首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the observed features and physical conditions in the radio jets of several low-luminosity radio galaxies, I discuss the re-acceleration of relativistic electrons. On assuming a Fermi type acceleration, an acceleration coefficient of ~10?15 s?1 was obtained, which can well explain the radio brightness distribution in the jets and their spectrum. I further discuss the possibility of MHD turbulence providing the acceleration, and find that the turbulence energy spectral index must be restricted to the very narrow range 1.6–1.7.  相似文献   

2.
Hot spots similar to those in the radio galaxy Cygnus A can be explained by the strong shock produced by a supersonic but classical jet \(\left( {u_{jet}< c/\sqrt 3 } \right)\) . The high integrated radio luminosity (L?2×1044 erg s?1) and the strength of mean magnetic field (B?2×10?4 G) suggest the hot spots are the downstream flow of a very strong shock which generates the ultrarelativistic electrons of energy ?≥20 MeV. The fully-developed subsonic turbulence amplifies the magnetic field of the jet up to 1.6×10?4 G by the dynamo effect. If we assume that the post-shock pressure is dominated by relativistic particles, the ratio between the magnetic energy density to the energy density in relativistic particles is found to be ?2×10?2, showing that the generally accepted hypothesis of equipartition is not valid for hot spots. The current analysis allows the determination of physical parameters inside hot spots. It is found that:
  1. The velocity of the upstream flow in the frame of reference of the shock isu 1?0.2c. Radio observations indicate that the velocity of separation of hot spots isu sep?0.05c, so that the velocity of the jet isu jet=u 1+u sep?0.25c.
  2. The density of the thermal electrons inside the hot spot isn 2?5×10?3 e ? cm?3 and the mass ejected per year to power the hot spot is ?4M 0yr?1.
  3. The relativistic electron density is less than 20% of the thermal electron density inside the hot spot and the spectrum is a power law which continues to energies as low as 30 MeV.
  4. The energy density of relativistic protons is lower than the energy density of relativistic electrons unlike the situation for cosmic rays in the Galaxy.
  相似文献   

3.
Quasars, pulsars and other cosmic sources of intense radiation are known to have large brightness temperature (kT b?mc 2) and relativistic electron density values. In this case the induced Compton scattering by relativistic electrons should be considered. The probability of scattering with decreasing radiation frequency is derived for isotropic radiation scattering. When induced scattering takes place, the relativistic electron obtains its energy by transforming high-frequency quanta into the low-frequency ones. In the most intensive sources electrons would receive energiesE?mc 2 ××(kT b/mc 2)1/7 due to the heating rate proportional toE ?5 with the cooling rate proportional toE 2. Considerable distortion of the quasar spectrum is possible for reasonably large values of relativistic electron density (N?106cm?3) notwithstanding that the heating is negligible. In pulsars relativistic electron heating and spectrum distortion appear to depend more on the induced Compton scattering.  相似文献   

4.
In the present paper we consider the frequency spectrum, time variations and polarization of the flux of synchrotron radio emission from a source which consists of two components flying apart in opposite directions with relativistic velocities at the same time expanding. A comparison of the calculations with unusual double-humped spectra of some radio sources suggests the existence in their nuclei of such double components which are at an early stage of relativistic ejection. In particular the double-humped spectra of 3C 84 and 4C 50.11/NRAO-150 can be interpreted in the proposed model (see Figures 6, 7, 12 and Equations (22), (32)). In this model the ratio of maximum frequenciesv 1m/v 2m should be larger than that of the maximum fluxesF v1m (1)/F v2m (2).The linear polarization of the double-humped spectrum is analysed. It is found under rather specific conditions that at the low-frequency maximum of the spectrum of the type given in Figures 6 and 7 a lower degree of linear polarization is expected than at the high-frequency maximum. In addition, it is natural to expect the appearance of circular polarization in sources with internal largescale relativistic motions. The time variations of the radio flux of some QSS, N-galaxies, and nuclei of Seyfert galaxies can also be interpreted in the suggested model of two clouds of relativistic electrons flying apart in different directions with relativistic velocities while simultaneously expanding. For example, Figure 11 shows the flux variations at 3 frequencies whose ratio is 16:4:1. This picture is similar to the observations of 3C 279 at 3.4 mm, 2 cm and 6 cm, and several other sources (Kellermann andPauliny-Toth, 1968).There have been a number of attempts to explain the flux variations of radio sources in the model of successive, but unrelated outbursts of clouds of relativistic electrons caused by supernova explosions. This model meets many difficulties and seems improbable. In this paper we suggest experimental tests to make a final choice between the model of double components flying apart relativistically and the model of two successive, but unrelated, outbursts from supernovae.If the suggested model of explosions in radio sources is correct, then the processes of variable energy output in such different populations as QSS, N-galaxies, radio-galaxies and the nuclei of normal galaxies have a similar nature, differing only in quantity.Translated by D. F. Smith.  相似文献   

