首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Groundwater is a precious resource for humankind not only in Nepal but also across the globe due to its diverse functions. A total of 48 groundwater samples were collected from three villages of Nawalparasi district, Nepal, during pre-monsoon and monsoon to estimate the overall groundwater quality and to identify the sources of contamination with emphasis on arsenic (As). The average concentrations of all tested groundwater quality parameters (temp., pH, EC, ORP, Ca2+, Mg2+, Na+, K+, Cl?, F?,SO4 2?, PO4 3?, HCO3 ?, NO3 ?, Cu, Ni, Mn, Cd, Pb, Fe, Zn, Cr, and As) were well within permissible limits of WHO for drinking water, except for Ni, Cd, Pb, Cr, and As. Concentration of As ranged from 60 to 3,100 μg L?1 and 155 to 1,338 μg L?1 in pre-monsoon and monsoon, respectively. The Piper diagram of the groundwater chemistry showed groundwater of Nawalparasi belongs to Ca–Mg–HCO3 and Mg–HCO3 water type with HCO3 ? as dominant ions. As content in the study area was negatively correlated with Fe in pre-monsoon, while it was positively correlated in monsoon. Furthermore, As was negatively correlated with oxidation reduction potential suggesting reducing condition of groundwater. Principal component analysis revealed seven major factors that explained 81.996 and 83.763 % of total variance in water quality in pre-monsoon and monsoon, respectively. The variance of water quality was related mainly with the degree of water–rock interaction, mineralization, and anthropogenic inputs.  相似文献   

2.
The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources in the Marand plain, NW Iran and to evaluate the potential sources of major and trace elements using multivariate statistical analysis such as hierarchical clustering analysis (HCA) and factor analysis (FA). To achieve these goals, groundwater samples were collected in three sampling periods in September 2013, May 2014 and September 2014 and analyzed with regard to ions (e.g., Ca2+, Mg2+, Na+ and K+, HCO3 ?, SO4 2?, Cl?, F? and NO3 ?) and trace metals (e.g., Cr, Pb, Cd, Mn, Fe, Al and As). The piper diagrams show that the majority of samples belong to Na–Cl water type and are followed by Ca–HCO3 and mixed Ca–Na–HCO3. Cross-plots show that weathering and dissolution of different rocks and minerals, ion exchange, reverse ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. The results of the FA demonstrate that 6 factors with 81.7% of total variance are effective in the overall hydrogeochemistry, which are attributed to geogenic and anthropogenic impacts. The HCA categorizes the samples into two clusters. Samples of cluster C1, which appear to have higher values of some trace metals like Pb and As, are spatially located at the eastern and central parts of the plain, while samples of cluster C2, which express the salinization of the groundwater, are situated mainly westward with few local exceptions.  相似文献   

3.
Due to the rapid urbanization and industrialization that has occurred in China over the last few decades, metals have been continuously emitted into the urban environment and now pose a serious threat to human health. Indeed, there is a growing concern over the potential for pollution of urban soils with heavy metals. Therefore, an extensive soil survey was conducted in urban areas of Changchun, China, to evaluate the current status of heavy metal contamination in soils and to evaluate its potential sources. A total of 352 samples of urban soils were collected from urban areas of Changchun using a systematic sampling strategy in which one sample per km2 was taken (0 ~ 20 cm). The levels of Cu, Pb, Zn and the major elements (Mn, Al2O3, CaO, Fe2O3, MgO, SiO2, K2O and NaO) were then determined by X-Ray fluorescence spectrometry (XRF), while the level of Cd was determined by graphite furnace atomic absorption spectrometry (GF-AAS), and the Hg and As concentrations were determined by atomic fluorescence spectroscopy (AFS). The results indicated that, when compared with the background values of topsoil in the Changchun region, the topsoil in urban areas were enriched with metals, particularly Cu, Cd, Zn, Pb and Hg. The results of correlation coefficient analysis showed that Hg, As, Cd, Cu, Pb and Zn were significantly positive correlated with each other, while Cr and Mn formed another group. Moreover, significantly positive correlations were observed between pH and Zn, Pb, Cu, Cd, As and Hg, indicating that pH influences the distributions of these metals in urban soils in Changchun. Principal component analysis (PCA) was conducted to identify sources of heavy metals and the results revealed distinctly different associations among the trace metals and the major elements in the urban soils. The concentration of Cr appeared to be controlled by the parent material (natural sources), while Cu, Pb and Zn were mainly from vehicle emissions, with Zn primarily coming from vehicle tires. Additionally, Hg and As primarily originated from coal combustion, while Cd was mainly associated with industrial sources. According to the pollution index (PI) of each metal, the overall levels of metal pollution were not especially high, but there were clearly contaminated sites concentrated in the central and northeast portion of the studied region. The Nemerow integrated pollution index (NIPI) of the seven metals also indicated that urban soils in Changchun city were classified as having low level of pollution.  相似文献   

