首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Penninic oceanic sequence of the Glockner nappe and the foot-wall Penninic continental margin sequences exposed within the Tauern Window (eastern Alps) have been investigated in detail. Field data as well as structural and petrological data have been combined with data from the literature in order to constrain the geodynamic evolution of these units. Volcanic and sedimentary sequences document the evolution from a stable continent that was formed subsequent to the Variscan orogeny, to its disintegration associated with subsidence and rifting in the Triassic and Jurassic, the formation of the Glockner oceanic basin and its consumption during the Upper Cretaceous and the Paleogene. These units are incorporated into a nappe stack that was formed during the collision between a Penninic Zentralgneis block in the north and a southern Austroalpine block. The Venediger nappe and the Storz nappe are characterized by metamorphic Jurassic shelf deposits (Hochstegen group) and Cretaceous flysch sediments (Kaserer and Murtörl groups), the Eclogite Zone and the Rote Wand–Modereck nappe comprise Permian to Triassic clastic sequences (Wustkogel quartzite) and remnants of platform carbonates (Seidlwinkl group) as well as Jurassic volcanoclastic material and rift sediments (Brennkogel facies), covered by Cretaceous flyschoid sequences. Nappe stacking was contemporaneous to and postdated subduction-related (high-pressure) eclogite and blueschist facies metamorphism. Emplacement of the eclogite-bearing units of the Eclogite zone and the Glockner nappe onto Penninic continental units (Zentralgneis block) occurred subsequent to eclogite facies metamorphism. The Eclogite zone, a former extended continental margin, was subsequently overridden by a pile of basement-cover nappes (Rote Wand–Modereck nappe) along a ductile out-of-sequence thrust. Low-angle normal faults that have developed during the Jurassic extensional phase might have been inverted during nappe emplacement.  相似文献   

2.
3.
4.
Late Mesozoic subduction of Penninic oceanic lithosphere finds its response in the sedimentary record. The corresponding sediments are deposited in a deep-sea trench environment and are developed as distal, partly proximal flysches, containing breccias and olistolites, which are up to kilometer-sized (wildflysch). In the Tauern window this facies is represented by the Nordrahmen zone, which is the equivalent to the Matrei zone. It is proposed to apply the term “Matrei zone” to the entire zone. It forms the high parts of the Bündner Schiefer and Tauernflysch formation. The olistolites derive from the unstable Austroalpine continental margin (Lower Austroalpine). In the Unterengadin window the wildflysch faciès is found in North, Middle and South Penninic position. In that there are kilometer-sized blocks of clearly Lower Austroalpine provenance in a North Penninic position, the Middle Penninic Tasna zone must already have been subducted at the time of emplacement of these olistolites. The Tasna zone itself contains a number of olistolites and disintegrates towards the northeast into a wildflysch zone. Its nappe character is discussed. After earlier fossil findings it is likely that the lower flysch zones of the Unterengadin window contain younger members than the higher ones. Thus, a mechanism of offscraping of the trench sediments and piling up in an accreting wedge above a subduction zone is proposed.  相似文献   

5.
In the area of Arosa?CDavos?CKlosters (Eastern Switzerland) the different tectonic elements of the Arosa zone mélange e.g. the Austroalpine fragments, the sedimentary cover of South Penninic ophiolite fragments, as well as the matrix (oceanic sediments and flysch rocks) show distinctively different metamorphic histories and also different climaxes (??peaks??) of Alpine metamorphism. This is shown by a wealth of Kübler-Index, vitrinite and bituminite reflectance measurements, and K-white mica b cell dimension data. At least six main metamorphic events can be recognized in the area of Arosa?CDavos?CKlosters: (1) A pre-orogenic event, typical for the Upper Austroalpine and for instance found in the sediments at the base of the Silvretta nappe but also in some tectonic fragments of the Arosa zone (Arosa zone mélange). (2) An epizonal oceanic metamorphism observed in the close vicinity of oceanic basement rocks units of the Arosa zone (South Penninic) is another pre-orogenic process. (3) A metamorphic overprint of the adjacent Lower Austroalpine nappes and structural fragments of the Lower Austroalpine in the Arosa zone. This metamorphic overprint is attributed to the orogenic metamorphic processes during the Late Cretaceous. (4) A thermal climax observed in the South Penninic sediments of the Arosa zone can be bracketed by the Austroalpine Late Cretaceous event (3) and the middle Tertiary event (5) in the Middle Penninic units and predates Oligocene extension of the ??Turba phase??. (6) North of Klosters, in the northern part of our study area, the entire tectonic pile from the North Penninic flysches to the Upper Austroalpine is strongly influenced by a late Tertiary high-grade diagenetic to low-anchizone event. In the Arosa zone mélange an individual orogenic metamorphic event is evidenced and gives a chance to resolve diagenetic?Cmetamorphic relations versus deformation. Six heating episodes in sedimentary rocks and seven deformation cycles can be distinguished. This is well explained by the propagation of the Alpine deformation front onto the foreland units. Flysches at the hanging wall of the mélange zone in the north of the study area (Walsertal zone) show data typical for low-grade diagenetic thermal conditions and are therefore sandwiched between higher metamorphic rock units and separated from theses units by a disconformity. The Arosa zone s.s., as defined in this paper, is characterised by metamorphic inversions in the hanging wall and at the footwall thrust, thus shows differences to the Walsertal zone in the north and to the Platta nappe in the south.  相似文献   