5.
Based on the half-century-long history of radio observations of the Crab Nebula, we investigate the evolution of its radio luminosity. We found a secular decrease in the radio luminosity; it has decreased by 9% since the discovery of the radio source in 1948. Apart from the secular decrease in the luminosity of the Crab Nebula, we identified two time intervals, 1981–1987 and 1992–1998, when radio bursts with energy release ~1041 erg took place. In these years, the spectral indices of the instantaneous spectra decreased significantly due to the increase in the flux densities at short (centimeter and millimeter) wavelengths. These events were preceded by sudden increases in the pulsar’s rotation rates, the largest of which, with an amplitude of ΔΩ/Ω = 3 × 10?8, occurred in 1975 and 1989. We show that the magnetospheric instability mechanism that accompanies strong glitches can provide the energetics of the excess luminosity of the Nebula through the ejection of relativistic electrons with a total energy higher than 6 × 1042 erg from the pulsar’s magnetosphere.  相似文献   

6.
The advent of three-dimensional, electromagnetic, and fully relativistic particle simulations allows a detailed study of a magnetized, rotating plasma, galaxy model. When two such models are simulated, an interaction yielding results resembling observational data from double radio sources, including the emission of synchrotron radiation, are obtained. Simulation derived morphologies, radiation intensities, frequency spectra, and isophote patterns are directly compared to observations. The constituent plasma parameters associated with the source Cygnus A are found to ben e =1.8×10?3 cm?3,T=2.8 keV,B=20–30 gamma, with a small population of electrons accelerated to GeV energies by a rotation induced electric field. The results of these simulations, involving a computational resource of five CDC 7600 and five Cray-1 computers, strongly supports an inhomogeneous version of the Klein world model.  相似文献   

7.
A computation is presented that predicts with sufficient accuracy the energy transfer between relativistic electrons and radio photons by means of stimulated Compton events. It is shown that the majority of currently assumed parameters for quasi-stellar objects result in situations where the relativistic electrons must be producedinitially at rather high energies (102–103) in order to survive for any appreciable length of time.  相似文献   

8.
In the present paper a model of the cosmic radio source with plasma, relativistic electrons and chaotic magnetic fields is considered. It is assumed that the energy changes of relativistic electrons which are due to spontaneous scattering on the transverse and Langmuir plasmons take place in this radio source. For such a radio source the kinetic equation has been solved in the presence of the injected or formed secondary electrons and the frequency spectrum has been obtained.  相似文献   