4.
 The Sanggok mine used to be one of the largest lead-zinc mines in the Hwanggangri mining district, Republic of Korea. The present study characterizes the heavy metal contamination in the abandoned Sanggok mine creek on the basis of physico-chemical properties of various kinds of water samples (mine, surface and groundwater). Hydrochemistry of the water samples is characterized by the relatively significant enrichment of Ca2+, HCO3 , NO3 and Cl in the surface and groundwaters, whereas the mine water is relatively enriched in Ca2+, Mg2+, heavy metals, and HCO3 and SO4 2–. The more polluted mine water has a lower pH and higher Eh, conductivity and TDS values. The concentrations of some toxic elements (Al, As, Cd, Cu, Fe, Mn, Pb, Se, Sr, Pb and Zn) are tens to hundreds of times higher in the mine water than in the unpolluted surface and groundwaters. However, most immobile toxic pollutants from the mine drainage were quickly removed from the surface water by the precipitation of Al and Fe oxyhydroxides. Geochemical modeling showed that potentially toxic heavy metals might exist largely in the forms of MSO4 2– and M2+ in the mine water. These metals in the surface and groundwaters could form M2+, CO3 2– and OH complex ions. Computer simulation indicates that the saturation indices of albite, alunite, anhydrite, chlorite, fluorite, gypsum, halloysite and strontianite in the water samples are undersaturated and have progressively evolved toward the saturation condition. However, barite, calcite, chalcedony, dolomite, gibbsite, illite and quartz were in equilibrium, and only clay minerals were supersaturated. Ground and mine waters seemed to be in equilibrium with kaolinite field, but some surface water were in equilibrium with gibbsite and seceded from the stability field of quartz. This indicates that surface water samples in reaction with carbonate rocks would first equilibrate with carbonate minerals, then gibbsite to kaolinite. Investigations on water quality and environmental improvement of the severely polluted Sanggok creek, as well as remediation methods on the possible future pollution of the groundwater by the acid mine drainage from the abandoned metal mines, are urgently required. Received: 4 February 2000 · Accepted: 9 May 2000  相似文献   

5.
A water quality investigation was carried out in the Deoria district, Ganga plain, to assess the suitability of surface and groundwaters for domestic, agricultural, and industrial purposes. As much as 50 representative samples from river and groundwater were collected from various stations to monitor the water chemistry of various ions, comprising Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, NO3 , Cl, F, and trace metals, such as Fe, Cu, Mn, Zn, Cd, and Pb. The results showed that electrical conductance (EC), total dissolved solids (TDS), HCO3 , Mg2+, Na+, and total hardness (TH) are above the maximum desirable limit, and apart from Fe and Mn all other trace metals are within the maximum permissible limit for drinking water. The calculated values for sodium absorption ratio (SAR), salinity, residual sodium carbonate (RSC), and permeability index (PI) indicate well to permissible use of water for irrigation. High values of Na%, RSC, and Mg-hazard (MH) at some stations restrict its use for agricultural purpose. Anthropogenic activities affect the spatial variation of water quality. Economic and social developments of the study area is closely associated with the characteristics of the hydrological network.  相似文献   

6.
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25–33 m) and deep (191–318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl. Use of chemical fertilizers may cause higher concentrations of NH4+ and PO43− in shallow well samples. In general, most ions are positively correlated with Cl, with Na+ showing an especially strong correlation with Cl, indicating that these ions are derived from the same source of saline waters. The relationship between Cl/HCO3 ratios and Cl also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO3 reflect the degree of water–rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO42− and NO3 and high concentrations of dissolved Fe and PO43− and NH4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO42− and NO3 but correlate weakly with Mo, Fe concentrations and positively with those of P, PO43− and NH4+ ions.  相似文献   

