma ones that of Gondwanaland; the other ages reflect collisions in the region.  相似文献   

11.
Plant macrofossils from 33 rodent middens sampled at three sites between 2910 and 3150 m elevation in the main canyon of the Río Salado, northern Chile, yield a unique record of vegetation and climate over the past 22,000 cal yr BP. Presence of low-elevation Prepuna taxa throughout the record suggests that mean annual temperature never cooled by more than 5°C and may have been near-modern at 16,270 cal yr BP. Displacements in the lower limits of Andean steppe and Puna taxa indicate that mean annual rainfall was twice modern at 17,520–16,270 cal yr BP. This pluvial event coincides with infilling of paleolake Tauca on the Bolivian Altiplano, increased ENSO activity inferred from a marine core near Lima, abrupt deglaciation in southern Chile, and Heinrich Event 1. Moderate to large increases in precipitation also occurred at 11,770–9550 (Central Atacama Pluvial Event), 7330–6720, 3490–2320 and at 800 cal yr BP. Desiccation occurred at 14,180, 8910–8640, and 4865 cal yr BP. Compared to other midden sites in the region, early Holocene desiccation seems to have happened progressively earlier farther south. Emerging trends from the cumulative midden record in the central Atacama agree at millennial timescales with improved paleolake chronologies for the Bolivian Altiplano, implying common forcing through changes in equatorial Pacific sea-surface temperature gradients.  相似文献   

12.
High-resolution paleomonsoon proxy records from peat and eolian sand–paleosol sequences at the desert–loess transition zone in China denote a rapid oscillation from cold–dry conditions (11,200–10,60014C yr B.P.) to cool–humid conditions (10,600–10,20014C yr B.P.), followed by a return to cold–dry climate (10,200–10,00014C yr B.P.). Variations in precipitation proxies suggest that significant climatic variability occurred in monsoonal eastern Asia during the Younger Dryas interval. Late-glacial climate in the Chinese desert–loess belt that lies downwind from Europe was strongly influenced by cold air from high latitudes and from the North Atlantic via the westerlies. The inferred precipitation variations were likely caused by variations in the strength of the Siberian high, which influenced the pressure gradient between land and ocean and therefore influenced the position of the East Asian monsoon front.  相似文献   

