首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A detailed correlative analysis between sunspot numbers (SSN) and tilt angle (TA) with cosmic ray intensity (CRI) in the neutron monitor energy range has been performed for the solar cycles 21, 22 and 23. It is found that solar activity parameters (SSN and TA) are highly (positive) correlated with each other and have inverse correlation with cosmic ray intensity (CRI). The ‘running cross correlation coefficient’ between cosmic ray intensity and tilt angle has also been calculated and it is found that the correlation is positive during the maxima of odd cycles 21 and 23. Moreover, the time lag analysis between CRI and SSN, and between CRI and TA has also been performed and is supported by hysteresis curves, which are wide for odd cycles and narrow for even cycles.  相似文献   

2.
This paper investigates a series of daily solar indices: the sunspot number W (1900–2008), solar flux at 2800 MHz F 10.7 (1947–2008), and a number of X-ray flares N x (1981–2008). The methods of Fourier and wavelet analysis are used to reveal the so-called 156-day Rieger-type periodicity (RTP). The W index is observed to have a statistically significant RTP amplitude in the neighborhood of the solar maxima in most of the solar cycles under study, except for cycles 14, 15, and 23. The 156-day peak is observed to have its largest power during the declining phase of cycle 16, at the maximum of cycle 21, and during the increasing phase of cycles 20 and 23. Statistically significant RTPs are also observed at the minima of cycles 17, 18 and 19. We conclude that there is no stable dependence between RTP and the solar cycle. The wavelet analysis shows that the pattern of the RTP time dependence for the F 10.7 index is almost identical to that of the W index. The correlation coefficient between the RTP curves is 0.95. The correlation coefficients for the pairs of indices W-N x and F 10.7-N x are 0.36 and 0.32, respectively. No time lags are found between the RTP starting points for different indices. Thus, the 156-day quasi-periodicity involves, almost simultaneously, events that occur in active regions of the solar atmosphere at different heights. This paper discusses the possible nature of RTP.  相似文献   

3.
A nonlinear analysis of the daily sunspot number for each of cycles 10 to 23 is used to indicate whether the convective turbulence is stochastic or chaotic. There is a short review of recent papers considering sunspot statistics and solar activity cycles. The differences in the three possible regimes – deterministic laminar flow, chaotic flow, and stochastic flow – are discussed. The length of data sets necessary to analyze the regimes is investigated. Chaos is described and a chronology of recent results that utilize chaos and fractals to analyze sunspot numbers follows. The parameters necessary to describe chaos – time lag, phase space, embedding dimension, local dimension, correlation dimension, and the Lyapunov exponents – are determined for the attractor for each cycle. Assuming the laminar regime is unlikely if chaos is not indicated in a cycle by the calculations, the regime must be stochastic. The sunspot numbers in each of cycles 10 to 19 indicate stochastic behavior. There is a transition from stochastic to chaotic behavior of the sunspot numbers in cycles 20, 21, 22, and 23. These changes in cycles 20 – 23 may indicate a change in the scale of turbulence in the convection zone that could result in a change in the convective heat transfer and a change in the size of the convection region for these four cycles.  相似文献   

4.
Observations of the forbidden coronal lines Fe xiv 530.3 nm and Fe x 637.4 nm obtained at the National Solar Observatory at Sacramento Peak are used to determine the variation of coronal temperature at latitudes above 30 during solar activity cycles 21–23. Features of the long-term variation of emission in the two lines are also discussed. Temperatures at latitudes below 30 are not studied because the technique used to determine the coronal temperature is not applicable in active regions. The polar temperature varies cyclically from approximately 1.3 to 1.7 MK. The temperatures are similar in both hemispheres. The temperature near solar minimum decreases strongly from mid-latitudes to the poles. The temperature of the corona above 80 latitude generally follows the sunspot cycle, with minima in 1985 and 1995–1996 (cf. 1986 and 1996 for the smoothed sunspot number, Rz) and maxima in 1989 and 2000 (cf. 1989 and 2000 for Rz). The temperature of the corona above 30 latitude at solar maximum is nearly uniform, i.e., there is little latitude dependence. If the maximum temperatures of cycles 22 and 23 are aligned in time (superposed epochs), the average annual N + S temperature (average of the northern and southern hemisphere) in cycle 23 is hotter than that in cycle 22 at all times both above 80 latitude and above 30 latitude. The difference in the average annual N + S maximum temperature between cycles 23 and 22 was 56 kK near the poles and 64 kK for all latitudes above 30. Cycle 23 was also hotter at mid-latitudes than cycle 22 by 60 kK. The last 3 years of cycle 21 were hotter than the last 3 years of cycle 22. The difference in average annual N + S temperatures at the end of cycles 21 and 22 was 32 kK near the poles and 23 kK for all latitudes above 30. Cycle 21 was also hotter at mid-latitudes than cycle 22 by at least 90 kK. Thus, there does not seem to be a solar-cycle trend in the low-coronal temperature outside of active regions.  相似文献   

