首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, Geostatistics and its various interpolation techniques have become a major threshold area in the field of research in GIS. In this research work poorly sampled (less accurate height data relative to ICESat/GLAS height data) Cartosat-1 height data has been used with well sampled (more accurate height data relative to Cartosat-1 height data) ICESat/GLAS LiDAR (Light Detection and Ranging) height point data using Cokriging Interpolation technique, to study the effect of ICESat/GLAS on Cartosat-1 height data. Space borne LiDAR data has led researchers to explore its utilities in many applications. Space borne LiDAR data can be acquired through space borne LiDAR sensors also, like; GLAS (Geoscience Laser Altimeter System) system onboard ICESat (Ice, Cloud and land Elevation Satellite) satellite. In this study, it has been tried to apply Cokriging interpolation on two different sources of data sets, with a common variable (elevation) to generate DES and assessment of this surface has been conducted by DGPS data. After optimizing Cokriging parameters, results of digital elevation surface (DES) generated using Cokriging showed that RMSE has been second least than global polynomial in comparison to Kriging interpolation RMSE after being evaluated by GPS values. So, global polynomial as well as cokriging interpolation technique out performs while comparing with kriging technique for DES generation.  相似文献   

2.
激光测高卫星在获取全球高程控制点方面具有独特的优势,本文针对ICESat(Ice,Cloud and land Elevation Satellite)卫星上搭载的地球激光测高系统GLAS(Geo-science Laser Altimetry System),提出了一种多准则约束的高程控制点筛选算法。算法综合利用全球公开版的SRTM(Shuttle Radar Topography Mission)DEM数据对GLAS进行粗差剔除,然后利用GLA14产品中的云量、姿态质量标记、饱和度参数、增益参数等多种与测距有关的属性参数进行粗粒度的筛选,保留受云层、大气、地表反射率等影响较小的激光足印点,最后结合GLA01的波形特征参数做进一步精细筛选,提取出高精度的激光点作为高程控制点。本文还采用天津、河北两个实验区的数据,利用高精度的DEM成果数据对筛选的结果进行了验证。实验结果表明,经多准则约束筛选后的激光足印点具有很高的高程精度,能够作为1∶50000甚至1∶10000立体测图时的高程控制点使用,研究结论可为国产高分辨率卫星在境外地区进行无地面控制点的立体测图提供参考。  相似文献   

3.
Validation of Indian National DEM from Cartosat-1 Data   总被引:1,自引:0,他引:1  
CartoDEM is an Indian National DEM generated from Cartosat-1 stereo data. Cartosat-1, launched in May, 2005, is an along track (aft ?5°, Fore +26°) stereo with 2.5 m GSD, give base-height ratio of 0.63 with 27 km swath. The operational procedure of DEM generation comprises stereo strip triangulation of 500?×?27 km segment with 10 m posting along with 2.5 m resolution ortho image and free—access posting of 30 m has been made available (bhuvan.nrsc.gov.in). A multi approach evaluation of CartoDEM comprising (a) absolute accuracy with respect to ground control points for two sites namely Jagatsinghpur -flat and Dharamshala- hilly; second site i.e. Alwar-plain and hilly with high resolution aerial DEM, (b) relative difference between SRTM and ASTERDEM (c) absolute accuracy with ICESat GLAS for two sites namely Jagatsinghpur-plain and Netravathi river, Western Ghats-hilly (d) relative comparison of drainage delineation with respect to ASTERDEM is reported here. The absolute height accuracy in flat terrain was 4.7 m with horizontal accuracy of 7.3 m, while in hilly terrain it was 7 m height with a horizontal accuracy of 14 m. While comparison with ICESat GLAS data absolute height difference of plain and hilly was 5.2 m and 7.9 m respectively. When compared to SRTM over Indian landmass, 90 % of pixels reported were within ±8 m difference. The drainage delineation shows better accuracy and clear demarcation of catchment ridgeline and more reliable flow-path prediction in comparison with ASTER. The results qualify Indian DEM for using it operationally which is equivalent and better than the other publicly available DEMs like SRTM and ASTERDEM.  相似文献   