7.
Although arsenic (As) contamination has been extensively investigated in the aquifers of the lower and middle Gangetic plains, less attention has been given to the distribution and fate of As in the groundwater of the upper Gangetic plain, India. In the current study, groundwater samples (n = 40) were collected from Moradabad district in the upper Gangetic plain and analyzed for several physicochemical parameters to characterize the groundwater chemistry and evaluate various geogenic and anthropogenic factors controlling the occurrence, mobilization, and fate of As in the plain. Arsenic concentrations in groundwater ranged from 0.17 μg/L to 139 μg/L, with the majority of high-As groundwater associated with high Fe, Mn, and HCO3 and low NO3, SO42−, and negative Eh values, implying that As was released via reductive dissolution of Fe and Mn oxyhydroxides in reducing conditions under the influence of organic matter degradation. Interrelationships between various geochemical variables and the natural background level (NBL) quantification of As suggested the influence of anthropogenic processes on the mobility of As in groundwater. Piper and Gibbs diagrams and various bivariate plots revealed that the majority of groundwater was of the Ca2+ − Mg2+ − HCO3 type and that the major ions in groundwater were derived from carbonate and silicate weathering, cation exchange and reverse ion exchange processes, and anthropogenic activities. Moreover, the results of principal component analysis (PCA), and hierarchical cluster analysis (HCA) also suggested geogenic and anthropogenic sources for the ion concentration in groundwater. The health risk assessment showed a higher non-carcinogenic risk for children and a higher carcinogenic risk for adults, respectively, due to the daily intake of As contaminated groundwater. Overall, this study represents the first systematic investigation of the distribution, geochemical behavior, and release process of As in groundwater in the study area and provides a strong base for future research in the alluvial aquifers of the upper Gangetic plain.  相似文献   

8.
Water is one of the basic and fundamental requirements for the survival of human beings. Mining of the sulphide mines usually produce a significant amount of acid mine drainage (AMD) contributing to huge amounts of chemical components and heavy metals in the receiving waters. Prediction of the heavy metals in the AMD is important in developing any appropriate remediation strategy. This paper attempts to predict heavy metals (Cu, Fe, Mn, Zn) from the AMD using backpropagation neural network (BPNN), general regression neural network (GRNN) and multiple linear regression (MLR), by taking pH, sulphate (SO4) and magnesium (Mg) concentrations in the AMD into account in Shur River, Sarcheshmeh porphyry copper deposit, southeast Iran. The comparison between the predicted concentrations and the measured data resulted in the correlation coefficients, R, 0.92, 0.22, 0.92 and 0.92 for Cu, Fe, Mn and Zn ions using BPNN method. Moreover, the R values were 0.89, 0.37, 0.9 and 0.91 for Cu, Fe, Mn, and Zn taking the GRNN method into consideration. However, the correlation coefficients were low for the results predicted by MLR method (0.83, 0.14, 0.9 and 0.85 for Cu, Fe, Mn and Zn ions, respectively). The results further indicate that the ANN can be used as a viable method to rapidly and cost-effectively predict heavy metals in the AMD. The results obtained from this paper can be considered as an easy and cost-effective method to monitor groundwater and surface water affected by AMD.  相似文献   

9.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

10.
The purpose of this work is to characterize the hydrochemical behavior of acid mine drainages (AMD) and superficial waters from the Adoria mine area (Northern Portugal). Samples of superficial and mine drainage water were collected for one year, bi-monthly, with pH, temperature, Eh, conductivity and HCO3 determined in situ with chemical analyses of SO4, Ca, K, Mg, Na, Cl, Ag, As, Bi, Co, Cu, Fe, Mn, Ni, Pb, Zn and Cd. In the mine, there are acidic waters, with low pH and significant concentrations of SO4, and metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni), while in the superficial natural stream waters outside the mine, the pH is close to neutral, with low conductivity and lower metal concentrations. The stream waters inside the mine influence are intermediate in composition between AMD and natural stream waters outside the mine influence. Principal Component Analysis (PCA) shows a clear separation between AMD galleries and AMD tailings, with tailings having a greater level of contamination.  相似文献   