5.
The monthly sunspot numbers compiled by Temmer et al. and the monthly polar faculae from observations of the National Astronomical Observatory of Japan, for the interval of March 1954 to March 1996, are used to investigate the phase relationship between polar faculae and sunspot activity for total solar disk and for both hemispheres in solar cycles 19, 20, 21 and 22. We found that (1) the polar faculae begin earlier than sunspot activity, and the phase difference exhibits a consistent behaviour for different hemispheres in each of the solar cycles, implying that this phenomenon should not be regarded as a stochastic fluctuation; (2) the inverse correlation between polar faculae and sunspot numbers is not only a long-term behaviour, but also exists in short time range; (3) the polar faculae show leads of about 50–71 months relative to sunspot numbers, and the phase difference between them varies with solar cycle; (4) the phase difference value in the northern hemisphere differs from that in the southern hemisphere in a solar cycle, which means that phase difference also existed between the two hemispheres. Moreover, the phase difference between the two hemispheres exhibits a periodical behaviour. Our results seem to support the finding of Hiremath (2010).  相似文献   

6.
Javaraiah  J. 《Solar physics》2003,212(1):23-49
Using Greenwich data (1879–1976) and SOON/NOAA data (1977–2002) on sunspot groups we found the following results: (i) The Sun's mean (over all the concerned cycles during 1879–1975) equatorial rotation rate (A) is significantly larger (≈0.1%) in the odd-numbered sunspot cycles (ONSCs) than in the even-numbered sunspot cycles (ENSCs). The mean rotation is significantly (≈10%) more differential in the ONSCs than in the ENSCs. North–south difference in the mean equatorial rotation rate is larger in the ONSCs than in the ENSCs. North–south difference in the mean latitude gradient of the rotation is significant in the ENSCs and insignificant in the ONSCs. (ii) The known very large decrease in A from cycle 13 to cycle 14 is confirmed. The amount of this decrease in the mean A was about 0.017 μrad s−1. Also, we find that A decreased from cycle 17 to cycle 18 by about 0.008 μrad s−1 and from cycle 21 to cycle 22 by about 0.016 μrad s−1. From cycle 13 to cycle 14 the decrease in A was more in the northern hemisphere than in the southern hemisphere, it is opposite in the later two epochs. The time gap between the consecutive drops in A is about 44 years, suggesting the existence of a `44-yr' cycle or `double Hale cycle' in A. The time gap between the two large drops, viz., from cycle 13 to cycle 14 and from cycle 21 to cycle 22, is about 90 years (Gleissberg cycle). We predict that the next drop (moderate) in A will be occurring from cycle 25 to cycle 26 and will be followed by a relatively large-amplitude `double Hale cycle' of sunspot activity. (iii) Existence of a 90-yr cycle is seen in the cycle-to-cycle variation of the latitude gradient (B). A weak 22-yr modulation in B seems to be superposed on the relatively strong 90-yr modulation. (iv) The coefficient A varies significantly only during ONSCs and the variation has maximum amplitude in the order of 0.01 μrad s−1 around activity minima. (v) There exists a good anticorrelation between the mean variation of B during the ONSCs and that during the ENSCs, suggesting the existence of a `22-yr' periodicity in B. The maximum amplitude of the variation of B is of the order of 0.05 μrad s−1 around the activity minima. (vi) It seems that the well-known Gnevyshev and Ohl rule of solar activity is applicable also to the cycle-to-cycle amplitude modulation of B from cycle 13 to cycle 20, but the cycles 12 (in the northern hemisphere, Greenwich data) and 21 (in both hemispheres, SOON/NOAA data) seem to violate this rule in B. And (vii) All the aforesaid statistically significant variations in A and B seem to be related to the approximate 179-yr cycle, 1811–1989, of variation in the Sun's motion about the center of mass of the solar system.  相似文献   