9.
From July 13 to August 21, 1994, we observed Jupiter at 1420 MHz using one of the 30-m single dishes of the Instituto Argentino de Radioastronomía. After the impact of fragment G, we detected a rapid increase of the 21cm-continuum flux, which reached the maximum (≈ 20% of Jupiter's flux) at the end of the impact period. The nature of this radiation is clearly synchrotron. We interpret it in terms of a new population of relativistic electrons (≈ 2 × 1029) injected into the Jovian magnetosphere as a consequence of the impact explosions. The proposed mechanism is that the relativistic plasma was blown as magnetic clouds that flowed along the magnetic lines of force towards the jovimagnetic equator. We constructed a model in which the energies of the fresh electrons, generated within the magnetized clouds with a power law energy spectrum, were highly degraded by the comet dust grains attached to the magnetized plasma. The model can account for the spectral shape based on observations at several frequencies (de Pater et al., 1995, Science 268, 1879; Venturi et al., 1996, Astron. Astrophys. 316, 243). The energy released by the explosions under the form of relativistic electrons is of ≈ 2 × 1025 erg, which represents a fraction of about 1–3 per cent of the explosion energy. The efficiency in converting the explosion energy into the relativistic electron energy is, therefore, of the same order of magnitude as that of supernova explosions. An alternative model is considered. This gives figures for the total energy and number of relativistic electrons that are similar to the corresponding ones of the favoured model. Finally, we suggest that the behavior of the flux decay in the various observed frequencies is the result of the diffusion of electrons into the loss-cone due to the resonant scattering of the electrons by Alfven waves. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The propagation and modulation of electrons in the heliosphere play an important part in improving our understanding and assessment of the modulation processes. A full three-dimensional numerical model is used to study the modulation of galactic electrons, from Earth into the inner heliosheath, over an energy range from 10 MeV to 30 GeV. The modeling is compared with observations of 6–14 MeV electrons from Voyager 1 and observations at Earth from the PAMELA mission. Computed spectra are shown at different spatial positions. Based on comparison with Voyager 1 observations, a new local interstellar electron spectrum is calculated. We find that it consists of two power-laws: In terms of kinetic energy E, the results give E ?1.5 below ~500 MeV and E ?3.15 at higher energies. Radial intensity profiles are computed also for 12 MeV electrons, including a Jovian source, and compared to the 6–14 MeV observations from Voyager 1. Since the Jovian and galactic electrons can be separated in the model, we calculate the intensity of galactic electrons below 100 MeV at Earth. The highest possible differential flux of galactic electrons at Earth with E=12 MeV is found to have a value of 2.5×10?1 electrons m?2?s?1?sr?1?MeV?1 which is significantly lower (a factor of 3) than the Jovian electron flux at Earth. The model can also reproduce the extraordinary increase of electrons by a factor of 60 at 12 MeV in the inner heliosheath. A lower limit for the local interstellar spectrum at 12 MeV is estimated to have a value of (90±10) electrons m?2?s?1?sr?1?MeV?1.  相似文献   

11.
Two-dimensional maps of radio brightness temperature and polarization, computed assuming thermal emission with free-free and gyroresonance absorption, are compared with observations of active region 2502, performed at Westerbork at λ = 6.16 cm during a period of 3 days in June 1980. The computation is done assuming a homogeneous model in the whole field of view (5′ × 5′) and a force-free extrapolation of the photospheric magnetic field observed at MSFC with a resolution of 2″.34. The mean results are the following:
  1. A very good agreement is found above the large leading sunspot of the group, assuming a potential extrapolation of the magnetic field and a constant conductive flux in the transition region ranging from 2 × 106 to 107 erg cm?2s?1.
  2. A strong radio source, associated with a new-born moving sunspot, cannot be ascribed to thermal emission. It is suggested that this source may be due to synchrotron radiation by mildly relativistic electrons accelerated by resistive instabilities occurring in the evolving magnetic configuration. An order-of-magnitude computation of the expected number of accelerated particles seems to confirm this hypothesis.
  相似文献   

12.
We analyze and discuss the properties of decameter spikes observed in July?–?August 2002 by the UTR-2 radio telescope. These bursts have a short duration (about one second) and occur in a narrow frequency bandwidth (50?–?70 kHz). They are chaotically located in the dynamic spectrum. Decameter spikes are weak bursts: their fluxes do not exceed 200?–?300 s.f.u. An interesting feature of these spikes is the observed linear increase of the frequency bandwidth with frequency. This dependence can be explained in the framework of the plasma mechanism that causes the radio emission, taking into account that Langmuir waves are generated by fast electrons within a narrow angle θ≈13°?–?18° along the direction of the electron propagation. In the present article we consider the problem of the short lifetime of decameter spikes and discuss why electrons generate plasma waves in limited regions.  相似文献   