11.
The present study assesses the impact of coal mining on surface and groundwater resources of Korba Coalfield, Central India. Accordingly, water samples collected from various sources are analyzed for major ions, trace elements, and other mine effluent parameters. Results show that the groundwater samples are slightly acidic, whereas river water and mine water samples are mildly alkaline. Elevated concentrations of Ca2+, Na+, HCO3 ?, and SO4 2? alongside the molar ratios (Ca2++Mg2+)/(SO4 2?+HCO3 ?) <1 and Na+/Cl? >1 suggest that silicate weathering (water-rock interaction) coupled with ion exchange are dominant solute acquisition processes controlling the chemistry of groundwater in the study area. The overall hydrogeochemistry of the area is dominated by two major hydrogeochemical facies (i.e., Ca–Cl–SO4 and Ca–HCO3). Analysis of groundwater and river water quality index (GRWQI) elucidates that majority (82%) of samples are of “excellent” to “good” category, and the remaining 12% are of “poor” quality. Similarly, the effluent water quality index (EWQI) indicates that 6 out of 8 samples belong to excellent quality. Concentration of trace element constituents such as As, Zn, Cu, Cr, and Cd is found to be well within the stipulated limits for potable use, except for Fe, Mn, and Pb. Suitability of water samples for irrigation purpose, established using standard tools like Wilcox and USSL diagrams, reveal “excellent to permissible” category for majority of the samples. The present study also substantiates the effectiveness of the measures implemented for the treatment of mine effluent water.  相似文献   

12.
The hydrochemical characteristics and quality of groundwater in Lokoja basement area have been evaluated based on different indices for assessing groundwater for drinking and irrigation purposes. Twenty groundwater samples were collected and analyzed for physicochemical parameters, major ions and heavy metals. The results revealed that the groundwater is slightly alkaline, with little variations in chemical composition. For example, electrical conductivity (EC) ranges from 242μS/cm to 1835μS/cm. The abundance of the major ions is in the order of Ca2+ >Na+>Mg2+>K+> Fe2+/3+ = HCO3 >Cl? >NO3 >SO4 >PO4. Based on the hydrochemical data, four hydrochemical facies were identified namely, Ca-Mg-HCO3, Na-K-HCO3, Na-K-Cl-SO4 and Ca-Mg-Cl-SO4 and these facies depict groundwater recharge zone, transition flow zone, deep flow zone and mixed water zone respectively. Groundwater from the area is unsuitable for drinking and domestic purposes as some of the ions and heavy metals of health concerns are well above the stipulated guideline values. Irrigation water quality indicators (salinity, Na % and Mg %), reveal that the groundwater is unsuitable for irrigation purposes. Interpreted statistical analysis reveals that the groundwater chemical compositions are controlled predominantly by weathering of litho units of the basement rocks and by drainage from domestic wastes.  相似文献   

13.
The study area is situated in a large agricultural field which produces tobacco, maize, and other yearly cultivated vegetables in Tekkeköy, Samsun (NE-Turkey). In addition, a significant part of this area to the north along the Black Sea coast is occupied by several industrial plants such as a copper smelting plant (KB?), a fertilizer plant (Tügsa?) and industrial park facilities (IPF). In order to reveal their environmental impacts, heavy metal analyses were conducted on soil, plant leaves and water samples collected within an area of approximately 30 km2 around these plants. Soil samples within an area of 10 km2 around these facilities are found to be highly polluted with Cu, Zn, Pb, Fe and Mn. Pollution occurs at surface and sharply dies out at 20 cm downwards in soil profile. Since the region is polluted mostly with base metals, the copper smelting factory appears to be the main source of pollution as it processes the massive sulfidic ores of the Black Sea area. Plants show Cu, Pb, Zn and Fe pollution around KB? and Tügsa? and Cu and Pb around IPF. Pollutants observed in tobacco (Nicotiana tobacum) are Cu, Pb, Zn, Fe and S; in maize (Zea mays) Cu, Zn and Fe; and in cabbage (Brassica oleracea) Cu, Pb, Fe and S. The analyses of water samples collected from the study area reveal that Pb and, to a lesser degree, Cu and Fe pollution stem from KB?; Cu, Fe and Mn pollution from Tügsa?; Pb and minor amounts of Fe and Mn pollution from IPF. Factor analyses from analyzed metals and anionic complexes in water show three distinct groups: (a) an association of heavy metals with Na, K and Mg referring to pollution and acid leaching of soil, (b) an association of NH4, Fe, SO4, Cl and Br indicating agricultural pollution and sea-water invasion in land near the shore line, and (c) HCO3 behaving in a different manner in heavy metal precipitation.  相似文献   

