首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For this paper, we collected all infrared carbon stars (IRCSs) known so far from the literature and identified the 2MASS counterparts of all IRCSs. Using 2MASS, IRAS and ISO SWS data, we investigate the infrared properties of IRCSs. We find that the infrared colors and temperatures of IRCSs—not only in the IRAS region but also in the near infrared—are between those for visual carbon stars and extreme carbon stars. The results in this paper strongly support the suggestion that the sequence of visual carbon stars → infrared carbon stars → extreme carbon stars is the evolutionary sequence in the AGB phase for carbon-rich stars. In addition, using the ISO SWS data, we find that an evolutionary sequence also exists within the IRCS stage.  相似文献   

2.
The spectral variations of three Mira variable carbon stars, V CrB, T Dra and V Cyg in the infrared are investigated based on ISO SWS data. It is found that either continua or molecular/dust features were variable with time in the infrared for these carbon stars during one and a half year observations. When stars were brighter the infrared continuum spectra became blue while stars were fainter the infrared continuum spectra became red. In addition, during spectral variations there were the correlation between the 3.05 μm HCN+C2H2 and the 5.2 μm C3 molecular band strengths and the anti-correlation between the 3.05 μm HCN+C2H2 molecular band strengths and 13.7 μm C2H2 band strengths while during variations the 11.3 μm SiC dust emission strengths were not clearly changed.  相似文献   

3.
We find that five sources listed in the new carbon star catalog are not really carbon-rich objects but oxygen-rich stars, because they all have the prominent 10μm silicate features in absorption and the 1612MHz OH maser emission or/and the SiO molecular features. These objects were considered as carbon stars in the catalog based only on their locations in the infrared two-color diagram. Therefore to use the infrared two-color diagram to distinguish carbon-rich stars from oxygenrich stars must be done with caution, because, in general, it has only a statistical meaning.  相似文献   

4.
We collected 55 galactic extreme carbon stars from the published literature in this paper. Observational data from IRAS, 2MASS and ISO were analyzed. The results show that the infrared properties of extreme carbon stars are quite different to those for ordinary visual carbon stars. It is shown from IRAS and 2MASS photometric data that extreme carbon stars have much redder infrared colors not only in the far infrared, but also in the near infrared, hence they have much thicker ciucumstellar envelopes and mass loss. It is also indicated from IRAS Low-Resolution Spectra (LRS) and ISO Short Wavelength Spectra (SWS) that they have much redder infrared spectra from 2 μm to 45 μm. The above results are believed to be the signature of undergoing the last stages of AGB evolution for extreme carbon stars.  相似文献   

5.
We have investigated the optical properties of the carbon dust grains in the envelopes around carbon-rich asymptotic giant branch stars, paying close attention to the infrared observations of the stars and the laboratory-measured optical data of the candidate dust grain materials. We have compared the radiative transfer model results with the observed spectral energy distributions of the stars including IRAS Point Source Catalog and IRAS Low Resolution Spectrograph data. We have deduced an opacity function of amorphous carbon dust grains from model fitting with infrared carbon stars. From the opacity function, we have derived the optical constants of the AMC grains. The optical constants satisfy the Kramers–Kronig relation and produce the opacity function that fits the observations of infrared carbon stars better than previous works in the wide wavelength range 1–1000 μm. We have used simple mixtures of the AMC and silicon carbide grains for modelling. We have compared the contributions that AMC and SiC grains make to the opacity for the cases of simple mixtures of them and spherical core–mantle type grains consisting of a SiC core and an AMC mantle .  相似文献   

6.
Photometric observations at optical and near-infrared wavelengths are presented for members of a new sample of candidate Vega-like systems, or main sequence stars with excess infrared emission due to circumstellar dust. The observations are combined with IRAS fluxes to define the spectral energy distributions of the sources. Most of the sources show only photospheric emission at near-IR wavelengths, indicating a lack of hot (∼1000 K) dust. Mid-infrared spectra are presented for four sources from the sample. One of them, HD 150193, shows strong silicate emission, while another, HD 176363, was not detected. The spectra of two stars from our previous sample of Vega-like sources both show UIR-band emission, attributed to hydrocarbon materials. Detailed comparisons of the optical and IRAS positions suggest that in some cases the IRAS source is not physically associated with the visible star. Alternative associations are suggested for several of these sources. Fractional excess luminosities are derived from the observed spectral energy distributions. The values found are comparable to those measured previously for other Vega-like sources.  相似文献   