4.
卫星激光测高严密几何模型构建及精度初步验证   总被引:4,自引:0,他引:4  
唐新明  李国元  高小明  陈继溢 《测绘学报》2016,45(10):1182-1191
采用星载激光测高仪辅助提高卫星立体影像几何定位精度特别是高程精度,已经得到了航天摄影测量界的重视,计划于2018年发射的高分七号卫星上将同时搭载光学立体相机和激光测高仪。虽然,已有相关文献针对美国的ICESat(Ice,Cloud,and land Elevation Satellite)卫星上搭载的地球科学激光测高系统(Geo-science Laser Altimeter System,GLAS)的几何模型和产品精度作了相关介绍,但对其严密的几何定位模型和精度验证目前还没有系统性的阐述。本文较全面地对激光测高卫星的严密几何模型进行了构建与精度分析,并选择ICESat/GLAS的0级辅助文件,采用严密几何模型重现了2级产品的生产过程。将本文计算的结果与ICESat/GLAS的结果进行了对比分析,其中基于几何模型的高程误差约11 cm,平面误差在3 cm以内,表明所提出的严密几何模型的正确性,同时采用新发射的资源三号02星的激光测高数据进行了初步处理和验证。相关结论可为国产高分后续卫星的激光测高数据处理提供参考。  相似文献   

5.
Gaussian decomposition has been used to extract terrain elevation from waveforms of the satellite lidar GLAS (Geoscience Laser Altimeter System), on board ICESat (Ice, Cloud, and land Elevation Satellite). The common assumption is that one of the extracted Gaussian peaks, especially the lowest one, corresponds to the ground. However, Gaussian decomposition is usually complicated due to the broadened signals from both terrain and objects above over sloped areas. It is a critical and pressing research issue to quantify and understand the correspondence between Gaussian peaks and ground elevation. This study uses ~2000 km2 airborne lidar data to assess the lowest two GLAS Gaussian peaks for terrain elevation estimation over mountainous forest areas in North Carolina. Airborne lidar data were used to extract not only ground elevation, but also terrain and canopy features such as slope and canopy height. Based on the analysis of a total of ~500 GLAS shots, it was found that (1) the lowest peak tends to underestimate ground elevation; terrain steepness (slope) and canopy height have the highest correlation with the underestimation, (2) the second to the lowest peak is, on average, closer to the ground elevation over mountainous forest areas, and (3) the stronger peak among the lowest two is closest to the ground for both open terrain and mountainous forest areas. It is expected that this assessment will shed light on future algorithm improvements and/or better use of the GLAS products for terrain elevation estimation.  相似文献   

6.
本文侧重于介绍智能化摄影测量机器学习的高差拟合神经网络方法。观测手段和处理方式等限制导致全球高质量无缝DEM数据的缺乏,进而制约了它在水文、地质、气象及军事等领域的应用。本文提出了一种基于高差拟合神经网络的多源DEM融合方法,尝试融合全球DEM产品SRTM1、ASTER GDEM v2和激光雷达测高数据ICESat GLAS。首先,根据ICESat GLAS的相关参数及与DEM数据的高程差值,结合坡度自适应的思想设置高差阈值对ICESat GLAS进行滤波,剔除异常数据点。然后,以ICESat GLAS数据为控制点,利用神经网络模型拟合ASTER GDEM v2的误差分布。以地形坡度信息和经纬度坐标作为网络输入,ICESat GLAS和ASTER GDEM v2的高程差值作为目标输出,训练得到预测高差,将其与ASTER GDEM v2高程值相加即可获得校正结果。最后,引入TIN差分曲面的方法,利用校正后的ASTER GDEM v2高程值对SRTM1的数据空洞进行填充,融合生成空间无缝DEM。本文通过随机选取数据进行真实试验,对模型进行了精度验证,并给出了处理结果的定量评价和目视效果。结果表明,不论是空洞还是整体区域,本文方法相比其他DEM数据集和其他方法的处理结果都能够在RMSE上表现出优势,同时,本文提出的方法能够有效克服ASTER GDEM中异常值的影响,得到空间无缝DEM。  相似文献   