14.
The present research aims to identify sources of ions and factors controlling the geochemical evolution of groundwater in an intermountain basin, comprising hill and valley fill region, of Outer Himalaya in Himachal Pradesh, India. The groundwater samples collected from 81 tubewells and handpumps are analyzed for major ions, trace metals and stable isotopes (δ18O and δD). Geochemically the dominant hydrochemical facies in the Una basin are Ca–HCO3, Ca–Mg–HCO3 and Na–Cl types at few locations. A relatively lower ionic concentration in the valley fills indicates dilution and low residence time of water to interact with the aquifer mass due to high porosity and permeability. The ionic ratios of 0.9, 0.8 and 3.8 to 5.7, respectively, for (Ca?+?Mg): HCO3, (Ca?+?Mg): (HCO3?+?SO4) and Na: Cl, suggests that ionic composition of groundwater is mainly controlled by rock weathering of, particularly by dissolution/precipitation of calcrete and calcite hosted in rock veins and Ca–Na feldspar hosted in conglomerate deposits derived from the Higher and Lesser Himalaya during the formation of Siwalik rocks. Although Na, K, NO3 and SO4 are introduced in the groundwater through agricultural practices, Na has also been introduced through ion exchange processes that have occurred during water–rock interaction, as indicated by negative CAI values. Factor analysis further suggests three major factors affecting the water chemistry of the area. The first two factors are associated with rock weathering while the third is anthropogenic processes associated with high nitrate and iron concentration. High concentrations of Fe and Mn ions that are exceeded that of WHO and BIS standards are also present at few locations. The recharge of groundwater in the Outer Himalaya is entirely through Indian Southwest Monsoon (ISM) and depleted ratios of δ18O/δD in valley region indicate infiltration from irrigation in recharging the groundwater and fractionation of isotopes of precipitation due to evaporation before infiltration. High d-excess values and inverse relation with δ18O are indicative of secondary evaporation of precipitation during recharge of groundwater.  相似文献   

15.
《Applied Geochemistry》2003,18(9):1453-1477
Observed As concentrations in groundwater from boreholes and wells in the Huhhot Basin of Inner Mongolia, northern China, range between <1 μg l−1 and 1480 μg l−1. The aquifers are composed of Quaternary (largely Holocene) lacustrine and fluvial sediments. High concentrations are found in groundwater from both shallow and deep boreholes as well as from some dug wells (well depths ranging between <10 m and 400 m). Populations from the affected areas experience a number of As-related health problems, the most notable of which are skin lesions (keratosis, melanosis, skin cancer) but with internal cancers (lung and bladder cancer) also having been reported. In both the shallow and deep aquifers, groundwaters evolve down the flow gradient from oxidising conditions along the basin margins to reducing conditions in the low-lying central part of the basin. High As concentrations occur in anaerobic groundwaters from this low-lying area and are associated with moderately high dissolved Fe as well as high Mn, NH4, dissolved organic C (DOC), HCO3 and P concentrations. Many of the deep groundwaters have particularly enriched DOC concentrations (up to 30 mg l−1) and are often brown as a result of the high concentrations of organic acid. In the reducing groundwaters, inorganic As(III) constitutes typically more than 60% of the total dissolved As. The highest As concentrations tend to be found in groundwater with low SO4 concentrations and indicate that As mobilisation occurs under strongly reducing conditions, where SO4 reduction has been an active process. High concentrations of Fe, Mn, NH4, HCO3 and P are a common feature of reducing high-As groundwater provinces (e.g. Bangladesh, West Bengal). High concentrations of organic acid (humic, fulvic acid) are not a universal feature of such aquifers, but have been found in groundwaters from Taiwan and Hungary for example. The observed range of total As concentrations in sediments is 3–29 mg kg−1 (n=12) and the concentrations correlate positively with total Fe. Up to 30% of the As is oxalate-extractable and taken to be associated largely with Fe oxides. The release of As into solution under the reducing conditions is believed to be by desorption coupled with reductive dissolution of the Fe oxide minerals. The association of dissolved As with constituents such as HCO3, DOC and P may be a coincidence related to the prevalent reducing conditions and slow groundwater flow, but they may also be directly involved because of their competition with As for binding sites on the Fe oxides. The Huhhot groundwaters also have some high concentrations of dissolved U (up to 53 μg l−1) and F (up to 6.8 mg l−1). In contrast to As, U occurs predominantly under the more oxidising conditions along the basin margins. Fluoride occurs dominantly in the shallow groundwaters which have Na and HCO3 as the dominant ions. The combination of slow flow of groundwater and the young age of the aquifer sediments are also considered potentially important causes of the high dissolved As concentrations observed as the sediments are likely to contain newly-formed and reactive minerals and have not been well flushed since burial.  相似文献   