7.
The longstanding question of the extent to which the quasar population is affected by dust extinction, within host galaxies or galaxies along the line of sight, remains open. More generally, the spectral energy distributions of quasars vary significantly, and flux-limited samples defined at different wavelengths include different quasars. Surveys employing flux measurements at widely separated wavelengths are necessary to characterize fully the spectral properties of the quasar population. The availability of panoramic near-infrared detectors on large telescopes provides the opportunity to undertake surveys capable of establishing the importance of extinction by dust on the observed population of quasars. We introduce an efficient method for selecting K -band, flux-limited samples of quasars, termed 'KX' by analogy with the UVX method. This method exploits the difference between the power-law nature of quasar spectra and the convex spectra of stars: quasars are relatively brighter than stars at both short wavelengths (the UVX method) and long wavelengths (the KX method). We consider the feasibility of undertaking a large-area KX survey for damped Ly α galaxies and gravitational lenses using the planned UKIRT wide-field near-infrared camera.  相似文献   

8.
The rather rare class of central stars of planetary nebulae that show very low-excitation Wolf–Rayet spectra has been a subject of great interest, particularly in the infrared, since its discovery in the late 1960s. Further peculiarities have been found with the advent of infrared spectroscopy from ISO . Notably, these objects simultaneously betray the presence of regions of carbon-rich and oxygen-rich dust chemistry. We compare and contrast complete ISO spectra between 2 and 200 μm of a sample of six [WC8] to [WC11] central stars, finding many similarities. Among this sample, one star provides strong evidence of quasi-periodic light variations, suggestive of a dust cloud orbiting in a plane from which we view the system.  相似文献   

9.
The observational infrared spectra of a number of Wolf–Rayet stars of WC8–9 spectral classes are shown to be quite satisfactorily explained by making use of the detailed theoretical model of a dust shell made up of spherical amorphous carbon grains, the dynamics, growth–destruction, thermal and electrical charge balance of which are taken into account. The dust grains acquire mainly positive electrical charge, move with suprathermal drift velocities and may grow up to 100–200 Å as a result of implantation of impinging carbon ions. For most of the stars the fraction of condensed carbon does not exceed 1 per cent. While the nature of the grain nucleation remains unknown, the condensation distances and the grain seed production can be estimated by fitting the observational spectra with theoretical ones.  相似文献   

10.
We present optical spectra of four intermediate-mass candidate young stellar objects that have often been classified as Herbig Ae/Be stars. Typical Herbig Ae/Be emission features are not present in the spectra of these stars. Three of them, HD 36917, HD 36982 and HD 37062, are members of the young Orion nebula cluster (ONC). This association constrains their ages to be ≲1 Myr. The lack of appreciable near-infrared excess in them suggests the absence of hot dust close to the central star. However, they do possess significant amounts of cold and extended dust as revealed by the large excess emission observed at far-infrared wavelengths. The fractional infrared luminosities  ( L ir/ L )  and the dust masses computed from IRAS fluxes are systematically lower than those found for Herbig Ae/Be stars but higher than those for Vega-like stars. These stars may thus represent the youngest examples of the Vega phenomenon known so far. In contrast, the other star in our sample, HD 58647, is more likely to be a classical Be star, as is evident from the low   L ir/ L   , the scarcity of circumstellar dust, the low polarization, the presence of H α emission and near-infrared excess, and the far-infrared spectral energy distribution consistent with free–free emission similar to other well-known classical Be stars.  相似文献   

