首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The land surface of what is now the Barents Sea region may have been eroded to a sub-aerial platform prior to the Quaternary, due to both tectonic uplift-induced and sea-level lowering-induced erosion processes. The Barents Sea was then further eroded into its present form by the subsequent action of ice sheets. Two bedrock configurations, representing the pre-Quaternary sub-aerial Barents Shelf topography and the largely submarine morphology of the present day, were used as input to a glaciological ice sheet model so that the dynamic evolution of the maximum-sized ice sheets, caused solely by a change in bedrock elevation, could be identified. The ice-sheet model was run under constant glacial environmental conditions, until mass balance stability was reached, over both bedrock configurations. The simple parabolic ice sheet surface, which formed on a flat sub-aerial bedrock platform, was found to be significantly different in dynamic character compared with an ice sheet developed on the present submarine bedrock topography. In this latter situation, the central ice dome is drained by ice streams in Bjørnøyrenna, Storfjordrenna and smaller outlet glaciers in the north of the ice sheet.  相似文献   

2.
Growth of mid-latitude ice sheets during the glacial cycles of the Quaternary repeatedly reorganises the pattern of groundwater flow on a continent-wide scale. Relatively small scale non-glacial catchments are replaced by catchments which are integrated on the scale of continental ice sheets. Simulations are presented of the response to glaciation of a large part of the western European groundwater system during the last two (Saalian, Weichselian) glacial cycles. A two-dimensional model along an ice sheet flowline from western Sweden to The Netherlands illustrates the impact of glaciation on flow in the vertical plane, and a vertically integrated model illustrates its impact on areal patterns of flow.Hydraulics heads, hydraulic gradients and flow velocities are increased far above their modern values, and relatively shallow aquifers are completely flushed out during glacial periods. There are significant implications for groundwater chemistry and geological structures. Large seepage pressures generated near to ice sheet margins and major impacts on the distribution of effective pressures will produce structures such as hydrofractures, sediment dykes, sediment volcanoes, loading structures etc. The model can be readily applied to hydrocarbon resorvoirs.  相似文献   

3.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   

4.
The Antarctic ice cap is the largest ice sheet of modern times. It is of considerable importance to predict the sea level variability due to the associated changes in ice volume. We present the results of a simple grounded ice sheet model, developed from Oerlemans [Oerlemans, J., 2002. Global dynamics of the Antarctic Ice Sheet, Climate Dynamics 19, 85–93.], in which the net oceanic evaporation influences the ice cap volume in two ways, through changes in: (i) the accumulation rate, and (ii) the mean sea level. The net evaporation changes are driven by the sea surface temperature (SST) anomaly time series of Howard [Howard, W.R., 1997. A warm future in the past, Nature, 388, 418–419.] for the subantarctic Southern Ocean over the period 220 kyr to the present. The effect of the waxing and waning of the northern hemisphere ice sheets is integrated into the model using an independent model, in which ice melting depends on the SST anomaly and ice calving depends on the sea level anomaly. A series of analytical expressions are derived for the related properties of the coupled ocean–ice system applicable over time scales of 100 kyr, which show, in particular, that the Antarctic ice cap volume changes are due mainly to the effects of the northern hemisphere ice sheets on sea level (which influences ice calving), rather than directly to changes in SST, and hence the ice cap volume is greatest during interglacial periods. This conclusion, which is independent of the specification of the ice melting regime for the northern hemisphere ice sheets, strongly suggests that the changes in accumulation flux estimated from the Vostok proxy temperature data and used in other studies of the Antarctic mass balance have been overestimated. A simple expression is also presented for the lag of ice cap volume to SST, and it is found that the predictions for the mean sea level variability are similar to observations for a melting flux of the northern hemisphere ice sheets about twice their accumulation flux due to the net oceanic evaporation, except during major deglaciations when these two fluxes appear to be of similar magnitude.  相似文献   

