首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We present a ∼5-yr optical light curve of the recurrent Be/X-ray transient A0538–66 obtained as a by-product of the MACHO Project. These data reveal both a long-term modulation at P =420.8±0.8 d and a short-term modulation at 16.6510±0.0022 d which, within errors, confirms the previously found orbital period. Furthermore, the orbital activity is only seen at certain phases of the 421-d cycle, suggesting that the long-term modulation is related to variations in the Be star envelope.  相似文献   

2.
The orbital period modulation, observed in close binary systems with late-type secondary stars, is considered in the framework of a general model that allows us to test the hypothesis proposed by Applegate. It relates the orbital period variation to the modulation of the gravitational quadrupole moment of their magnetically active secondary stars produced by angular momentum exchanges within their convective envelopes. By considering the case of RS CVn binary systems, it is found that the surface angular velocity variation of the secondary component required by Applegate's hypothesis is between 4 and 12 per cent, i.e. too large to be compatible with the observations and that the kinetic energy dissipated in its convection zone ranges from 4 to 43 times that supplied by the stellar luminosity along one cycle of the orbital period modulation. Similar results are obtained for other classes of close binary systems by applying a scaling relationship based on a simplified internal structure model. The effect of rapid rotation is briefly discussed finding that it is unlikely that the rotational quenching of the turbulent viscosity may solve the discrepancy. Therefore, the hypothesis proposed by Applegate is not adequate to explain the orbital period modulation of close binary systems with a late-type secondary.  相似文献   

3.
We present charge-coupled device (CCD) photometry of WX Cet in quiescence. Apart from the flickering which is characteristic to cataclysmic binaries, our data also reveal the periodic modulation of the brightness of WX Cet with a period of 0.058 27±0.000 02, with further restrictions on it. This period is derived from our data alone, but it agrees, within errors, with the spectroscopic period of Thorstensen et al. Hence the most likely spectroscopic and photometric periods are identical and correspond to the orbital motion. Our data were obtained during two observational seasons in 1990 and 1998. In the former season we observed what appears to be the ordinary orbital hump. However, in 1998 we observed both single- and double-hump orbital modulation. Several authors have noted the similarities between WX Cet and WZ Sge: the occurrence of rare, large-amplitude, long-lasting superoutbursts with superhump modulation, and the slow rate of decline. Both stars have similar, extremely short orbital periods. We recorded further similarities: the orbital modulation of brightness, with switching between single- and double-hump light curves. Patterson noticed that superhump excesses in WX Cet and WZ Sge are different in that they may fall on different evolutionary branches (pre-period minimum versus post-period minimum). We demonstrate that the masses of their white dwarfs differ by a factor of two.  相似文献   

4.
We discuss the observed orbital period modulations in close binaries, and focus on the mechanism proposed by Applegate relating the changes of the stellar internal rotation associated with a magnetic activity cycle with the variation of the gravitational quadrupole moment of the active component; the variation of this quadrupole moment in turn forces the orbital motion of the binary stars to follow the activity level of the active star. We generalize this approach by considering the details of this interaction, and develop some illustrative examples in which the problem can be easily solved in analytical form. Starting from such results, we consider the interplay between rotation and magnetic field generation in the framework of different types of dynamo models, which have been proposed to explain solar and stellar activity. We show how the observed orbital period modulation in active binaries may provide new constraints for discriminating between such models. In particular, we study the case of the prototype active binary RS Canum Venaticorum, and suggest that torsional oscillations — driven by a stellar magnetic dynamo — may account for the observed behaviour of this star. Further possible applications of the relationship between magnetic activity and orbital period modulation, related to the recent discovery of binary systems containing a radio pulsar and a convecting upper main-sequence or a late-type low-mass companion, are discussed.  相似文献   

5.
We have obtained I -band photometry of the neutron star X-ray transient Aql X-1 during quiescence. We find a periodicity at 2.487 cycles d−1, which we interpret as twice the orbital frequency (19.30±0.05 h). Folding the data on the orbital period, we model the light-curve variations as the ellipsoidal modulation of the secondary star. We determine the binary inclination to be 20°–30° (90 per cent confidence) and also determine the 95 per cent upper limits to the radial velocity semi-amplitude and rotational broadening of the secondary star to be 117 and 50 km s−1, respectively.  相似文献   

6.
The triple-lined spectroscopic triple system HD 109648 has one of the shortest periods known for the outer orbit in a late-type triple, 120.5 d, and the ratio between the periods of the outer and the inner orbits is small, 22:1. With such extreme values, this system should show orbital element variations over a time-scale of about a decade. We have monitored the radial velocities of HD 109648 with the CfA Digital Speedometers for 8 yr, and have found evidence for modulation of some orbital elements. While we see no definite evidence for modulation of the inner binary eccentricity, we clearly observe variations in the inner and the outer longitudes of periastron, and in the radial velocity amplitudes of the three components. The observational results, combined with numerical simulations, allow us to put constraints on the orientation of the orbits.  相似文献   