7.
南极数字高程模型DEMs(Digital Elevation Models)是研究极区大气环流模式,南极冰盖动态变化和南极科学考察非常重要的基础数据。目前,科学家已经发布了五种不同的南极数字表面高程模型。这些数据都是由卫星雷达高度计,激光雷达和部分地面实测数据等制作而成。尽管如此,由于海洋与冰盖交接的南极冰盖边缘区随时间的快速变化,有必要根据新的卫星数据及时更新南极冰盖表面高程数据。因此,我们利用雷达高度计数据(Envisat RA-2)和激光雷达数据(ICESat/GLAS)制作了最新的南极冰盖高程数据。为提高ICESat/GLAS数据的精度,本文采用了五种不同的质量控制指标对GLAS数据进行处理,滤除了8.36%的不合格数据。这五种质量控制指标分别针对卫星定位误差、大气前向散射、饱和度及云的影响。同时,对Envisat RA-2数据进行干湿对流层纠正、电离层纠正、固体潮汐纠正和极潮纠正。针对两种不同的测高数据,提出了一种基于Envisat RA-2和GLAS数据光斑脚印几何相交的高程相对纠正方法,即通过分析GLAS脚印点与Envisat RA-2数据中心点重叠的点对,建立这些相交点对的高度差(GLAS-RA-2)与表征地形起伏的粗糙度之间的相关关系,对具有稳定相关关系的点对进行Envisat RA-2数据的相对纠正。通过分析南极冰盖不同区域的测高点密度,确定最终DEM的分辨率为1000 m。考虑到南极普里兹湾和内陆地区的差异性,将南极冰盖分为16个区,利用半方差分析确定最佳插值模型和参数,采用克吕金插值方法生成了1000 m分辨率的南极冰盖高程数据。利用两种机载激光雷达数据和我国多次南极科考实测的GPS数据对新的南极DEM进行了验证。结果显示,新的DEM与实测数据的差值范围为3.21—27.84 m,其误差分布与坡度密切关系。与国际上发布的南极DEM数据相比,新的DEM在坡度较大地区和快速变化的冰盖边缘地区精度有较大改进。  相似文献   

8.
The frequency of coastal flood damages is expected to increase significantly during the twenty-first century as sea level rises in the coastal floodplain. Coastal digital elevation model (DEM) data describing coastal topography are essential for assessing future flood-related damages and understanding the impacts of sea-level rise. The Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) are currently the most accurate and freely available DEM data. However, an accuracy assessment specifically targeted at DEMs over low elevation coastal plains is lacking. The present study focuses on these areas to assess the vertical accuracy of SRTM and ASTER GDEM using Ice, Cloud, and land Elevation Satellite, Geoscience Laser Altimeter System (ICESat/GLAS) and Real Time Kinematic (RTK) Global Positioning System (GPS) field survey data. The findings show that DEM accuracy is much better than the mission specifications over coastal plains. In addition, optical remote sensing image analysis further reveals the relationship between DEM vertical accuracy and land cover in these areas. This study provides a systematic approach to assess the accuracy of DEMs in coastal zones, and the results highlight the limitations and potential of these DEMs in coastal applications.  相似文献   