13.
Energetic solar electrons in the interplanetary medium   总被引:3,自引:0,他引:3  
R. P. Lin 《Solar physics》1985,100(1-2):537-561
ISEE-3 measurements extending down to 2 keV energy have provided a new perspective on energetic solar electrons in the interplanetary medium. Impulsive solar electron events are observed, on average, several times a day near solar maximum, with 40% detected only below 15 keV. The electron energy spectra have a nearly power-law shape extending smoothly down to 2 keV, indicating that the origin of these events is high in the corona. These coronal flare-like events often produced 3He-rich particle events.In large solar flares which accelerate electrons and ions to relativistic energies, the electron spectrum appears to be modified by a second acceleration which results in a double power-law shape above 10 keV with a break near 100 keV and flattening from 10–100 keV. Large flares result in long-lived (many days) streams of outflowing electrons which dominate the interplanetary fluxes at low energies. Even in the absence of solar activity, significant fluxes of low energy electrons flow out from the Sun.Solar type-III radio bursts are produced by the escaping 2–102 keV electrons through a beam-plasma instability. The detailed ISEE-3 measurements show that electron plasma waves are generated by the bump-on-tail distribution created by the faster electrons running ahead of the slower ones. These plasma waves appear to be converted into radio emission by nonlinear wave-wave interactions.  相似文献   

14.
We present the results of a two-dimensional relativistic hydrodynamic simulation of collisions of dense shells of matter moving within a uniform jet. The non-thermal synchrotron radiation produced by the relativistic electrons injected at shocks is computed following their temporal and spatial evolution. We test different parameterizations of the shock acceleration process and compute the corresponding X-ray light curves. A time lag between hard and soft X-ray radiation is found. The collision has an efficiency of few times 10?3 in converting kinetic energy into radiation.  相似文献   

15.
We propose an accurate analytical model for the source of hard X-ray emission from a flare in the form of a “thick target” with a reverse current to explain the results of present-day observations of solar flares onboard the GOES, Hinode, RHESSI, and TRACE satellites. The model, one-dimensional in coordinate space and two-dimensional in velocity space, self-consistently takes into account the fact that the beam electrons lose the kinetic energy of their motion along the magnetic field almost without any collisions under the action of the reverse-current electric field. Some of the electrons return from the emission source to the acceleration region without losing the kinetic energy of their transverse motion. Based on the observed hard X-ray bremsstrahlung spectrum, the model allows the injection spectrum of accelerated electrons to be reconstructed with a high accuracy. As an example, we consider the white-light flare of December 6, 2006, which was observed with a high spatial resolution in the optical wavelength range at the main maximum of hard X-ray emission. Within the framework of our model, we show that to explain the hard X-ray spectrum, the flux density of the energy transferred by electrons with energies above 18 keV was ~3 × 1013 erg cm?2 s?1. This exceeds the habitual values typical of the classical model of a thick target without a reverse current by two orders of magnitude. The electron density in the beam is also very high: ~1011 cm?3. A more careful consideration of plasma processes in such dense electron beams is needed when the physical parameters of a flare are calculated.  相似文献   

16.
We present the radio observations of the afterglow from the intense cosmic gamma-ray burst GRB 030329 performed with the radio telescopes of the Institute of Applied Astronomy, Russian Academy of Sciences, at the Svetloe (λ=3.5 cm) and Zelenchuk (λ=6 cm) Observatories. The difference between the fluxes measured in two different polarization modes suggests the existence of a circular polarization in the radio afterglow from GRB 030329. However, since the measurement errors of the fluxes with different circular polarizations are large, we cannot draw a firm conclusion about its detection; we can only set an upper limit on its value. An analysis of the possible generation mechanisms for the circular polarization of the relativistic jet suggests that there is a helical magnetic field in the jet. The existence of significant flux densities at various wavelengths during a long (≥10 days) period leads us to conclude that the hydrodynamic evolution of the relativistic bow shock takes place in the stellar wind, not in the interstellar medium. We have estimated the total GRB energy (E=1051 erg) (under the assumption of isotropic radiation) and the plasma density of the stellar wind from the presupernova (n=3 cm?3). The magnetic-field strength in the relativistic jet can be estimated as B≈100 G.  相似文献   