7.
R. P. Kane 《Solar physics》2007,246(2):471-485
Many methods of predictions of sunspot maximum number use data before or at the preceding sunspot minimum to correlate with the following sunspot maximum of the same cycle, which occurs a few years later. Kane and Trivedi (Solar Phys. 68, 135, 1980) found that correlations of R z(max) (the maximum in the 12-month running means of sunspot number R z) with R z(min) (the minimum in the 12-month running means of sunspot number R z) in the solar latitude belt 20° – 40°, particularly in the southern hemisphere, exceeded 0.6 and was still higher (0.86) for the narrower belt > 30° S. Recently, Javaraiah (Mon. Not. Roy. Astron. Soc. 377, L34, 2007) studied the relationship of sunspot areas at different solar latitudes and reported correlations 0.95 – 0.97 between minima and maxima of sunspot areas at low latitudes and sunspot maxima of the next cycle, and predictions could be made with an antecedence of more than 11 years. For the present study, we selected another parameter, namely, SGN, the sunspot group number (irrespective of their areas) and found that SGN(min) during a sunspot minimum year at latitudes > 30° S had a correlation +0.78±0.11 with the sunspot number R z(max) of the same cycle. Also, the SGN during a sunspot minimum year in the latitude belt (10° – 30° N) had a correlation +0.87±0.07 with the sunspot number R z(max) of the next cycle. We obtain an appropriate regression equation, from which our prediction for the coming cycle 24 is R z(max )=129.7±16.3.  相似文献   

8.
Duhau  S. 《Solar physics》2003,213(1):203-212
A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.  相似文献   

9.
In the previous study (Dabas et al. in Solar Phys. 250, 171, 2008), to predict the maximum sunspot number of the current solar cycle 24 based on the geomagnetic activity of the preceding sunspot minimum, the Ap index was used which is available from the last six to seven solar cycles. Since a longer series of the aa index is available for more than the last 10 – 12 cycles, the present study utilizes aa to validate the earlier prediction. Based on the same methodology, the disturbance index (DI), which is the 12-month moving average of the number of disturbed days (aa≥50), is computed at thirteen selected times (called variate blocks 1,2,…,13; each of them in six-month duration) during the declining portion of the ongoing sunspot cycle. Then its correlation with the maximum sunspot number of the following cycle is evaluated. As in the case of Ap, variate block 9, which occurs exactly 48 months after the current cycle maximum, gives the best correlation (R=0.96) with a minimum standard error of estimation (SEE) of ± 9. As applied to cycle 24, the aa index as precursor yields the maximum sunspot number of about 120±16 (the 90% prediction interval), which is within the 90% prediction interval of the earlier prediction (124±23 using Ap). Furthermore, the same method is applied to an expanded range of cycles 11 – 23, and once again variate block 9 gives the best correlation (R=0.95) with a minimum SEE of ± 13. The relation yields the modified maximum amplitude for cycle 24 of about 131±20, which is also close to our earlier prediction and is likely to occur at about 43±4 months after its minimum (December 2008), probably in July 2012 (± 4 months).  相似文献   

10.
In the previous study (Hiremath, Astron. Astrophys. 452:591, 2006a), the solar cycle is modeled as a forced and damped harmonic oscillator and from all the 22 cycles (1755–1996), long-term amplitudes, frequencies, phases and decay factor are obtained. Using these physical parameters of the previous 22 solar cycles and by an autoregressive model, we predict the amplitude and period of the present cycle 23 and future fifteen solar cycles. The period of present solar cycle 23 is estimated to be 11.73 years and it is expected that onset of next sunspot activity cycle 24 might starts during the period 2008.57±0.17 (i.e., around May–September 2008). The predicted period and amplitude of the present cycle 23 are almost similar to the period and amplitude of the observed cycle. With these encouraging results, we also predict the profiles of future 15 solar cycles. Important predictions are: (i) the period and amplitude of the cycle 24 are 9.34 years and 110 (±11), (ii) the period and amplitude of the cycle 25 are 12.49 years and 110 (±11), (iii) during the cycles 26 (2030–2042 AD), 27 (2042–2054 AD), 34 (2118–2127 AD), 37 (2152–2163 AD) and 38 (2163–2176 AD), the sun might experience a very high sunspot activity, (iv) the sun might also experience a very low (around 60) sunspot activity during cycle 31 (2089–2100 AD) and, (v) length of the solar cycles vary from 8.65 years for the cycle 33 to maximum of 13.07 years for the cycle 35.  相似文献   