9.
马利群  李理  刘俊杰  孙九林  秦奋 《测绘科学》2021,46(3):80-86,95
针对GLAS地学激光测高系统是冰、云和陆地高程卫星(ICESat)的唯一监测工具,能够记录地表光斑内的地物信息,是否能应用于黄土高原土地覆盖分类的问题进行了研究。利用粒子群和最小二乘法相结合的方法对GLAS波形数据进行高斯分解,获取高斯波个数、波形总能量、波形信号起始和信号结束位置4个波形参数;基于波形自动分类方法对黄土高原水体、森林、城市用地、其他地类(裸地、低矮植被等)进行分类。通过基于覆盖相同研究区域的30 m地表覆盖数据(Globe Land30),验证分类的准确性。结果表明,GLAS大光斑波形数据对黄土高原的4种地类能够很好地进行区分,总分类精度高达87.68%,Kappa系数为65.79%。研究表明,GLAS波形数据可以作为获取土地覆盖信息的有效数据源,为研究黄土高原土地覆盖变化提供更丰富的数据支持。  相似文献   

10.
Spaceborne light detection and ranging (LiDAR) enables us to obtain information about vertical forest structure directly, and it has often been used to measure forest canopy height or above-ground biomass. However, little attention has been given to comparisons of the accuracy of the different estimation methods of canopy height or to the evaluation of the error factors in canopy height estimation. In this study, we tested three methods of estimating canopy height using the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and land Elevation Satellite (ICESat), and evaluated several factors that affected accuracy. Our study areas were Tomakomai and Kushiro, two forested areas on Hokkaido in Japan. The accuracy of the canopy height estimates was verified by ground-based measurements. We also conducted a multivariate analysis using quantification theory type I (multiple-regression analysis of qualitative data) and identified the observation conditions that had a large influence on estimation accuracy. The method using the digital elevation model was the most accurate, with a root-mean-square error (RMSE) of 3.2 m. However, GLAS data with a low signal-to-noise ratio (⩽10.0) and that taken from September to October 2009 had to be excluded from the analysis because the estimation accuracy of canopy height was remarkably low. After these data were excluded, the multivariate analysis showed that surface slope had the greatest effect on estimation accuracy, and the accuracy dropped the most in steeply sloped areas. We developed a second model with two equations to estimate canopy height depending on the surface slope, which improved estimation accuracy (RMSE = 2.8 m). These results should prove useful and provide practical suggestions for estimating forest canopy height using spaceborne LiDAR.  相似文献   

11.
The Geoscience Laser Altimeter System (GLAS) aboard Ice, Cloud and land Elevation Satellite (ICESat) is a spaceborne LiDAR sensor. It is the first LiDAR instrument which can digitize the backscattered waveform and offer near global coverage. Among others, scientific objectives of the mission include precise measurement of vegetation canopy heights. Existing approaches of waveform processing for canopy height estimation suggest Gaussian decomposition of the waveform which has the limitation to properly characterize significant peaks and results in discrepant information. Moreover, in most cases, Digital Terrain Models (DTMs) are required for canopy height estimation. This paper presents a new automated method of GLAS waveform processing for extracting vegetation canopy height in the absence of a DTM. Canopy heights retrieved from GLAS waveforms were validated with field measured heights. The newly proposed method was able to explain 79% of variation in canopy heights with an RMSE of 3.18 m, in the study area. The unexplained variation in canopy heights retrieved from GLAS data can be due to errors introduced by footprint eccentricity, decay of energy between emitted and received signals, uncertainty in the field measurements and limited number of sampled footprints.Results achieved with the newly proposed method were encouraging and demonstrated its potential of processing full-waveform LiDAR data for estimating forest canopy height. The study also had implications on future full-waveform spaceborne missions and their utility in vegetation studies.  相似文献   

12.
Light Detection And Ranging (LiDAR) has a unique capability for estimating forest canopy height, which has a direct relationship with, and can provide better understanding of the aboveground forest carbon storage. The full waveform data of the large-footprint LiDAR Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat), combined with field measurements of forest canopy height, were employed to achieve improved estimates of forest canopy height over sloping terrain in the Changbai mountains region, China. With analyzing ground-truth experiments, the study proposed an improved model over Lefsky's model to predict maximum canopy height using the logarithmic transformation of waveform extent and elevation change as independent variables. While Lefsky's model explained 8–89% of maximum canopy height variation in the study area, the improved model explained 56–92% of variation within the 0–30° terrain slope category. The results reveal that the improved model can reduce the mixed effects caused by both sloping terrain and rough land surface, and make a significant improvement for accurately estimating maximum canopy height over sloping terrain.  相似文献   