17.
The detection of circular polarization in compact synchrotron sources provides new insights into magnetic field configurations and the low-energy population of electrons in relativistic jets. Conversion of linear to circular polarization can be stimulated by Faraday rotation or turbulence in the source itself. A detailed model for the properties of the radio emission of Sgr A* in the galactic center is presented.  相似文献   

18.
We measured the flux densities of the radio source 3C 58, which was identified with the remnant of SN 1181, in April–May 2003 relative to the spectrum of the standard source 3C 295 at fourf requencies in the range 1550 to 8450 MHz using the RTF-32 radio telescope at the Svetloe Observatory of the Institute of Applied Astronomy (Russian Academy of Sciences). We found significant nonstationary frequency-dependent flux-density variations in 3C 58 and variations in its instantaneous spectrum. We established that these variations occurred between 1986 and 1998. Based on data for the instantaneous spectra, we show that the break in the spectrum of 3C 58 results from prolonged energy losses by relativistic electrons through synchrotron radiation that took place in a nebula with an age of 5400 yr, equal to the age of the pulsar PSR J0205+6449. SN 1181 is shown to have exploded without the birth of a pulsar, which is characteristic of type-I supernovae. The shock acceleration of relativistic electrons after the explosion may be responsible for the observed nonstantionarity of the flux densities. The long-term evolution of the radio spectrum for the nebula 3C 58 and the nonstationary flux-density variations due to the explosion of SN 1181 are reconciled in terms of a model of an evolved binary system.  相似文献   

19.
LS 5039 is the only X-ray binary persistently detected at TeV energies by the Cherenkov HESS telescope. It is moreover a γ-ray emitter in the GeV and possibly MeV energy ranges. To understand important aspects of jet physics, like the magnetic field content or particle acceleration, and emission processes, such as synchrotron and inverse Compton (IC), a complete modeling of the multiwavelength data is necessary. LS 5039 has been detected along almost all the electromagnetic spectrum thanks to several radio, infrared, optical and soft X-ray detections. However, hard X-ray detections above 20 keV have been so far elusive and/or doubtful, partly due to source confusion for the poor spatial resolution of hard X-ray instruments. We report here on deep (∼300 ks) serendipitous INTEGRAL hard X-ray observations of LS 5039, coupled with simultaneous VLA radio observations. We obtain a 20–40 keV flux of 1.1±0.3 mCrab (5.9 (±1.6) ×10−12 erg cm−2 s−1), a 40–100 keV upper limit of 1.5 mCrab (9.5×10−12 erg cm−2 s−1), and typical radio flux densities of ∼25 mJy at 5 GHz. These hard X-ray fluxes are significantly lower than previous estimates obtained with BATSE in the same energy range but, in the lower interval, agree with extrapolation of previous RXTE measurements. The INTEGRAL observations also hint to a break in the spectral behavior at hard X-rays. A more sensitive characterization of the hard X-ray spectrum of LS 5039 from 20 to 100 keV could therefore constrain key aspects of the jet physics, like the relativistic particle spectrum and the magnetic field strength. Future multiwavelength observations would allow to establish whether such hard X-ray synchrotron emission is produced by the same population of relativistic electrons as those presumably producing TeV emission through IC.  相似文献   

20.
The forthcoming collision by debris of P/Shoemaker-Levy 9 comet with Jupiter during the week of July 18, 1994 has generated considerable scientific and public interest. This collision may release an amount of energy ranging from 1025-1031 ergs in the Jovian atmosphere. Two possible phenomena associated with this event are described in this Letter to the Editor. The first one is the likely display of deformed Jovian magnetic field lines as the comet interacts with the Jovian magnetosphere. The second one is electromagnetic radiation outbursts during comet explosions over a wide frequency range from radio up to gamma ray emissions. If relativistic electrons with energies up to ~ 1000 MeV could be produced during comet explosions, then synchrotron radiations with frequencies from radio up to infrared range could be detectable. Hard X-rays and gamma rays could be produced by bremsstrahlung and inverse Compton processes. Since one cannot exclude the possible transient presence of relativistic electrons with Lorentz factor 2 × 106, synchrotron radiation component might even be extended into gamma ray frequency range during intermittent short time intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号