7.
The connection between orbital period modulation and magnetic activity in close binaries is reviewed with an emphasis on the comparison between observational data for RS CVn systems and recently proposed theoretical models. The orbital period changes occurring on timescales of the order of a few decades can be accounted for by means of a standing torsional Alfven wave in the convection zone of the magnetically active components of such systems. Two resonant excitation mechanisms based on the coupling between the wave and an αΩ dynamo are discussed from a qualitative point of view. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Superhumps in low-mass X-ray binaries   总被引:1,自引:0,他引:1  
We propose a mechanism for the superhump modulations observed in optical photometry of at least two black-hole X-ray transients (SXTs). As in extreme mass-ratio cataclysmic variables (CVs), superhumps are assumed to result from the presence of the 3:1 orbital resonance in the accretion disc. This causes the disc to become non-axisymmetric and precess. However, the mechanism for superhump luminosity variations in low-mass X-ray binaries (LMXBs) must differ from that in CVs, where it is attributed to a tidally-driven modulation of the disc's viscous dissipation, varying on the beat between the orbital and disc precession period. By contrast in LMXBs, tidal dissipation in the outer accretion disc is negligible: the optical emission is overwhelmingly dominated by reprocessing of intercepted central X-rays. Thus a different origin for the superhump modulation is required. Recent observations and numerical simulations indicate that in an extreme mass-ratio system the disc area changes on the superhump period. We deduce that the superhumps observed in SXTs arise from a modulation of the reprocessed flux by the changing area. Therefore, unlike the situation in CVs, where the superhump amplitude is inclination-independent, superhumps should be best seen in low-inclination LMXBs, whereas an orbital modulation from the heated face of the secondary star should be more prominent at high inclinations. Modulation at the disc precession period (10 s of days) may indicate disc asymmetries such as warping. We comment on the orbital period determinations of LMXBs, and the possibility and significance of possible permanent superhump LMXBs.  相似文献   

9.
We report additional photometric CCD observations of KPD 0422+5421, a binary with an orbital period of 2.16 h which contains a subdwarf B star (sdB) and a white dwarf. There are two main results of this work. First, the light curve of KPD 0422+5421 contains two distinct periodic signals, the 2.16-h ellipsoidal modulation discovered by Koen, Orosz & Wade and an additional modulation at 7.8 h. This 7.8-h modulation is clearly not sinusoidal: the rise time is about 0.25 in phase, whereas the decay time is 0.75 in phase. Its amplitude is roughly half of the amplitude of the ellipsoidal modulation. Secondly, after the 7.8-h modulation is removed, the light curve folded on the orbital period clearly shows the signature of the transit of the white dwarf across the face of the sdB star and the signature of the occultation of the white dwarf by the sdB star. We have used the Wilson–Devinney code to model the light curve to obtain the inclination, the mass ratio and the Ω potentials, and a Monte Carlo code to compute confidence limits on interesting system parameters. We find component masses of     and     ( M total     , 68 per cent confidence limits). If we impose an additional constraint and require the computed mass and radius of the white dwarf to be consistent with a theoretical mass–radius relation, we find     and     (68 per cent confidence limits). In this case the total mass of the system is less than 1.4 M at the 99.99 per cent confidence level. We briefly discuss possible interpretations of the 7.8-h modulation and the importance of KPD 0422+5421 as a member of a rare class of evolved binaries.  相似文献   

10.
We report on the results of the first simultaneous X-ray ( RXTE ) and optical [South African Astronomical Observatory (SAAO)] observations of the luminous low-mass X-ray binary (LMXB) GX 9+9 in 1999 August. The high-speed optical photometry revealed an orbital period of 4.1958 h and confirmed previous observations, but with greater precision. No X-ray modulation was found at the orbital period. On shorter time-scales, a possible 1.4-h variability was found in the optical light curves which might be related to the MHz quasi-periodic oscillations seen in other LMXBs. We do not find any significant X-ray/optical correlation in the light curves. In X-rays, the colour–colour and hardness-intensity diagrams indicate that the source shows characteristics of an atoll source in the upper banana state, with a correlation between intensity and spectral hardness. Time-resolved X-ray spectroscopy suggests that two-component spectral models give a reasonable fit to the X-ray emission. Such models consist of a blackbody component which can be interpreted as the emission from an optically thick accretion disc or an optically thick boundary layer, and a hard Comptonized component for an extended corona.  相似文献   