13.
Given that water resources are scarce and are strained by competing demands, it has become crucial to develop and improve techniques to observe the temporal and spatial variations in the inland water volume. Due to the lack of data and the heterogeneity of water level stations, remote sensing, and especially altimetry from space, appear as complementary techniques for water level monitoring. In addition to spatial resolution and sampling rates in space or time, one of the most relevant criteria for satellite altimetry on inland water is the accuracy of the elevation data. Here, the accuracy of ICESat LIDAR altimetry product is assessed over the Great Lakes in North America. The accuracy assessment method used in this paper emphasizes on autocorrelation in high temporal frequency ICESat measurements. It also considers uncertainties resulting from both in situ lake level reference data. A probabilistic upscaling process was developed. This process is based on several successive ICESat shots averaged in a spatial transect accounting for autocorrelation between successive shots. The method also applies pre-processing of the ICESat data with saturation correction of ICESat waveforms, spatial filtering to avoid measurement disturbance from the land–water transition effects on waveform saturation and data selection to avoid trends in water elevations across space. Initially this paper analyzes 237 collected ICESat transects, consistent with the available hydrometric ground stations for four of the Great Lakes. By adapting a geostatistical framework, a high frequency autocorrelation between successive shot elevation values was observed and then modeled for 45% of the 237 transects. The modeled autocorrelation was therefore used to estimate water elevations at the transect scale and the resulting uncertainty for the 117 transects without trend. This uncertainty was 8 times greater than the usual computed uncertainty, when no temporal correlation is taken into account. This temporal correlation, corresponding to approximately 11 consecutive ICESat shots, could be linked to low transmitted ICESat GLAS energy and to poor weather conditions. Assuming Gaussian uncertainties for both reference data and ICESat data upscaled at the transect scale, we derived GLAS deviations statistics by averaging the results at station and lake scales. An overall bias of −4.6 cm (underestimation) and an overall standard deviation of 11.6 cm were computed for all lakes. Results demonstrated the relevance of taking autocorrelation into account in satellite data uncertainty assesment.  相似文献   

14.
黄克标  庞勇  舒清态  付甜 《遥感学报》2013,17(1):165-179
结合机载、星载激光雷达对GLAS(地球科学激光测高系统)光斑范围内的森林地上生物量进行估测,并利用MODIS植被产品以及MERIS土地覆盖产品进行了云南省森林地上生物量的连续制图。机载LiDAR扫描的260个训练样本用于构建星载GLAS的森林地上生物量估测模型,模型的决定系数(R2)为0.52,均方根误差(RMSE)为31Mg/ha。研究结果显示,云南省总森林地上生物量为12.72亿t,平均森林地上生物量为94Mg/ha。估测的森林地上生物量空间分布情况与实际情况相符,森林地上生物量总量与基于森林资源清查数据的估测结果相符,表明了利用机载LiDAR与星载ICESatGLAS结合进行大区域森林地上生物量估测的可靠性。  相似文献   