13.
A.S. Yakubchuk   《Ore Geology Reviews》2009,35(3-4):447-454
The orogenic collages of the northern Circum-Pacific between Japan and Alaska revealed an endowment of about 450 Moz Au in various deposit types and diverse Mesozoic–Cenozoic tectonic settings. The area consists of predominantly late Paleozoic to Cenozoic turbidite to island arc terranes as well as Precambrian cratonic terranes that can be grouped into the Kolyma–Alaska, Kamchatka–Aleutian, and Nipponide collages. The latter can be linked via the Mongol–Okhotsk suture with the late Paleozoic to early Mesozoic terranes in the Mongolides.The early Yanshanian magmatic arc terranes in the fossil Kolyma–Alaska collage host copper–gold porphyry deposits, which have only recently received much attention. Exploration has revealed a large and growing gold endowment of more than 30 Moz Au in some individual deposits, with smaller role of epithermal deposits. This mineralization, formed at 140–125 Ma, is partly coeval with the collisions of magmatic arcs with the passive margin sequences of the Siberian craton and related granitoid magmatism. About 200 Moz of gold is known in the Kolyma–Alaska collage in the Mesozoic orogenic gold deposits and related Quaternary placers. The Central Kolyma, Indigirka, South Verkhoyansk, and North Chukotka subprovinces of the collage revealed an endowment of more than 10 Moz Au each. A similar and coeval event in the Mongolides in relation to the collision between Siberia and North China is largely reflected in still poorly dated intrusion-related gold deposits clustered along the Mongol–Okhotsk suture.The overlapping Yanshanian magmatic arcs in Transbaikalia and northeast China and the Okhotsk–Chukotka magmatic arc in the Russian Far East stitch the Kolyma–Alaska collage with the Paleozoic Central Asian supercollage and adjacent cratons. While the Okhotsk–Chukotka arc reveals a relatively simple and broad oroclinal pattern, the Yanshanian arcs in Mongolia, and NE China form a tightly deformed giant Z-shaped feature that was bent in response to the southward movement of the Siberian craton and northward translation of the Nipponides and North China craton to close the Mongol–Okhotsk suture in late Jurassic to Cretaceous times. The Yanshanian arcs host mostly small to medium-sized 100–70 Ma Au–Ag deposits, with the largest endowment discovered in the Baley district in Transbaikalia and at Kupol in the northern part of the Okhotsk–Chukotka arc. Some intrusion-related gold deposits were formed synchronously with this arc magmatism, with the largest known examples in the Tintina belt in Alaska formed at 104 and 93–91 Ma.The Kamchatka–Aleutian collage is still evolving in front of the westward-subducting Pacific plate. It's late Cretaceous to Paleogene magmatic arc rocks form immature island arc terranes, extending from the Aleutian islands towards the Nipponides via Kamchatka peninsula, Kuril islands and eastern Sakhalin. However, in the Nipponides, the Sikhote–Alin portion of the magmatic arc overlaps the Mesozoic turbidite terranes. The oroclinal pattern of this more than 8000 km-long magmatic arc indicates its westward translation in agreement with the movement of the Pacific plate so that the arc is presently colliding with itself along the island of Sakhalin, a seismically active intraplate lineament and a boundary between the Nipponide and Kamchatka–Aleutian collages. This magmatic arc is usually interpreted to be of intra-oceanic origin, with subsequent docking to Asia from the south; however, presence of the Sea of Okhotsk cratonic terrane between Sakhalin and Kamchatka suggests that it may be rather considered as an external arc system that separated from the rest of Asia due to backarc spreading events, therefore, forming the most external arc system at the active margin with the Pacific plate. The subduction-related events in the collage produced numerous late Mesozoic to Cenozoic 1–3 Moz gold epithermal deposit in Kamchatka and Sikhote–Alin as well as Au–Cu porphyry deposits, with currently largest gold endowment in the pre-Tertiary Pebble Copper deposit in Alaska. The westward translation of the Kamchatka–Aleutian collage might have controlled the emplacement of this porphyry deposit, as well as up to 30 Moz into intrusion-related gold deposits at 70–65 Ma in the Kuskokwim belt, immediately north from the porphyry cluster.  相似文献   

14.
Coral microatolls have been long used as precise indicators of past sea level, but their use for precise definition of detailed sea-level fluctuations is still rare. Here we report twelve high-precision thermal ionization mass spectrometric 230Th ages for twelve rims of five mid-Holocene microatolls from an emerged reef terrace at Leizhou Peninsula, northern South China Sea. This is a tectonically stable area, enabling us to reconstruct both the timing and trajectory of local sea-level fluctuations accurately. The elevations of these microatoll rims and cores were accurately determined relative to the surface of modern living microatolls at the same site. The results indicate that the sea level during the period of 7050–6600 yr bp (years before AD 1950) was about 171 to 219 cm above the present, with at least four cycles of fluctuations. Over this 450 yr interval, sea level fluctuated by 20–40 cm on century scales.  相似文献   

15.
A high-resolution multi-proxy study including the elemental and isotopic composition of bulk organic matter, land plant-derived biomarkers, and alkenone-based sea-surface temperature (SST) from a marine sedimentary record obtained from the Jacaf Fjord in northern Chilean Patagonia (44°20′S) provided a detailed reconstruction of continental runoff, precipitation, and summer SST spanning the last 1750 yr. We observed two different regimes of climate variability in our record: a relatively dry/warm period before 900 cal yr BP (lower runoff and average SST 1°C warmer than present day) and a wet/cold period after 750 cal yr BP (higher runoff and average SST 1°C colder than present day). Relatively colder SSTs were found during 750–600 and 450–250 cal yr BP, where the latter period roughly corresponds to the interval defined for the Little Ice Age (LIA). Similar climatic swings have been observed previously in continental and marine archives of the last two millennia from central and southern Chile, suggesting a strong latitudinal sensitivity to changes in the Southern Westerly Winds, the main source of precipitation in southern Chile, and validating the regional nature of the LIA. Our results reveal the importance of the Chilean fjord system for recording climate changes of regional and global significance.  相似文献   

