首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 285 毫秒
1.
TheUBV light curves of Duerbeck and Karimie (1979) for the southern eclipsing binary RT Sculptoris were analysed using information limit optimizing computer programs. We decide in favour of the transit primary minimum hypothesis. The system is found to be semi-detached, but in the rare primary contact configuration. This implies a fast mass transfer process. Our derived picture of the system broadly corroborates that of Hilditch and King (1986), but our analysis includes a detailed treatment of the hot spot. We also report on recent spectroscopic radial velocity data obtained at Mt. Stromlo, Canberra. The system provides an important case study for low mass close binary research.  相似文献   

2.
The applicability of the properties of central configurations proceeding from the many-body problem to study of gaseous sphere cloud evolution during its gravitational contraction is justified. It is shown that the product runs to a constant value in the asymptotic time limit of simultaneous collision of all the particles of the cloud where is a form-factor of the potential energy and is a form-factor of the moment of inertia.The spherical bodies as well as ellipsoids of rotation and general ellipsoids with a one-dimensional mass distribution (k),k[0, 1] are found to possess the property =const.
. , - , , ., , - =const., , (k),k[0, 1].
  相似文献   

3.
In this paper we present observations of two types of solar mass ejections, which seem to be associated with the location of coronal, holes. In the first type, a filament eruption was observed near a coronal hole, which gave rise to a strong interplanetary scintillations. as detected by IPS observations. In the second type, several large scale soft X-ray blow-outs were observed in the YOHKOH SXT X-ray movies, in all the cases they erupted from or near the boundary of coronal holes and over the magnetic neutral line. It is proposed that the open magnetic field configuration of the coronal hole provides, the necessary field structure for reconnection to take place, which in turn is responsible for filament eruption, from relatively lower heights. While, in the case of X-ray blow-outs, the reconnection takes place at a greater height, resulting in high temperature soft X-ray emission visible as X-ray blow-outs.  相似文献   

4.
5.
J. A. Adam 《Solar physics》1977,52(2):293-307
It is shown that the singular behaviour exhibited by a solution of the magnetoatmospheric wave equation for motion in the presence of a horizontal magnetic field is a special case of the valve type critical level discussed by Acheson (1973), with the difference that the valve effect does not strictly occur; waves are captured as they approach the singular level from either side and are neither reflected or transmitted, but constrained to propagate along the field line. This effect is also likely to occur for purely vertical fields. The possible importance of such critical levels to solar physics is discussed.  相似文献   

6.
7.
Recently Gosling (1993) examined the interplanetary consequences of solar activity, and suggested that the coronal mass ejection (CME) was the prime driver of most disturbances (i.e., interplanetary shocks, high-energy particles, geomagnetic storms, etc.) and that the solar flare was relatively unimportant in this context. He coined the phrase Solar Flare Myth. Since that paper there has been much debate on the origin of interplanetary disturbances - most people sitting squarely in the flare or CME camp. vestka (1995) has attacked Gosling's conclusions on the grounds that it is misleading to ignore the flare, and that past flare classifications were perfectly adequate for explaining the observations described by Gosling. This paper is a comment on vestka's report and an attempt to put the Solar Flare Myth into perspective - indeed it is an attempt to view the solar flare/CME phenomena in a more constructive light.  相似文献   

8.
A limiting case of the problem of three bodies (m 0,m 1,m 2) is considered. The distance between the bodiesm 0 andm 1 is assumed to be much less than that between their barycenter and the bodym 2 so that one may use Hill's approximation for the potential of interaction between the bodiesm 1 andm 2. In the absence of resonant relations the potential, double-averaged by the mean longitudes ofm 1 andm 2, describes the secular evolution of the orbits in the first approximation of the perturbation theory.As Harrington has shown, this problem is integrable. In the present paper a qualitative investigation of the evolution of the orbits and comparison with the analogous case in the restricted problem are carried out.The set of initial data is found, for which a collision between the bodiesm 0 andm 1 takes place.The region of the parameters of the problem is determined, for which plane retrograde motion is unstable.In a special example the results of approximate analysis are compared with those of numerical integration of the exact equations of the three body problem.
m 0,m 1,m 2. , m 0 m 1. m 2, m 1 m 2 m 1 m 2 . , . . , m 0 m 1. , . .
  相似文献   