15.
Quantitative estimates of forest vertical and spatial distribution using remote sensing technology play an important role in better understanding forest ecosystem function, forest carbon storage and the global carbon cycle. Although most remote sensing systems can provide horizontal distribution of canopies, information concerning the vertical distribution of canopies cannot be detected. Fortunately, laser radars have become available, such as GLAS (Geoscience laser altimeter system). Because laser radar can penetrate foliage, it is superior to other remote sensing technologies for detecting vertical forest structure and has higher accuracy. GLAS waveform data were used in this study to retrieve average tree height and biomass in a GLAS footprint area in Heilongjiang Province. However, GLAS data are not spatially continuous. To fill the gaps, MISR (multi- angle imaging spectrometer) spectral radiance was chosen to predict the regional continuous tree height by developing a multivariate linear regression model. We compared tree height estimated by the regression model and GLAS data. The results confirmed that estimates of tree height and biomass based on GLAS data are considerably more accurate than estimates based on traditional methods. The accuracy is approximately 90%. MISR can be used to estimate tree height in continuous areas with a robust regression model. The R2, precision and root mean square error of the regression model were 0.8, 83% and 1 m, respectively. This study provides an important reference for mapping forest vertical parameters.  相似文献   

16.
The Ice, Cloud, and land Elevation Satellite (ICESat) will begin science operations in 2003 with an emphasis on determination of the ice sheet temporal variations in the Arctic and Antarctic regions. The ICESat bus will serve as the transport for an instrument called the Geoscience Laser Altimeter System (GLAS). GLAS will provide altimetry and lidar measurements with a high level of accuracy. For altimetry, the GLAS data will enable determination of the laser pointing angle to within 1.5 arcsec and the laser pulse time of arrival on the ground to within 100 sec. Both of these data products contribute to the determination of the measured altitude vector from the spacecraft to the ice surface. Verification of both the laser pointing angle and the timing can be achieved by using a unique experimental technique designed to capture an altimeter pulse on the surface of the Earth. The capture of the laser pulse is accomplished by covering the illuminated area with devices designed to detect the arrival of energy within the altimeter footprint. This ground-based technique will supply an independent, unambiguous determination of the laser footprint geolocation and the epoch time associated with the arrival of the pulse on the surface. Knowledge of the laser footprint centroid on the ground will infer the laser pointing direction in the geocentric reference frame. This in situ measurement of the footprint geolocation and time of arrival will be compared to the corresponding data products provided by GLAS. The comparison of the GLAS laser pointing and the timing data with an independent measurement will verify the accuracy and/or will indicate the existence of any biases or errors in the generation of the GLAS altimetry data products. The detectors have been designed and tested in the laboratory and analyzed for energy level thresholds, system stability, temperature response and overall performance. Timing hardware has been tested and software has been written to achieve event detection within the desired accuracy.  相似文献   

17.
郭金权  李国元  裴亮  么嘉棋  聂胜 《遥感学报》2022,26(8):1674-1684
激光测高仪回波波形饱和现象客观存在,为增加可用激光点数目、提高饱和波形测高精度,本文提出了一种波形饱和识别与测高误差改正方法,首先,利用回波波形峰度系数对饱和波形进行识别,然后,针对饱和现象对波形高斯拟合的影响,计算高斯拟合波形与原始波形相交区域的形心位置,以形心位置差异确定因波形饱和导致的测高误差并改正。最后,采用ICESat/GLAS(Ice,Cloud and land Elevation Satellite/Geo-science Laser Altimeter System)在青海湖、纳木错、色林错采集的波形数据进行实验。结果表明,经本文算法改正后数据误差均值为0.03 m,大型湖泊区域可实现约0.05 m的测高精度,结合峰度的饱和识别方法可以对波形进行有效筛选,可发现GLAS遗漏的饱和波形,饱和改正算法可以有效改正波形饱和引起的测高误差,改正后精度明显优于GLAS提供的饱和改正结果,相关结论对高分七号卫星激光波形处理有一定参考价值。  相似文献   