5.
The North Taymyr ice-marginal zone (NTZ) is a complex of glacial, glaciofluvial and glaciolacustrine deposits, laid down on the northwestern Taymyr Peninsula in northernmost Siberia, along the front of ice sheets primarily originating on the Kara Sea shelf. It was originally recognised from satellite radar images by Russian scientists; however, before the present study, it had not been investigated in any detail. The ice sheets have mainly inundated Taymyr from the northwest, and the NTZ can be followed for 700–750 km between 75°N and 77°N, mostly 80–100 km inland from the present Kara Sea coast.The ice-marginal zone is best developed in its central parts, ca. 100 km on each side of the Lower Taymyr River, and has there been studied by us in four areas. In two of these, the ice sheet ended on land, whereas in the two others, it mainly terminated into ice-dammed lakes. The base of the NTZ is a series of up to 100-m-high and 2-km-wide ridges, usually consisting of redeposited marine silts. These ridges are still to a large extent ice-cored; however, the present active layer rarely penetrates to the ice surface. Upon these main ridges, smaller ridges of till and glaciofluvial material are superimposed. Related to these are deltas corresponding to two generations of ice-dammed lakes, with shore levels at 120–140 m and ca. 80 m a.s.l. These glacial lakes drained southwards, opposite to the present-day pattern, via the Taymyr River valley into the Taymyr Lake basin and, from there, most probably westwards to the southern Kara Sea shelf.The basal parts of the NTZ have not been dated; however, OSL dates of glaciolacustrine deltas indicate an Early–Middle Weichselian age for at least the superimposed ridges. The youngest parts of the NTZ are derived from a thin ice sheet (less than 300 m thick near the present coast) inundating the lowlands adjacent to the lower reaches of the Taymyr River. The glacial ice from this youngest advance is buried under only ca. 0.5 m of melt-out till and is exposed by hundreds of shallow slides. This final glaciation is predated by glacially redeposited marine shells aged ca. 20,000 BP (14C) and postdated by terrestrial plant material from ca. 11,775 and 9500 BP (14C)–giving it a last global glacial maximum (LGM; Late Weichselian) age.  相似文献   

6.
7.
The Eurasian Weichselian glaciation is studied with the SICOPOLIS ice-sheet model and UKMO PMIP climate anomaly forcings. A set of sensitivity tests are completed, including runs in cold-ice mode, different positive-degree-day (PDD) factors and modified climatic data-sets. The model set-up with present-day climatology modified by a glacial index brings forth an areally correct Last Glacial Maximum (LGM) extent in the western areas, but the ice-sheet volume is too small compared to reconstructions from rebound rates. Applying modified climate data results in similar extent as indicated by the Quaternary Environment of the Eurasian North (QUEEN) Late Weichselian ice-sheet reconstruction. The simulation results display freshwater fluxes from melting and calving in phase with Heinrich events H3 at 27, H2 at 22, and H1 at 14 ka ago. These peaks correspond to fast flow areas, with main activity at 27 and 22 ka ago in the Nordic Channel area and later in the Bear Island and Storfjorden region. The activity of these areas seems to be shifting from south to north from LGM to the Holocene. The freshwater pulse at 19–18.5 ka could correspond to Dansgaard–Oeschger oscillation, as well as ice volume flux peaks around 18–17 ka ago on the western margin of the ice sheet.  相似文献   

8.
The Pliocene epoch represents an important transition from a climate regime with high-frequency, low-amplitude oscillations when the Northern Hemisphere lacked substantial ice sheets, to the typical high-frequency, high-amplitude Middle to Late Pleistocene regime characterized by glacial—interglacial cycles that involve waxing and waning of major Northern Hemisphere ice sheets. Analysis of middle Pliocene (3 Ma) marine and terrestrial records throughout the Northern Hemisphere forms the basis of an integrated synoptic Pliocene paleoclimate reconstruction of the last significantly warmer than present interval in Earth history. This reconstruction, developed primarily from paleontological data, includes middle Pliocene sea level, vegetation, land—ice distribution, sea—ice distribution, and sea-surface temperature (SST), all of which contribute to our conceptual understanding of this climate system. These data indicate middle Pliocene sea level was at least 25 m higher than present, presumably due in large part to a reduction in the size of the East Antarctic Ice Sheet. Sea surface temperatures were essentially equivalent to modern temperatures in tropical regions but were significantly warmer at higher latitudes. Due to increased heat flux to high latitudes, both the Arctic and Antarctic appear to have been seasonally ice free during the middle Pliocene with greatly reduced sea ice extent relative to today during winter. Vegetation changes, while more complex, are generally consistent with marine SST changes and show increased warmth and moisture at higher latitudes during the middle Pliocene.  相似文献   