11.
Unidentified infrared emission bands (UIR bands) have been attributed to polycyclic aromatic hydrocarbons (PAHs), which are believed to require ultraviolet radiation in order for the UIR bands to be excited. If, in addition to amorphous carbon and hydrogenated amorphous carbon (HAC) particles, PAHs are able to form in the outflows of cool carbon-rich stars (Cherchneff et al. 1991), then the weak UV radiation field from such stars would be unlikely to be able to excite the UIR bands and so the PAH species could remain undetected in the spectra of C-stars. However, cool carbon stars with hot companions might be exposed to strong enough UV radiation fields for UIR-band emission to be excited from PAHs. Buss et al. (1991) reported the detection of the 8 μm UIR-band (C-C stretch) in the IRAS LRS spectrum of HD 38218 (TU Tau), a carbon star with a hotter A2III companion. To investigate the phenomenon further, we have therefore obtained UKIRT CGS3 10 μm spectra of three carbon stars with hot companions, TU Tau, UV Aur and CS776. It was found that TU Tau showed the 11.25 μm and 8.6 μm UIR-bands (both attributed to C-H bend modes) at good contrast, while UV Aur clearly exhibited the 11.25 μm UIR band. No narrow UIR-band emission was detected in the spectrum of CS776. We have fitted these 10 μm region spectra using a χ2-minimization program equipped to fit stellar and dust emission continua together with the broad SiC feature and the narrow UIR-bands. The features seen in the spectra of TU Tau and UV Aur can be well fitted by a narrow 11.25 μm UIR-band sitting on top of a broad, self-absorbed 11.3 μm silicon carbide feature. Our results therefore provide strong support for the supposition that PAHs can form in carbon star outflows. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
We present broad-band photometry in the optical, near-infrared and submillimetre, and mid-infrared spectrophotometry of a selection of carbon stars with optically thin envelopes. Most of the observations were carried out simultaneously.   Beside the emission feature at 11.3 μ m due to silicon carbide grains in the circumstellar environment, many of our mid-infrared spectra show an emission feature at 8.6 μ m. All the observed spectral energy distributions exhibit a very large far-infrared flux excess. Both these features are indeed common to many carbon stars surrounded by optically thin envelopes.   We have modelled the observed spectral energy distributions by means of a full radiative transfer treatment, paying particular attention to the features quoted above. The peak at 8.6 μ m is usually ascribed to the presence of hydrogenated amorphous carbon grains. We find also that the feature at 8.6 μ m might be reproduced by assuming that the stars have a circumstellar environment formed of both carbon- and oxygen-rich dust grains, although this is in contrast with what one should expect in a carbon-rich environment. The far-infrared flux excess is usually explained by the presence of a cool detached dust shell. Following this hypothesis, our models suggest a time-scale for the modulation of the mass-loss rate of the order of some 103 yr.  相似文献   

13.
《New Astronomy》2003,8(7):719-725
We have found that six sources listed in the new carbon star catalog are not really carbon-rich objects but oxygen-rich stars, because they all have prominent silicate features in emission at 10 and 18 μm. Moreover, one of them has a typical oxygen-rich spectrum in the optical region, whereas others have SiO maser emission. Most of these objects were considered as carbon stars in the catalog based only on their locations in the near infrared—IRAS two color diagram. Therefore, to use this diagram to distinguish carbon-rich stars from oxygen-rich stars requires caution. For individual star the other methods should be also employed to verify the results from the infrared two color method.  相似文献   

14.
The presence of small clusters of silicon carbide (SiC) in circumstellar dust shells surrounding late-type stars is inferred from a broad emission feature peaking at around 11 micrometre in infrared spectra (Little-Marenin ,1986 ApJ Lett. 307, L15). These clusters are expected to condense from molecular arrangements composed of a few carbon and silicium atoms which are present in stellar winds surrounding carbon-rich late-type stars. we have searched for all the possible geometric structures of SiC n + radicals (n <= 5) with help of ab initio calculations (T = 0 K). Vibrational frequencies of the most stable species have then been determined . the destabilizing influence of a finite temperature effect on these structures has also been studied by using general considerations of thermal statistics. We show that for n >= 3 linear structures are energetically favored compared to the planar and three-dimensional ones. A comparison with other results published in this context is also made.  相似文献   

15.
We present spectroscopic observations from the Spitzer Space Telescope of six carbon-rich asymptotic giant branch (AGB) stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C2H2 and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the Large Magellanic Cloud, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the dusty radiative transfer model and determine their dust mass-loss rates to be in the range  1.0–3.3 × 10−8 M yr−1  . The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars shows the strongest SiC feature in our present Local Group sample.  相似文献   

16.
The rather rare class of central stars of planetary nebulae thatshow Wolf-Rayet spectra have been a subject of great interest,particularly in the infrared, since their discovery in the late1960s. I will focus on further peculiarities found within thepast 1-2 years with the advent of infrared spectroscopy fromISO. Notably, these stars simultaneously betray the presenceof regions of carbon-rich and oxygen-rich dust chemistry. Icompare and contrast complete ISO spectra from 2 to 200 micronsof a small sample of [WC9] to [WC11] central stars.  相似文献   