18.
Cartosat–1 is the first Indian Remote Sensing Satellite capable of providing along-track stereo images. Cartosat–1 provides forward stereo images with look angles +26° and −5° with respect to nadir for generating Digital Elevation Models (DEMs), Orthoimages and value added products for various applications. A pitch bias of −21° to the satellite resulted in giving reverse tilt mode stereo pair with look angles of +5° and −26° with respect to nadir. This paper compares DEMs generated using forward, reverse and other possible synthetic stereo pairs for two different types of topographies. Stereo triplet was used to generate DEM for Himalayan mountain topography to overcome the problem of occlusions.For flat to undulating topography it was shown that using Cartosat-1 synthetic stereo pair with look angles of −26° and +26° will produce improved version of DEM. Planimetric and height accuracy (Root Mean Square Error (RMSE)) of less than 2.5 m and 2.95 m respectively were obtained and qualitative analysis shows finer details in comparison with other DEMs. For rugged terrain and steep slopes of Himalayan mountain topography simple stereo pairs may not provide reliable accuracies in DEMs due to occlusions and shadows. Stereo triplet from Cartosat-1 was used to generate DEM for mountainous topography. This DEM shows better reconstruction of elevation model even at occluded region when compared with simple stereo pair based DEM. Planimetric and height accuracy (RMSE) of nearly 3 m were obtained and qualitative analysis shows reduction of outliers at occluded region.  相似文献   

19.
利用激光雷达和多角度频谱成像仪数据估测森林垂直参数   总被引:3,自引:0,他引:3  
植被的结构参数如植被高度、生物量、水平和垂直分布等,是影响陆地与大气能量交换乃至生物圈多样性的重要因素。多数遥感系统虽然可以提供植被水平结构的图像,但是不能提供植被成分垂直分布的信息。大尺度激光雷达仪器如LVIS产生的激光雷达信号,已成功地用于估计树高和森林生物量,然而大多数激光雷达仪器不具备图像能力,只能提供一个区域内的采样数据。其他的遥感数据如多角度高光谱、多频率多时相辐射计或雷达数据,可根据GLAS(Geoscience Laser Altimeter System)采样的测量用来推断出连续的森林结构区域覆盖参数。 MISR(Multi-angle Imaging Spectrometer)对陆表多角度的成像能力,可以通过BRDF的各向异性提供植被的结构信息。结合激光雷达的垂直采样和MISR的图像,区域内乃至全球性的森林空间参数的成像是可能的。ICESat卫星上的GLAS数据、Terra卫星上的MISR数据为区域或全球性森林结构参数提供了可能。本文的研究目的是评估GLAS数据,分析类似于MISR的数据对森林结构参数的估计能力。本文中使用了LVIS、AirMISR和GLAS数据。通过对GLAS树高的测量与GLAS像元内来自LVIS的平均树高对比,发现它们是高度相关的。同时还探讨了多角度频谱成像仪数据预测树高信息的能力,这将在今后区域内森林结构参数映射加以研究。  相似文献   

20.
ICESat激光高程点辅助的天绘一号卫星影像立体区域网平差   总被引:1,自引:1,他引:0  
无地面控制点(简称无控)区域网平差是实现卫星影像无控测图的一项重要技术,对于境外和外业测控困难区域的测图具有重要意义。然而,无控区域网平差的定位精度一般难以满足对应比例尺测图规范要求。利用公开、可稳定获取的公众地理信息数据辅助区域网平差,是提高卫星影像无控定位精度的有效途径,其中ICESat激光高程点便是一种良好的高程控制数据。为了提高天绘一号卫星影像无控定位精度,本文提出ICESat激光高程点辅助的卫星影像模型法立体区域网平差方法。首先,以30 m分辨率SRTM估算的地形坡度作为限制条件,结合激光高程点自身质量评价信息,自动提取高质量ICESat激光高程点;其次,利用自动匹配的连接点进行模型法自由网平差,实现卫星影像几何定位精度的相对一致性(内部一致性);最后,将激光高程点自动量测至卫星影像作为控制点,其平面坐标根据自由网平差结果前方交会计算而得,高程坐标取自激光点高程,再次进行区域网平差精化定向参数,提高卫星影像的绝对高程精度。最后本文利用山东全省的天绘一号卫星影像进行试验,验证了本文方法的有效性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号