16.
Chemical characteristics of groundwater in the Midyan Basin (northwestern Saudi Arabia) were investigated and evaluated. A total of 72 water samples were collected from existing shallow wells and analyzed for different elements. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and principal components analysis (PCA), were applied to a subgroup of the data set in terms of their usefulness for groundwater classification, and to identify the processes controlling groundwater geochemistry. The subgroup consisted of 46 water samples out of 72 samples and 24 variables included major elements (Ca2+, Na+, Mg2+, K+, Cl?, HCO3 ?, NO3 ?, SO4 2?), minor and trace element (SiO2, Al, As, B, Ba, Cd, Cr, F, Fe, Mo, P, Pb, Sb, Sn, Ti, and V). For water samples, four geochemically distinct clusters (i.e., C1, C2, C3 and C4) have been observed by hierarchical cluster analysis. Cr, F and Pb are the dominant ions in cluster C2. Al, As, Cd, Mo, Sb and Ti are the dominant ions in cluster C3, while B, Ca, Cl, HCO3, K, Mg, Na, SO4 and V are identified as dominant ions in the cluster C4. In the PCA, a total of five components are extracted form the data set, which explained 73.37 % of the total data variability. Among them the first component reveals strong associations between As, B, Cd, Cr, F, Mo, Pb, Sb and Ti. The second component reveals the associations between Ca, Cl, HCO3, Mg, Na, SO4 and V.  相似文献   

17.
The distribution and controls of trace elements (Cd, Cr, Cu, Ni, Pb, Zn and U) in shallow groundwater in discharge and recharge zones were analysed at two sites on the Baltic coast of Sweden; one granite-dominated and one with a significant addition of calcite. Although the study sites differ in overburden geochemistry and groundwater trace metal concentrations, which were well reflected in the general groundwater composition, the relative hydrochemical differences between recharge and discharge ground waters were similar at both sites, and temporally stable. The concentrations of Cd, Cu, Ni and U were higher in soil tubes in recharge areas, but Cr was higher in discharge zones. Also concentrations of HS, Fe, Mn and NH4 were higher in discharge samples, which in combination with increased 34S values provide strong evidence of a transition from oxidizing to more reducing conditions along the groundwater flow gradient. In terms of trace metals, this might mean either mobilisation due to dissolution of trace-metal carrying Fe(III) and Mn(IV) phases, or immobilisation caused by precipitation of discrete trace-metal sulfides or co-precipitation with Fe sulfides. The results from this study show that the latter is dominant in both the carbonate and granite environments for the metals Cd, Cu and Ni. Chromium concentrations were likely coupled to organic complexation and were higher in discharge groundwater, where DOC was also more abundant. As the concentration of several potentially toxic trace metals were found to differ between recharge and discharge areas, a climate driven change in hydrology might have a substantial impact on the distribution of these metals.  相似文献   