11.
We present the results of a 2.5-yr multiwavelength monitoring programme of Cygnus X-1, making use of hard and soft X-ray data, optical spectroscopy, UBVJHK photometry and radio data. In particular, we confirm that the 5.6-d orbital period is apparent in all wavebands, and note the existence of a wavelength dependence to the modulation, in the sense that higher energies reach minimum first. We also find a strong modulation at a period of 142±7 d, which we suggest is caused by precession and/or radiative warping of the accretion disc. Strong modulation of the hard and soft X-ray flux at this long period may not be compatible with simple models of an optically thin accretion flow and corona in the low state. We present the basic components required for more detailed future modelling of the system – including a partially optically thick jet, quasi-continuous in the low state, the base of which acts as the Comptonizing corona. In addition, we find that there are a number of flares that appear to be correlated in at least two wavebands and generally in more. We choose two of these flares to study in further detail, and find that the hard and soft X-rays are well correlated in the first, and that the soft X-rays and radio are correlated in the second. In general, the optical and infrared show similar behaviour to each other, but are not correlated with the X-rays or radio.  相似文献   

12.
Towards an understanding of the Of?p star HD 191612: optical spectroscopy   总被引:1,自引:0,他引:1  
We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe–O8fp). The Balmer and He  i lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. He  ii absorptions and metal lines (including many selective emission lines but excluding He  ii λ4686 Å emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with   P orb= 1542 d, e = 0.45  . We conduct a model-atmosphere analysis of the spectrum, and find that the system is consistent with a ∼O8 giant with a ∼B1 main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying 'clock'. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.  相似文献   

13.
We have investigated the long-term flux variation in Cen X-3 using orbital modulation and pulsed fraction in different flux states using observations made with the All-Sky Monitor and the Proportional Counter Array on board the Rossi X-ray Timing Explorer . In the high state, the eclipse ingress and egress are found to be sharp whereas in the intermediate state the transitions are more gradual. In the low state, instead of eclipse ingress and egress, the light curve shows a smooth flux variation with orbital phase. The orbital modulation of the X-ray light curve in the low state shows that the X-ray emission observed in this state is from an extended object. The flux-dependent orbital modulations indicate that the different flux states of Cen X-3 are primarily due to varying degree of obscuration. Measurement of the pulsed fraction in different flux states is consistent with the X-ray emission of Cen X-3 having one highly varying component with a constant pulsed fraction and an unpulsed component and in the low state, the unpulsed component becomes dominant. The observed X-ray emission in the low state is likely to be due to scattering of X-rays from the stellar wind of the companion star. Though we cannot ascertain the origin and nature of the obscuring material that causes the aperiodic long-term flux variation, we point out that a precessing accretion disc driven by radiative forces is a distinct possibility.  相似文献   

14.
New standardized V ‐band light curves (LCs) for the eclipsing binary SV Cam have been modeled using the PHOEBE program (v. 0.31a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass‐radius diagram. Analysis of eclipse minima timing data (OC diagrams) indicated two cyclic periods of 48.0 and 23.3 yr. These cyclic variations of the orbital period are interpreted in terms of motion of a third body around the system and magnetic activity cycle modulating the orbital period of SV Cam via the Applegate (1992) mechanism. The use of the Applegate model for SV Cam has been checked by examining the long term brightness variation and calculating some important parameters of this system. The results of these calculations favor the modulation of the orbital period by the Applegate mechanism. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present radio interferometric observations of the Algol-type binary system RZ Cassiopeiae made with the VLA and MERLIN arrays at 6 cm over an incomplete orbital cycle of the system (1.195 d). We detected RZ Cas with both instruments. The images were unresolved in both cases, with angular extents comparable to the synthesized beams. The peak flux density in the VLA image was 1.14 mJy beam−1 and in the MERLIN image it was 0.93 mJy beam−1. The derived brightness temperatures are  4.02 × 108  and  4.35 × 108 K  and the effective electron energies are 0.347 and 0.346 MeV for the MERLIN and VLA data respectively. The radio light curve shows an interesting modulation centred close to the primary eclipse which seems to correlate with ASCA SIS observations of the system. The results can be interpreted as an emitting region on the outer hemisphere of the cool component aligned along the centroid axis of the binary system.  相似文献   

16.
A model for the angular momentum transfer within the convection zone of a rapidly rotating star is introduced and applied to the analysis of recent observations of temporal fluctuations of the differential rotation on the young late-type stars AB Doradus (AB Dor) and LQ Hydrae (LQ Hya). Under the hypothesis that the mean magnetic field produced by the stellar dynamo rules the angular momentum exchanges and that the angular velocity depends only on the distance s from the rotation axis and the time, the minimum azimuthal Maxwell stress  | BsB φ|  , averaged over the convection zone, is found to range from ∼0.04 to  ∼0.14 T2  . If the poloidal mean magnetic field   B s   is of the order of 0.01 T, as indicated by the Zeeman–Doppler imaging maps of those stars, then the azimuthal mean field   B φ  can reach an intensity of several teslas, which significantly exceeds equipartition with the turbulent kinetic energy. Such strong fields can account also for the orbital period modulation observed in cataclysmic variables and RS Canum Venaticorum systems with a main-sequence secondary component. Moreover, the model allows us to compute the kinetic energy dissipation rate during the maintenance of the differential rotation. Only in the case of the largest surface shear observed on LQ Hya may the dissipated power exceed the stellar luminosity, but the lack of a sufficient statistic on the occurrence of such episodes of large shear does not allow us to estimate their impact on the energy budget of the convection zone.  相似文献   