9.
An overview of advances in ice research which can be expected from future satellite gravity missions is given. We compare present and expected future accuracies of the ice mass balance of Antarctica which might be constrained to 0.1–0.3 mm/year of sea level equivalent by satellite gravity data. A key issue for the understanding of ice mass balance is the separation of secular and interannual variations. For this aim, one would strongly benefit from longer uninterrupted time series of gravity field variations (10 years or more). An accuracy of 0.01 mm/year for geoid time variability with a spatial resolution of 100 km would improve the separability of ice mass balance from mass change due to glacial isostatic adjustment and enable the determination of regional variations in ice mass balance within the ice sheets. Thereby the determination of ice compaction is critical for the exploitation of such high accuracy data. A further benefit of improved gravity field models from future satellite missions would be the improvement of the height reference in the polar areas, which is important for the study of coastal ice processes. Sea ice thickness determination and modelling of ice bottom topography could be improved as well.  相似文献   

10.
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.  相似文献   

11.
Within the numerical general-circulation model of the Martian atmosphere MAOAM (Martian Atmosphere: Observation and Modeling), we have developed the water cycle block, which is an essential component of modern general circulation models of the Martian atmosphere. The MAOAM model has a spectral dynamic core and successfully predicts the temperature regime on Mars through the use of physical parameterizations typical of both terrestrial and Martian models. We have achieved stable computation for three Martian years, while maintaining a conservative advection scheme taking into account the water–ice phase transitions, water exchange between the atmosphere and surface, and corrections for the vertical velocities of ice particles due to sedimentation. The studies show a strong dependence of the amount of water that is actively involved in the water cycle on the initial data, model temperatures, and the mechanism of water exchange between the atmosphere and the surface. The general pattern and seasonal asymmetry of the water cycle depends on the size of ice particles, the albedo, and the thermal inertia of the planet’s surface. One of the modeling tasks, which results from a comparison of the model data with those of the TES experiment on board Mars Global Surveyor, is the increase in the total mass of water vapor in the model in the aphelion season and decrease in the mass of water ice clouds at the poles. The surface evaporation scheme, which takes into account the turbulent rise of water vapor, on the one hand, leads to the most complete evaporation of ice from the surface in the summer season in the northern hemisphere and, on the other hand, supersaturates the atmosphere with ice due to the vigorous evaporation, which leads to worse consistency between the amount of the precipitated atmospheric ice and the experimental data. The full evaporation of ice from the surface increases the model sensitivity to the size of the polar cap; therefore, the increase in the latter leads to better results. The use of a more accurate dust scenario changes the model temperatures, which also strongly affects the water cycle.  相似文献   

12.
Abstract— Following discoveries of blue ice areas in Greenland resembling meteorite‐bearing blue ice fields in Antarctica, a surface search of several of the most promising sites was carried out in August 2003. The ice fields are located in Kong Christian X Land, in northeastern Greenland around 74°N at elevations between 2100 and 2400 m. No meteorites were found in any of the localities that were searched. Evidence of occasional significant melting (filled crevasses and melt sheets) suggest that summer temperatures are sometimes high enough that dark rocks, like meteorites, can melt through the upper layers of ice. Small terrestrial rocks and cryogenite were found down to 50 cm below the ice surface. Meter‐sized terrestrial rocks were found on top of the ice downstream from nunataks. These rocks shade the ice below, and since they were apparently too massive to warm up during warm days, they remained at the surface as the surrounding ice ablated away. Our findings strongly suggest that Greenland is currently unlikely to harbor significant meteorite concentrations on blue ice fields.  相似文献   