6.
The Penninic Ocean was a side tract of the Central Atlantic Oceanic System intercalated between the European and the Austroalpine plates. Its closure started in the Early Cretaceous, as subduction of the oceanic crust beyond the Austroalpine plate. The sedimentary change on the Austroalpine shelf from pelagic carbonates into deep-water siliciclastics correlated with the denudation of the accretionary wedge resulting from that subduction. Within the Bajuvaric Unit of the Upper Austroalpine, this transition is reflected by the lithostratigraphic boundary between the older Schrambach and the younger Tannheim Formation. This boundary is well exposed in a newly discovered site at Sittendorf, southwest of Vienna. This new outcrop yields an extraordinarily rich planktonic foraminifera assemblage characterized by typical Aptian species belonging to Blowiella, Globigerinelloides, Hedbergella, Leupoldina, and Praehedbergella. A detailed biostratigraphic analysis based on thin-section investigations precisely dated the lithostratigraphic boundary within the lower part of the early Aptian Leupoldina cabri Acme Zone, having an approximate age of 123 Ma. Along with the biostratigraphic analyses, the gamma-log outcrop measurement was a powerful tool in interpreting the stratigraphy and the tectonic setting in the outcrop, which intersects one smaller-scale isoclinal fold.  相似文献   

7.
The paper reviews paleomagnetic data from the Central West Carpathians (CWC) of Poland and Slovakia. The CWC constitute an orogen deformed by pre-Tertiary and Tertiary events, situated on the internal side of the Pieniny Klippen Belt and the Tertiary Outer West Carpathian accretionary wedge. The CWC are regarded as the eastern prolongation of the Austroalpine series. There are paleomagnetic evidences for a counterclockwise rotation of the CWC after Oligocene. Having subtracted the effect of this rotation, Middle Cretaceous paleomagnetic poles from the CWC are brought into agreement with preGosau paleopoles from the Upper Austroalpine units of the Northern Calcareous Alps (NCA). It is inferred that a common clockwise rotation of the CWC and NCA had taken place between 90-60 Ma (Middle — Late Cretaceous) during the oblique convergence of the Austroalpine/Central Carpathian realm with the Penninic continental basement.  相似文献   

8.
The Late Cretaceous Brezová and Myjava Groups of the Western Carpathians in Slovakia and formations of the Gosau Group of the Northern Calcareous Alps in Lower Austria comprise similar successions of alluvial/shallow marine deposits overlain by deep water hemipelagic sediments and turbidites. In both areas the heavy mineral spectra of Late Cretaceous sediments contain significant amounts of detrital chrome spinel. In the Early Tertiary the amount of garnet increases. Cluster analysis and correspondence analysis of Coniacian/Santonian and Campanian/Early Maastrichtian heavy mineral data indicate strong similarities between the Gosau deposits of the Lunz Nappe of the north-eastern part of the Northern Calcareous Alps and the Brezova Group of the Western Carpathians. Similar source areas and a similar palaeogeographical position at the northern active margin of the Adriatic/Austroalpine plate are therefore suggested for the two tectonic units.Basin subsidence mechanisms within the Late Cretaceous of the Northern Calcareous Alps are correlated with the Western Carpathians. Subsidence during the Campanian-Maastrichtian is interpreted as a consequence of subduction tectonic erosion along the active northern margin of the Adriatic/Austroalpine plate. Analogous facies and heavy mineral associations from deep water sandstones of the Manin Unit and the Klape Unit indicate accretion of parts of the Pieniny Klippen Belt during the Late Cretaceous along the Adriatic/Austroalpine margin.  相似文献   