17.
We present and analyze long‐term optical photometric measurements of the three active stars V2253 Oph, IT Com and IS Vir. All three systems are single‐lined spectroscopic binaries with an early K giant as primary component but in different stages of orbital‐rotational synchronization. Our photometry is supplemented by 2MASS and WISE near‐IR and mid‐IR magnitudes and then used to obtain more accurate effective temperatures and extinctions. For V2253 Oph and IT Com, we found their spectral energy distributions consistent with pure photospheric emission. For IS Vir, we detect a marginal mid‐IR excess which hints towards a dust disk. The orbital and rotational planes of IT Com appear tobe coplanar, contrary to previous findings in the literature. We apply a multiple frequency analysis technique to determine photometric periods, and possibly changes of periods, ranging from days to decades. New rotational periods of 21.55±0.03 d, 65.1±0.3 d, and 23.50±0.04 d were determined for V2253 Oph, IT Com, and IS Vir, respectively. Splitting of these periods led to tentative detections of differential surface rotations of δP/P ≈ 0.02 for V2253 Oph and 0.07 for IT Com. Using a time‐frequency technique based on short‐term Fourier transforms we present evidence of cyclic light variations of length ≈ 10 yr for V2253 Oph and 5–6 yr for IS Vir. A single flip‐flop event has been observed for IT Com of duration 2–3 yr. Its exchange of the dominant active longitude had happened close to a time of periastron passage, suggesting some response of the magnetic activity from the orbital dynamics. The 21.55‐d rotational modulation of V2253 Oph showed phase coherence also with the orbital period, which is 15 times longer than the rotational period, thus also indicating a tidal feedback with the stellar magnetic activity. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We report the discovery of a periodic modulation in the optical lightcurve of the candidate ultracompact X-ray binary 4U 1822−000. Using time-resolved optical photometry taken with the William Herschel Telescope we find evidence for a sinusoidal modulation with a semi-amplitude of 8 per cent and a period of 191 min, which is most likely close to the true orbital period of the binary. Using the van Paradijs & McClintock relation for the absolute magnitude and the distance modulus allowing for interstellar reddening, we estimate the distance to 4U 1822−000 to be 6.3 kpc. The long orbital period casts severe doubts on the ultracompact nature of 4U 1822−000.  相似文献   

19.
We present the complete set of 34 ASCA observations of non-magnetic cataclysmic variables. Timing analysis reveals large X-ray flux variations in dwarf novae in outburst (Z Cam, SS Cyg and SU UMa) and orbital modulation in high inclination systems (including OY Car, HT Cas, U Gem, T Leo). We also found episodes of unusually low accretion rate during quiescence (VW Hyi and SS Cyg). Spectral analysis reveals broad temperature distributions in individual systems, with emission weighted to lower temperatures in dwarf novae in outburst. Absorption in excess of interstellar values is required in dwarf novae in outburst, but not in quiescence. We also find evidence for subsolar abundances and X-ray reflection in the brightest systems.
LS Peg, V426 Oph and EI UMa have X-ray spectra that are distinct from the rest of the sample and all three exhibit candidate X-ray periodicities. We argue that they should be reclassified as intermediate polars.
In the case of V345 Pav we found that the X-ray source had been previously misidentified.  相似文献   

20.
We undertook two time-series photometric multisite campaigns for the rapidly oscillating Ap star HD 122970. The first one, conducted in 1998, resulted in 119 h of data and in the detection of three pulsation frequencies. The presence of possible further modes which held the promise of deriving a mode identification motivated a second worldwide campaign in the year 2001. This second campaign resulted in 203 h of measurement, but did not reveal further modes. Rather, one of the previously detected signals disappeared. The two modes common to both data sets have different spherical degree. They also showed slight frequency modulation, and one of them varied in amplitude as well. Possible causes of the latter behaviour include intrinsic instability of the pulsation spectrum or precession of the pulsational axis and orbital motion in a binary system. Frequency analysis of the Hipparcos observations of the star did not allow us to determine the stellar rotation period. The amplitude and phase behaviour of the two modes of HD 122970 in the Strömgren uvby bands is quite similar to that observed for other roAp stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号