11.
The longitudinal distributions of the polar faculae, bright K Ca+ points, and sunspot areas have been investigated in three-year intervals at the minima and maxima of the last five solar cycles in the rotation system which corresponds to the background magnetic field:T = 27.23 days (Mikhailutsa, 1994b). It has been shown that there were three specific features of the polar faculae and bright K Ca+ point longitudinal distributions: (1) The longitudes of maxima and minima of the distributions were approximately the same in the last five solar cycles. (2) There were predominantly two opposite longitudinal maxima and two opposite longitudinal minima in the distributions of each hemisphere. (3) The distributions of the northern and southern hemispheres were in opposite phase. The extremes of the sunspot area longitudinal distributions were preferentially between the longitudes of the polar facular extremes. The period of the sector structure rotation was defined more precisely:T = 27.227 ± 0.003 days. The results found can serve as an indication that there is a global foursector structure seated in the solar interior which plays a visible role in the polar facular and sunspot distributions.  相似文献   

12.
R. P. Kane 《Solar physics》2007,243(2):205-217
For many purposes (e.g., satellite drag, operation of power grids on Earth, and satellite communication systems), predictions of the strength of a solar cycle are needed. Predictions are made by using different methods, depending upon the characteristics of sunspot cycles. However, the method most successful seems to be the precursor method by Ohl and his group, in which the geomagnetic activity in the declining phase of a sunspot cycle is found to be well correlated with the sunspot maximum of the next cycle. In the present communication, the method is illustrated by plotting the 12-month running means aa(min ) of the geomagnetic disturbance index aa near sunspot minimum versus the 12-month running means of the sunspot number Rz near sunspot maximum [aa(min ) versus Rz(max )], using data for sunspot cycles 9 – 18 to predict the Rz(max ) of cycle 19, using data for cycles 9 – 19 to predict Rz(max ) of cycle 20, and so on, and finally using data for cycles 9 – 23 to predict Rz(max ) of cycle 24, which is expected to occur in 2011 – 2012. The correlations were good (∼+0.90) and our preliminary predicted Rz(max ) for cycle 24 is 142±24, though this can be regarded as an upper limit, since there are indications that solar minimum may occur as late as March 2008. (Some workers have reported that the aa values before 1957 would have an error of 3 nT; if true, the revised estimate would be 124±26.) This result of the precursor method is compared with several other predictions of cycle 24, which are in a very wide range (50 – 200), so that whatever may be the final observed value, some method or other will be discredited, as happened in the case of cycle 23.  相似文献   

13.
Ephemeral active regions (ER) identified on Kitt Peak daily full-disk magnetograms from April through November 1975 were analyzed and compared with larger active regions during the same interval. The 1975 ER were also compared with ER data from 1970, 1973, 1976, and 1977. ER were found to vary approximately with the sunspot cycle. However, a minimum in the number of ER occurred at least one year prior to sunspot minimum. All evidence to date indicates that the early ER minimum was due to the rise of solar cycle 21 primarily in the form of ER. ER were statistically identified as belonging to both outgoing solar cycle 20 and incoming cycle 21 by maxima in their distribution in latitude and by their statistically dominant orientation as a function of latitude. From the identification of ER with specific solar cycles and the persistent presence of high latitude ER maxima since 1970, it is suggested that the outgoing and incoming solar cycles may co-exist on the sun longer than the 0–3 year period of overlap between successive cycles already known from the properties of large sunspot-producing active regions.Presently associated with Solar Physics Research Corporation, Tucson, Arizona and Visiting Astronomer at Kitt Peak National Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