13.
Increased melting on glaciers and ice sheets and rising sea level are often mentioned as important aspects of the anticipated greenhouse warming of the earth's atmosphere. This paper deals with the sensitivity of Greenland's ice mass budget and presents a tentative projection of the Greenland component of future sea level rise for the next few hundred years. To do this, the ‘Villach II temperature scenario’ is prescribed,output from a comprehensive mass balance model is used to drive a high-resolution 3-D thermomechanic model of the ice sheet.The mass balance model consists of two parts: the accumulation part is based on presently observed values and is forced by changes in mean anr tempeerature. The ablation model is based on the degree-day method and accounts for daily and annual temperature cycle, a different degree-day factor for ice and snow melting and superimposed ice formation. Under present-day climatic conditions, the following total mass balance results (in ice equivalent per years): 599.3 × 109 m3 of accumulation, 281.7 × 109m3 of runoff assuming a balanced budget, 317.6 × 109m3 of iceberg calving. A 1K uniform warming is then calculated to increase the runoff by 119.5 × 109 m3. Since accumulation also increases by 32 × 109 m3, this leads to reduction of the total mass balance by 887.5 × 109 m3 of ice, corresponding to a sea level rise of 0.22 mm/yr. For temperature increase larger than 2.7 K, runoff, exceeds accumulation, and if ice sheet dynamics were to remain unchanged, this would add an extra amount of 0.8 mmyr to the worl's oceans.Imposing the Villach II scenario (warming up to 4.23 K) and accumulating mass balance changes forward in time (static response) would then result in a global sea level rise of 7.1 cm by 2100 AD, but this figure may go up to as much as 40 cm per century in case the warming is doubled. In a subsequent dynamic model involving the ice flow, the ice sheet is found to produce a counteracting effect by dynamically producing steeper slopes at the margin, thereby reducing the area over which runoff can take place. This effect is particularly apparent in the northeastern part of the ice sheet, and is also more pronounced for the smaller temperature perturbations. Nevertheless, all these experiments certainly highlight the vulnerability of the Greenland ice sheet with respect to a climatic warming.  相似文献   

14.
The history and dynamics of the martian polar deposits (MPD), the largest known water reservoirs on Mars, are of great interest, but estimates of ice grain size are required before detailed modeling can be performed. We clarify the microphysical processes that may control grain size in the MPD. If the MPD are ∼2% dust by mass, the maximum ice grain size is ∼1 mm due to grain boundary pinning by silicate microparticles. Relatively dusty layers in the MPD will have smaller grain sizes. If MPD ice has a very low impurity content and has experienced a significant amount of strain, grains may reach a steady state size of ∼1.5 to 3 mm due to dynamic recrystallization, wherein a steady state grain size is maintained due to the balance of grain growth and destruction during flow. If the near-bed ice in the MPD is warmed close to its melting point and has been extensively sheared, grain sizes at its base may be between 10 and 40 mm, by analogy with warm, dirty, near-bed ice in terrestrial ice sheets.  相似文献   

15.
Recent studies in the Arkhangelsk region, northwest Russia, have identified at least three consecutive tills all associated with the last Valdaian (Weichselian) glaciation. The Scandinavian ice sheet deposited a Late Valdaian till (ca. 17 ka BP), whereas two tills were deposited in the Early–Middle Valdaian by the Barents/Kara Sea ice sheet (ca. 45–60 ka BP) and an older ice sheet with an eastern centre (ca. 74 ka BP). This article expands on previous stratigraphical work on the discrimination of regional till units by a combination of compositional characteristics and directional properties. Tills associated with the Scandinavian ice sheet were deposited by a glacier advancing from west or northwest, transporting predominantly material from the Fennoscandian shield and the White Sea area. The Barents/Kara Sea ice sheet moved from the north and northeast, whereas the oldest ice advance came from the east–southeast. Although, the two oldest tills both contain material with an eastern provenance, the Viryuga Till is dominated more by local carbonate-rich material. This study demonstrates that detailed investigation of till units facilitate the distinction of glacial events imperative for the reconstructing of the last glaciation in northern Russia.  相似文献   

16.
It is well-known that the permanent terrestrial ice sheets (glaciers and polar caps) contain a lot of information about the recent geological history and in particular about climatic changes. Extrapolating this fact to other ice sheets in the solar system (e.g. the Mars polar regions, the icy moons of the outer planets, etc.), we may expect a similar wealth of information. To obtain this information it is possible to drill holes or melt the ice by a heated probe, which in this way is able to penetrate the surface and investigate the deeper layers in situ. In the latter case the driving agent is the heating power and the weight of the probe. In this paper we consider the application of such “melting probes” for exploring the structure of ice sheets in extraterrestrial environments. We describe several laboratory experiments with simple melting probes performed under cryo-vacuum conditions and compare the results with tests in a terrestrial environment. The experiments revealed that under space conditions the downward motion of a heated probe in an ice sheet is characterized by intermittent periods of sublimation and melting of the surrounding ice, sometimes interrupted by periods where a part of the probe's outer surface is frozen to the surrounding ice. This leads to a temporary blocking of the probe's downward motion. A similar situation can occur when the trailing tether is frozen in behind the probe. During the periods of ice sublimation the penetration process is significantly more power consuming, due to the large difference between the latent heat of sublimation and the latent heat of melting for water ice.  相似文献   