16.
Lake Zeribar sediments covering the time period of the last 25,000 years were examined for the contents of seeds, fruits, Characeae, diatoms, and molluscs. Reconstructions of the variations in the lake water level, salinity, and trophy suggest a sequence of climatic changes. Three pronounced stages of low and varying lake-water level occurred ca. 17,700–15,400, 12,600–12,000, and 10,000–6000 cal yr BP. Some water-level changes were correlated with variations in salinity. The most pronounced increase of salinity occurred 17,700–15,700 and 12,600–12,000 cal yr BP, and less distinct ones occurred about 6400–5900 and 2500 cal yr BP. Diatom assemblages indicated a strong increase of lake trophy ca. 20,200 cal yr BP. Between 6000 and 5000 cal yr BP diatoms characteristic of eutrophy increased in core 63J, and at about 3200 cal yr BP a distinct increase in mesotrophic forms occurred in core 70B. The changes in the occurrence of various organisms indicate increased temperatures about 21,000 cal yr BP, between 15,400 and 12,600, about 12,000, and about 11,700 cal yr BP. The reduced occurrence or disappearance of some of them suggest temperature decreases about 17,700–15,400 and 12,600–12,000 cal yr BP.  相似文献   

17.
We study the aggradation and incision of the Alaknanda River Valley during the late Pleistocene and Holocene. The morphostratigraphy in the river valley at Deoprayag shows the active riverbed, a cut terrace, and a fill terrace. The sedimentary fabric of the fill terrace comprises four lithofacies representing 1) riverbed accretion, 2) locally derived debris fan, 3) the deposits of waning floods and 4) palaeoflood records. The sedimentation style, coupled with geochemical analysis and Optically Stimulated Luminescence (OSL) dating, indicate that this terrace formed in a drier climate and the river valley aggraded in two phases during 21–18 ka and 13–9 ka. During these periods, sediment supply was relatively higher. Incision began after 10 ka in response to a strengthened monsoon and aided by increase of the tectonic gradient. The cut terrace formed at ~ 5 ka during a phase of stable climate and tectonic quiescence. The palaeoflood records suggest wetter climate 200–300 yr ago when the floods originated in the upper catchment of the Higher Himalaya and in the relatively drier climate ~ 1.2 ka when locally derived sediments from the Lesser Himalaya dominated flood deposits. Maximum and minimum limits of bedrock incision rate at Deoprayag are 2.3 mm/a and 1.4 mm/a.  相似文献   

18.
Northwestern Fujian Province is one of the most important Pre-Palaeozoic areas in the Cathaysia Block of South China. Metavolcano-sedimentary and metasedimentary rocks of different types, ages and metamorphic grades (granulite to upper greenschist facies) are present, and previously were divided into several Formations and Groups. Tectonic contacts occur between some units, whereas (deformed) unconformities have been reported between others. New SHRIMP U–Pb zircon ages presented here indicate that the original lithostratigraphy and the old “Group” and “Formation” terminology should be abandoned. Thus the “Tianjingping Formation” was not formed in the Archaean or Palaeoproterozoic, as previously considered, but must be younger than its youngest detrital zircons (1790 Ma) but older than regional metamorphism (460 Ma). Besides magmatic zircon ages of 807 Ma obtained from metavolcano-sedimentary rocks of the “Nanshan Formation” and 751–728 Ma for the “Mamianshan Group”, many inherited and detrital zircons with ages ranging from 1.0 to 0.8 Ga were also found in them. These ages indicate that the geological evolution of the study area may be related to the assembly and subsequent break-up of the Rodinia supercontinent. The new zircon results poorly constrain the age of the “Mayuan Group” as Neoproterozoic to early Palaeozoic (728–458 Ma), and not Palaeoproterozoic as previously thought. Many older inherited and detrital zircons with ages of 3.6, 2.8, 2.7, 2.6–2.5, 2.0–1.8 and 1.6 Ga were found in this study. A 3.6 Ga detrital grain is the oldest one so far identified in northwestern Fujian Province as well as throughout the Cathaysia Block. Nd isotope tDM values of eight volcano-sedimentary and clastic sedimentary rock samples centre on 2.73–1.68 Ga, being much older than the formation ages of their protoliths and thus showing that the recycling of older crust played an important role in their formation. These rocks underwent high grade metamorphism in the early Palaeozoic (458–425 Ma) during an important tectono-thermal event in the Cathaysia Block.  相似文献   