14.
According to research results from solar-dynamo models, the northern and southern hemispheres may evolve separately throughout the solar cycle. The observed phase lag between the northern and southern hemispheres provides information regarding how strongly the hemispheres are coupled. Using hemispheric sunspot-area and sunspot-number data from Cycles 12 – 23, we determine how out of phase the separate hemispheres are during the rising, maximum, and declining period of each solar cycle. Hemispheric phase differences range from 0 – 11, 0 – 14, and 2 – 19 months for the rising, maximum, and declining periods, respectively. The phases appear randomly distributed between zero months (in phase) and half of the rise (or decline) time of the solar cycle. An analysis of the sunspot cycle double peak, or Gnevyshev gap, is conducted to determine if the double-peak is caused by the averaging of two hemispheres that are out of phase. We confirm previous findings that the Gnevyshev gap is a phenomenon that occurs in the separate hemispheres and is not due to a superposition of sunspot indices from hemispheres slightly out of phase. Cross hemispheric coupling could be strongest at solar minimum, when there are large quantities of magnetic flux at the Equator. We search for a correlation between the hemispheric phase difference near the end of the solar cycle and the length of solar-cycle minimum, but found none. Because magnetic flux diffusion across the Equator is a mechanism by which the hemispheres couple, we measured the magnetic flux crossing the Equator by examining Kitt Peak Vacuum Telescope and SOLIS magnetograms for Solar Cycles 21 – 23. We find, on average, a surplus of northern hemisphere magnetic flux crossing during the mid-declining phase of each solar cycle. However, we find no correlation between magnitude of magnetic flux crossing the Equator, length of solar minima, and phase lag between the hemispheres.  相似文献   

15.
Meyer  F. De 《Solar physics》2003,217(2):349-366
The mean annual sunspot record for the time interval 1700–2002 can be considered as a sequence of independent, partly overlapping events, triggered quasi-periodically at intervals of the order of 11 years. The individual cycles are approximated by the step response of a band-pass dynamical system and the resulting model consists of the superposition of the response to the independent pulses. The simulated sunspot data explain 98.4% of the cycle peak height variance and the residual standard deviation is 8.2 mean annual sunspots. An empirical linear relationship is found between the amplitude of the transfer function model for each cycle and the pulse interval of the preceding cycle that can be used as a tool of short-term forecasting of solar activity. A peak height of 112 for the solar cycle 23 occurring in 2000 is predicted, whereas the next cycle would start at about 2007 and will have a maximum around 110 in 2011. Cycle 24 is expected to have an annual mean peak value in the range 95 to 125. The model reproduces the high level of amplitude modulation in the interval 1950–2000 with a decrease afterwards, but the peak values for the cycles 18, 19, 21, and 22 are fairly underestimated. The semi-empirical model also recreates recurring sunspot minima and is linked to the phenomenon of the reversal of the solar magnetic field.  相似文献   

16.
The purpose of the present article is to analyze the solar cycles from the point of view of the large-scale surface magnetic field (LSMF) polarity distributions. Using synoptic charts of the LSMF for the 1870–1991 time interval at maxima and minima and the spherical harmonic analysis of the polarity distributions, a connection between magnetic cycles has been found. The weight of the large-scale sectoral mode (m = 1) in the common LSMF polarity distribution at minima of the sunspot cycle is the source of sunspot activity at maxima after 16–18 years. The connections found suggest that surface LSMFs have a dual nature - the main source below the convective zone and a secondary source (sunspot production). The sunspot production has no visible influence on the LSMF cycles.  相似文献   

17.
Long-term variations of galactic cosmic rays were compared with the behavior of various solar activity indices and heliospheric parameters during the current solar cycle. This study continues previous works where the cosmic-ray intensity for the solar cycles 20, 21, and 22 was well simulated from the linear combination of the sunspot number, the number of grouped solar flares, and the geomagnetic index A p. The application of this model to the current solar cycle characterized by many peculiarities and extreme solar events led us to study more empirical relations between solar-heliospheric variables, such as the interplanetary magnetic field, coronal mass ejections, and the tilt of the heliospheric current sheet, and cosmic-ray modulation. By analyzing monthly cosmic-ray data from the Neutron Monitor Stations of Oulu (cutoff rigidity 0.81 GV) and Moscow (2.42 GV) the contribution of these parameters in the ascending, maximum, and descending phases of the cycle was investigated and it is shown that a combination of these parameters reproduces the majority of the modulation potential variations during this cycle. The approach applied makes it possible to better describe the behavior of cosmic rays in the epochs of the solar maxima, which could not be done before. An extended study of the time profiles, the correlations, and the time lags of the cosmic-ray intensity against these parameters using the method of minimizing RMS over all the considered period 1996 – 2006 determines characteristic properties of this cycle as being an odd cycle. Moreover, the obtained hysteresis curves and a correlative analysis during the positive polarity (qA>0, where q is the particle charge) and during the negative polarity (qA<0) intervals of the cycle result in significantly different behavior between solar and heliospheric parameters. The time lag and the correlation coefficient of the cosmic-ray intensity are higher for the solar indices in comparison to the heliospheric ones. A similar behavior also appears in the case of the intervals with positive and negative polarity of the solar magnetic field.  相似文献   