18.
Insufficient knowledge of the hydrogeochemistry of aquifers in the Central Region of Ghana has necessitated a preliminary water quality assessment in some parts of the region. Major and minor ions, and trace metal compositions of groundwater have been studied with the aim of evaluating hydrogeochemical processes that are likely to impair the quality of water in the study area. The results show that groundwater in the area is weakly acidic with mean acidity being 5.83 pH units. The dominant cation in the area is Na, followed by K, Ca, and Mg, and the dominant anion is Cl?, followed by HCO3 ? and SO4 2?. Two major hydrochemical facies have been identified as Na–Cl and Na–HCO3, water types. Multivariate statistical techniques such as cluster analysis (CA) and factor analysis/principal component analysis (PCA), in R mode, were employed to examine the chemical compositions of groundwater and to identify factors that influenced each. Q-mode CA analysis resulted in two distinct water types as established by the hydrochemical facies. Cluster 1 waters contain predominantly Na–Cl. Cluster 2 waters contain Na–HCO3 and Na–Cl. Cluster 2 waters are fresher and of good quality than cluster 1. Factor analysis yielded five significant factors, explaining 86.56% of the total variance. PC1 explains 41.95% of the variance and is contributed by temperature, electrical conductivity, TDS, turbidity, SO4 2?, Cl?, Na, K, Ca, Mg, and Mn and influenced by geochemical processes such as weathering, mineral dissolution, cation exchange, and oxidation–reduction reactions. PC2 explains 16.43% of the total variance and is characterized by high positive loadings of pH and HCO3 ?. This results from biogenic activities taking place to generate gaseous carbon dioxide that reacts with infiltrating water to generate HCO3 ?, which intend affect the pH. PC3 explains 11.17% of the total variance and is negatively loaded on PO4 3? and NO3 ? indicating anthropogenic influence. The R-mode PCA, supported by R-mode CA, have revealed hydrogeochemical processes as the major sources of ions in the groundwater. Factor score plot revealed a possible flow direction from the northern sections of the study area, marked by higher topography, to the south. Compositional relations confirmed the predominant geochemical process responsible for the various ions in the groundwater as mineral dissolution and thus agree with the multivariate analysis.  相似文献   

19.
《Applied Geochemistry》2003,18(9):1479-1496
Arsenic species were measured in a bundled-piezometer installed in the Holocene barrier of the Stuarts Point coastal sands aquifer, northern New South Wales, Australia. Vertical distribution shows two peaks of elevated As concentration. At a depth of 10–11 m, concentrations of AsTot, As(V) and As(III) are in the range of 52–85, 38–67 and 14–18 μg/l respectively and the ratio of As(V)/As(III) is well above 1 at 3.7–2.7. The second peak, at a depth of 25 m, shows the highest concentrations of AsTot, As(V) and As(III) with values reaching 337, 125 and 212 μg/l, respectively. The As(V)/As(III) ratio is below 1 at 0.6–0.7. High AsTot and As(V) concentrations at shallower depths are associated with acidic conditions and very low concentrations of all ions. Desorption of As from Al-hydroxides and As-enriched Fe-oxyhydroxides are plausible mechanisms releasing As into the groundwater system. The elevated concentration of AsTot and As(III) at 25 m is potentially related to the leaching of the clay surfaces. Elevated HCO3- and alkaline pH conditions at this depth cause desorption of As which is later present as As(III) species in the reducing environment. The high concentrations of HCO3- further reduce the possible extent of As sorption on Fe and Mn oxyhydroxides. The identification of As in a groundwater system associated with the coastal barrier sand-dune environment raises serious questions of the suitability of human consumption of untreated groundwater, drawn from these aquifer types. Further investigation both in Australia and globally are needed to classified the extent of this hydrogeochemical occurrence near coastal communities that rely on groundwater.  相似文献   

20.
Hazaribagh is a densely populated area of Dhaka city where about 185 leather processing industries have been operating and discharging solid and liquid wastes directly to the low-lying areas, river and natural canals without proper treatment. The area is covered by alluvial deposits of Holocene age and is underlain by Pleistocene Madhupur clay. The Dupi Tila Formation of Mio-Pliocene age underlain by this yellowish gray to brick red clay bed serves as the main water-bearing aquifer of Dhaka city. To assess the environmental degradation as well as the groundwater environment, major anions, cations and heavy metals of water samples, heavy metals and organic carbon content of sediment samples were analyzed in this study. Analyses of tannery effluent detect high concentration of Na+, Mg2+, Cl and SO 4 2− followed by Ca2+, NH 4 + and K+ with remarkable contents of some trace elements, mainly Cr, Fe, Mn, S, Ni and Pb. Higher accumulations of Cr, Al and Fe are observed in topsoil samples with significant amounts of Mn, Zn, Ni and Cu. Concentrations of ions and all the investigated trace elements of sampled groundwater were within the maximum allowable limit for drinking water of the Department of Environment, Bangladesh (DoE), and World Health Organization (WHO). However, excessive concentrations of Cr, Pb, etc., have already been reported in the shallow groundwater (10–20 m) of the area. Due to excessive withdrawal the vulnerability of groundwater contamination in deeper parts cannot be avoided for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号