17.
We report the discovery of 15 previously unknown Wolf–Rayet (WR) stars found as part of an infrared (IR) broad-band study of candidate WR stars in the Galaxy. We have derived an empirically based selection algorithm which has selected ∼5000 WR candidate stars located within the Galactic plane drawn from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (mid-IR) and Two-Micron All-Sky Survey (near-IR) catalogues. Spectroscopic follow-up of 184 of these reveals 11 nitrogen-rich (WN) and four carbon-rich (WC) WR stars. Early WC subtypes are absent from our sample and none shows evidence for circumstellar dust emission. Of the candidates which are not WR stars, ∼120 displayed hydrogen emission-line features in their spectra. Spectral features suggest that the majority of these are in fact B supergiants/hypergiants, ∼40 of these are identified Be/B[e] candidates.
Here, we present the optical spectra for six of the newly detected WR stars, and the near-IR spectra for the remaining nine of our sample. With a WR yield rate of ∼7 per cent and a massive star detection rate of ∼65 per cent, initial results suggest that this method is one of the most successful means for locating evolved, massive stars in the Galaxy.  相似文献   

18.
The optical spectrum of the carbon star IRAS 12311−3509 is dominated by the Merrill–Sanford emission bands of SiC2, by absorption and emission in the Swan system of C2, and by resonance emission lines of neutral metals. The infrared energy distribution is flat from 1 to 60 μm. These observations are interpreted as arising from a star with a cool dusty disc which is edge-on to the observer and obscures direct starlight. The infrared continuum is caused predominantly by absorption of stellar light by dust in the disc and re-emission at longer wavelengths. The optical stellar spectrum is seen by reflection off dusty material which lies out of the plane of the disc, and the molecular and atomic emission arises in the same geometry through resonance fluorescence. The object has similarities to the J-silicate stars, but may have a carbon-rich rather than oxygen-rich disc. A full spectroscopic assignment and discussion of the SiC2 bands and their intensities are given. Modelling of the rotational contours of the     band yields a rotational temperature of 250 K, indicating very cool gas.  相似文献   

19.
We collected almost all Galactic Wolf-Rayet (hereafter WR) stars found so far from the literature. 578 WR stars are gathered in this paper. 2MASS counterparts with good quality magnitudes in all JHK bands are listed for 364 WR stars. In addition, WISE counterparts for these sources are also identified. It is found that free-free emission is the main dominant source for the infrared excess in most WR stars up to 3.4 μm. However at the longer wavelengths the thermal radiation is dominant. In addition, WR stars in Clusters of the Galactic center region have the strong infrared excess in the near infrared due to the dust thermal emission from the strong star forming activity in the Galactic center region. For some WR stars with the WC spectral type, in particular, with WCd type, the dust thermal emission is important radiation source while many WR stars with the WC spectral type have the near infrared flux enhancement from the broad line emission in the K band. It is also shown that many single WC stars with different spectral sub-types have different locations in the near infrared two-color diagram, in particular, WC6 and WC9d stars can be separated respectively from other spectral type stars while single WN stars with different spectral sub-types can not be separated in the near infrared two-color diagram.  相似文献   

20.
We investigate the molecular bands in carbon-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud (LMC), using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope ( SST ) over the 5–38 μm range. All 26 low-resolution spectra show acetylene (C2H2) bands at 7 and 14 μm. The hydrogen cyanide (HCN) bands at these wavelengths are very weak or absent. This is consistent with low nitrogen abundances in the LMC. The observed 14 μm C2H2  band is reasonably reproduced by an excitation temperature of 500 K. There is no clear dilution of the 14 μm C2H2  band by circumstellar dust emission. This 14-μm band originates from molecular gas in the circumstellar envelope in these high mass-loss rate stars, in agreement with previous findings for Galactic stars. The C2H2 column density, derived from the 13.7 μm band, shows a gas mass-loss rate in the range 3 × 10−6 to 5 × 10−5 M yr−1. This is comparable with the total mass-loss rate of these stars estimated from the spectral energy distribution. Additionally, we compare the line strengths of the 13.7 μm C2H2  band of our LMC sample with those of a Galactic sample. Despite the low metallicity of the LMC, there is no clear difference in the C2H2  abundance among LMC and Galactic stars. This reflects the effect of the third dredge-up bringing self-produced carbon to the surface, leading to high carbon-to-oxygen ratio at low metallicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号