18.
R. P. Kane 《Solar physics》2006,236(1):207-226
After increasing almost monotonically from sunspot minimum, sunspot activity near maximum falters and remains in a narrow grove for several tens of months. During the 2–3 years of turmoil near sunspot maximum, sunspots depict several peaks (Gnevyshev peaks). The spaces between successive peaks are termed as Gnevyshev Gaps (GG). An examination showed that the depths of the troughs varied considerably from one GG to the next in the same cycle, with magnitudes varying in a wide range (<1% to ∼20%). In any cycle, the sunspot patterns were dissimilar to those of other solar parameters, qualitatively as well as quantitatively, indicating a general turbulence, affecting different solar parameters differently. The solar polar magnetic field reversal does not occur at the beginning of the general turmoil; it occurs much later. For cosmic ray (CR) modulation which occurs deep in the heliosphere, one would have thought that the solar open magnetic field flux would play a crucial role, but observations show that the sunspot GGs are not reflected well in the solar open magnetic flux, where sometimes only one peak occurred (hence no GG at all), not matching with any sunspot peak and with different peaks in the northern and southern hemispheres (north – south asymmetry). Gaps are seen in interplanetary parameters but these do not match exactly with sunspot GGs. For CR data available only for five cycles (19 – 23), there are CR gaps in some cycles, but the CR gaps do not match perfectly with gaps in the solar open magnetic field flux or in interplanetary parameters or with sunspot GGs. Durations are different and/or there are variable delays, and magnitudes of the sunspot GGs and CR gaps are not proportional. Solar polar magnetic field reversal intervals do not coincide with either sunspot GGs or CR gaps, and some CR gaps start before magnetic field reversals, which should not happen if the magnetic field reversals are the cause of the CR gaps.  相似文献   

19.
S. Bravo  G. Stewart 《Solar physics》1994,154(2):377-384
A very good correlation between the evolution of polar coronal hole size and sunspot number half a solar cycle later was found by Bravo and Otaola for solar cycle 21. In this paper we use a more complete set of data to reanalyse the relationship for solar cycle 21 and investigate the same relationship for solar cycle 22. We find that the complete set of data for cycle 21 yields a slightly different time shift for the best correlation between sunspots and holes and that the time shift for cycle 22 is different from that of cycle 21. However, because of limited availability of data of cycle 22, we consider it necessary to wait until the end of this cycle in order to decide if the difference is statistically significant or not. We also found that the time between successive peaks of smoothed polar hole area and smoothed sunspot number is the same in both cycles. This may provide a useful tool for the forecasting of future sunspot maxima. The constant of proportionality between polar coronal hole area and sunspot number can be seen to be different in both cycles. We discuss this difference and interpret it in terms of a different magnitude of the polar field strength in the two cycles.  相似文献   

20.
Extrema in Sunspot Cycle Linked to Sun's Motion   总被引:1,自引:0,他引:1  
Landscheidt  Theodor 《Solar physics》1999,189(2):413-424
Partitions of 178.8-year intervals between instances of retrograde motion in the Sun's oscillation about the center of mass of the solar system seem to provide synchronization points for the timing of minima and maxima in the 11-year sunspot cycle. In the investigated period 1632–1990, the statistical significance of the relationship goes beyond the level P=0.001. The extrapolation of the observed pattern points to sunspot maxima around 2000.6 and 2011.8. If a further connection with long-range variations in sunspot intensity proves reliable, four to five weak sunspot cycles (R0) are to be expected after cycle 23 with medium strength (R100).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号