17.
Ice-rafted debris (IRD) (>2 mm), input in eight sediment cores along the Eurasian continental margin (Arctic Ocean), have been studied over the last two glacial/interglacial cycles. Together with the revised chronologies and new micropaleontological data of two cores from the northern Barents Sea (PS2138) and northeastern Kara Sea (PS2741) spanning Marine Isotope Stages (MIS) 6 to 1, the IRD data give new insights into the glacial history of northern Eurasian ice-sheets over the last 150 ka. The chronologies of the cores are based on stable isotope records, AMS 14C datings, paleomagnetic and biostratigraphic data.Extensive episodes of northern Barents Sea ice-sheet growth, probably to the shelf edge, occurred during the late Weichselian (MIS 2) and the Saalian (MIS 6). Major IRD discharge at the MIS 4/3-transition hints to another severe glaciation, probably onto the outer shelf, during MIS 4. IRD-based instabilities of the marine-based ice margin along the northern Barents Sea between MIS 4 and 2 are similar in timing with North Atlantic Heinrich events and Nordic Seas IRD events, suggesting similar atmospheric cooling over a broad region or linkage of ice-sheet fluctuations through small sea-level events.In the relatively low-precipitation areas of eastern Eurasia, IRD peak values during Termination II and MIS 4/3-transition suggest a Kara Sea ice-sheet advance onto the outer shelf, probably to the shelf edge, during glacial MIS 6 and 4. This suggests that during the initial cooling following the interglacials MIS 5, and possibly MIS 7, the combined effect of sustained inflow of Atlantic water into the Arctic Ocean and penetration of moisture-bearing cyclones into easterly direction supported major ice build-up during Saalian (MIS 6) and Mid-Weichselian (MIS 4) glaciation. IRD peak values in MIS 5 indicate at least two advances of the Severnaya Semlya ice-sheet to the coast line during the Early Weichselian. In contrast, a distinct Kara Sea ice advance during the Late Weichselian (MIS 2) is not documented by the IRD records along the northeastern Kara Sea margin.  相似文献   

18.
Richard Ulrich 《Icarus》2009,201(1):127-134
Diffusion advection is an effect in diffusive multicomponent mass transfer that occurs when the flux vectors of the individual components do not add up to zero. This can be a significant effect for the mass transfer of water vapor from subsurface ice or liquid reservoirs through porous regolith at martian temperatures and pressures. Ignoring diffusion advection and using Fick's law alone to calculate the flux under these conditions will result in an erroneously small value while using a measured flux to calculate a diffusivity will result in an erroneously high value. The inaccuracy in both cases increases with temperature. The literature contains several examples of erroneous treatment of this effect. The correct approach is well-known from other applications of mass transfer and takes diffusion advection into account in the appropriate amount regardless of the temperature and pressure and reduces to the simple Fick's law when conditions warrant. In this way, there is no need to decide under what conditions diffusion advection is or is not important. It can be used in the transition region to pure Knudsen diffusion in a fashion similar to that used with the more limited Fickian approach.  相似文献   

19.
A coupling procedure between a climate model of intermediate complexity (CLIMBER-2.3) and a 3-dimensional thermo-mechanical ice-sheet model (GREMLINS) has been elaborated. The resulting coupled model describes the evolution of atmosphere, ocean, biosphere, cryosphere and their mutual interactions. It is used to perform several simulations of the Last Deglaciation period to identify the physical mechanisms at the origin of the deglaciation process. Our baseline experiment, forced by insolation and atmospheric CO2, produces almost complete deglaciation of past northern hemisphere continental ice sheets, although ice remains over the Cordilleran region at the end of the simulation and also in Alaska and Eastern Siberia. Results clearly demonstrate that, in this study, the melting of the North American ice sheet is critically dependent on the deglaciation of Fennoscandia through processes involving switches of the thermohaline circulation from a glacial mode to a modern one and associated warming of the northern hemisphere. A set of sensitivity experiments has been carried out to test the relative importance of both forcing factors and internal processes in the deglaciation mechanism. It appears that the deglaciation is primarily driven by insolation. However, the atmospheric CO2 modulates the timing of the melting of the Fennoscandian ice sheet, and results relative to Laurentide illustrate the existence of threshold CO2 values, that can be translated in terms of critical temperature, below which the deglaciation is impeded. Finally, we show that the beginning of the deglaciation process of the Laurentide ice sheet may be influenced by the time at which the shift of the thermohaline circulation from one mode to the other occurs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号