19.
The Central African Belt in the Nkambe area, northwestern Cameroon represents a collisional zone between the Saharan metacraton and the Congo craton during the Pan-African orogeny, and exposes a variety of granitoids including foliated and massive biotite monzogranites in syn- and post-kinematic settings. Foliated and massive biotite monzogranites have almost identical high-K calc-alkaline compositions, with 73–67 wt.% SiO2, 17–13 wt.% Al2O3, 2.1–0.9 wt.% CaO, 4.4–2.7 wt.% Na2O and 6.3–4.4 wt.% K2O. High concentrations of Rb (264–96 ppm), Sr (976–117 ppm), Ba (3680–490 ppm) and Zr (494–99 ppm), with low concentrations of Y (mostly< 20 ppm with a range 54–6) and Nb (up to 24 ppm) suggest that the monzogranites intruded in collisional and post-collisional settings. The Sr/Y ratio ranges from 25 to 89. K, Rb and Ba resided in a single major phase such as K-feldspar in the source. Garnet was present in the source and remained as restite at the site of magma generation. This high K2O and Sr/Y granitic magma was generated by partial melting of a granitic protolith under high-pressure and H2O undersaturated conditions where garnet coexists with K-feldspar, albitic plagioclase. CHIME (chemical Th–U-total Pb isochron method) dating of zircon yields ages of 569 ± 12–558 ± 24 Ma for the foliated biotite monzogranite and 533 ± 12–524 ± 28 Ma for the massive biotite monzogranite indicating that the collision forming the Central African Belt continued in to Ediacaran (ca 560 Ma).  相似文献   

20.
Recent results of high-resolution seismic tomography and mineral physics experiments are used to study mantle dynamics of Western Pacific and East Asia. The most important processes in subduction zones are the shallow and deep slab dehydration and the convective circulation (corner flow) processes in the mantle wedge. The combination of the two processes may have caused the back-arc spreading in the Lau basin, affected the morphology of the subducting Philippine Sea slab and its seismicity under southwest Japan, and contributed to the formation of the continental rift system and intraplate volcanism in Northeast Asia, which are clearly visible in our tomographic images. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent (a) small mantle plumes, (b) upwellings associated with the slab collapsing down to the lower mantle, or (c) sub-slab dehydration associated with deep earthquakes caused by the reactivation of large faults preserved in the slab. Combining tomographic images and earthquake hypocenters with phase diagrams in the systems of peridotite + water, we proposed a petrologic model for arc volcanism. Arc magmas are caused by the dehydration reactions of hydrated slab peridotite that supply water-rich fluids to the mantle wedge and cause partial melting of the convecting mantle wedge. A large amount of fluids can be released from hydrated MORB at depths shallower than 55 km, which move upwards to hydrate the wedge corner under the fore-arc, and never drag down to the deeper mantle along the slab surface. Slab dehydration reactions at 120 km depth are the antigorite-related 5 reactions which supply water-rich fluids for forming the volcanic front. Phase A and Mg-surssasite breakdown reactions at 200 and 300 km depths below 700 °C cause the second and third arcs, respectively. Moreover, the dehydration reactions of super-hydrous phase B, phases D and E at 500–660 km depths cause the fluid transportation to the mantle boundary layer (MBL) (410–660 km depth). The stagnant slabs extend from Japan to Beijing, China for over 1000 km long, indicating that the arc–trench system covers the entire region from the Japan trench to East Asia. We propose a big mantle wedge (BMW) model herein, where hydrous plumes originating from 410 km depth cause a series of intra-continental hot regions. Fluids derived from MBL accumulated by the double-sided subduction zones, rather than the India–Asia collision and the subsequent indentation into Asia, are the major cause for the active tectonics and mantle dynamics in this broad region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号