9.
10.
11.
12.
The three-dimensional structure of the solar magnetic field in the interplanetary space is inferred from a theoretical point of view. We use the magnetic field produced by a magnetic dipole rotating obliquely in vacuum. The correction for the presence of a plasma surrounding the Sun is taken into account in terms of a phenomenological approximation.Our method well reproduces the basic features of the polarity-reversal-surface (the neutral sheet in the two-hemisphere model by Saito (1975)) obtained on the basis of observational data, i.e. the snail-shell like structure and variation of its precise shape in accordance with the solar cycle, except for the folding of the surface.  相似文献   

13.
The interplanetary shock wave front shape and intensity are calculated numerically by means of the WKB-approach, with nonlinear effects taken into account. The solar flare is modelled as an isotropic point explosion at the solar wind base. The heliospheric current sheet (HCS) is represented by a radially diverging stream with a higher plasma concentration and a lower wind speed. Fast magnetosonic shock wave propagation along the HCS is connected with the effect of regular accumulation of the wave energy in the vicinity of the HCS. In this place the wave intensity is increased, and the corresponding front fragments go ahead to form a shock-wave forerunner as a pimple. The primple, in turn, is located inside a quite a large, but less-contrast, dimple in the wave surface. This dimple approximately coincides with the HCS stream contours. If the flare is outside the HCS boundaries, the picture discussed above is conserved, but asymmetry effects arise. Thus the interplanetary shock is stronger when the Earth's observer and the flare are on the same side of the HCS and is weaker in the opposite case.  相似文献   

14.
15.
Since the average relation between the angular momentaP and the massesM of galaxies can be represented by a power lawPM , we can define a relative angular momentum =P/M (or a constant timeP/M ). For a random motion picture within protogalaxies, should follow a Maxwellian distribution and consequently the dispersion of log should be 0.210.For the reasonable range of ( to 2), the limited sample of galaxies with known dynamical parameters gives between and 1 times the Maxwellian value. For the plausible special case =2 the reciprocal of the maximum rotational velocityv m is already a measure of and the larger sample ofv m-values not only yields the Maxwellian but, moreover, shows the shape of the distribution.
PM , =constP/M . , (lg )=0.210. 7/42, . =2 v m- .
  相似文献   

16.
The general conception of the critical inclinations and eccentricities for theN-planet problem is introduced. The connection of this conception with the existence and stability of particular solutions is established. In the restricted circular problem of three bodies the existence of the critical inclinations is proved for any values of the ratio of semiaxes . The asymptotic behaviour of the critical inclinations as 1 is investigated.
. . . 1.
  相似文献   

17.
. , , . , t>1010 ( z<105) .
In this paper we continue the work of Weymann, investigating the causes of distortion of the spectrum of the residual radiation from the Planck curve. We discuss the distortion to the spectrum, resulting from recombination of primeval plasma.We then derive an analytic expression for the distortion to the equilibrium spectrum due to Compton scattering by hot electrons. On the basis of the observational data we conclude that a period of the existence of neutral hydrogen is inescapable in the hot model of the universe. It is concluded that any injection of energy att>1010 sec (red shiftz<105) give the distortions of the equilibrium spectrum.
  相似文献   

18.
We study the bifurcations of families of double and quadruple period orbits in a simple Hamiltonian system of three degrees of freedom. The bifurcations are either simple or double, depending on whether a stability curve crosses or is tangent to the axis b=–2. We have also generation of a new family whenever a given family has a maximum or minimum or .The double period families bifurcate from simple families of periodic orbits. We construct existence diagrams to show where any given family exists in the control space (, ) and where it is stable (S), simply unstable (U), doubly unstable (DU), or complex unstable (), We construct also stability diagrams that give the stability parameters b1 and b2 as functions of (for constant ), or of (for constant ).The quadruple period orbits are generated either from double period orbits, or directly from simple period orbits (at double bifurcations). We derive several rules about the various types of bifurcations. The most important phenomenon is the collision of bifurcations. At any such collision of bifurcations the interconnections between the various families change and the general character of the dynamical system changes.  相似文献   

19.
20.
, . () . , , , . ( ), , , . . (2.7). ( 1 k 1 ,V — , — .) (k 1) (k) §2 ( (2.14)). , (3.6) (3.4), (3.8) . (3.9)–(3.13) ( (3.9), (3.10) (3.11) , (3.12)–(3.13) ). (3.14), (3.16)–(3.19). - . (3.15). ( (4.14)–(4.15)). (4.23)–(4.25). (4.26)–(4.28). §5. , . ((5.5)–(5.6)). , . (5.10) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号