9.
This study presents an updated set of earthquake focal mechanisms in the Helvetic and Penninic/Austroalpine domains of the eastern Swiss Alps. In eight cases, based on high-precision relative hypocentre locations of events within individual earthquake sequences, it was possible to identify the active fault plane. Whereas the focal mechanisms in the Helvetic domain are mostly strike-slip, the Penninic/Austroalpine domain is dominated by normal-faulting mechanisms. Given this systematic difference in faulting style, an inversion for the stress field was performed separately for the two regions. The stress field in the Penninic/Austroalpine domain is characterized by extension oriented obliquely to the E–W strike of the orogen. Hence, the Penninic nappes, which were emplaced as large-scale compressional structures during the Alpine orogenesis, are now deforming in an extensional mode. This contrasts with the more compressional strike-slip regime in the Helvetic domain towards the northern Alpine front. Relative to the regional stress field seen in the northern Alpine foreland with a NNW–SSE compression and an ENE–WSW extension, the orientation of the least compressive stress in the Penninic/Austroalpine domain is rotated counter-clockwise by about 40°. Following earlier studies, the observed rotation of the orientation of the least compressive stress in the Penninic/Austroalpine region can be explained as the superposition of the regional stress field of the northern foreland and a uniaxial extensional stress perpendicular to the local trend of the Alpine mountain belt.  相似文献   

10.
《Geodinamica Acta》2013,26(1-3):101-126
The olistostromes formed in Northern Carpathians during the different stages of the development of flysch basins, from rift trough post-rift, orogenic to postorogenic stage. They are known from the Cretaceous, Paleocene, Eocene, Oligocene and Early Miocene flysch deposits of main tectonic units. Those units are the Skole, Subsilesian, Silesian, Dukla and Magura nappes as well as the Pieniny Klippen Belt suture zone. The oldest olistoliths in the Northern Carpathians represent the Late Jurassic-Early Cretaceous rifting and post-rifting stage of the Northern Carpathians and origin of the proto-Silesian basin. They are known from the Upper Jurassic as well as Upper Jurassic-Lower Cretaceous formations. In the southern part of the Polish Northern Carpathians as well as in the adjacent part of Slovakia, the olistoliths are known in the Cretaceous- Paleocene flysch deposits of the Pieniny Klippen Belt Zlatne Unit and in Magura Nappe marking the second stage of the plate tectonic evolution - an early stage of the development of the accretionary prism. The most spectacular olistostromes have been found in the vicinity of Haligovce village in the Pieniny Klippen Belt and in Jaworki village in the border zone between the Magura Nappe and the Pieniny Klippen Belt. Olistoliths that originated during the second stage of the plate tectonic evolution occur also in the northern part of the Polish Carpathians, in the various Upper Cretaceous-Early Miocene flysch deposits within the Magura, Fore-Magura, Dukla, Silesian and Subsilesian nappes. The Fore-Magura and Silesian ridges were destroyed totally and are only interpreted from olistoliths and exotic pebbles in the Outer Carpathian flysch. Their destruction is related to the advance of the accretionary prism. This prism has obliquely overridden the ridges leading to the origin of the Menilite-Krosno basin.

In the final, postcollisional stage of the Northern Carpathian plate tectonic development, some olistoliths were deposited within the late Early Miocene molasse. These are known mainly from the subsurface sequences reached by numerous bore-holes in the western part of the Polish Carpathians as well as from outcrops in Poland and the Czech Republic.

The largest olistoliths (kilometers in size bodies of shallow-water rocks of Late Jurassic-Early Cretaceous age) are known from the Moravia region. The largest olistoliths in Poland were found in the vicinity of Andrychów and are known as Andrychów Klippen. The olistostromes bear witness to the processes of the destruction of the Northern Carpathian ridges. The ridge basement rocks, their Mesozoic platform cover, Paleogene deposits of the slope as well as older Cretaceous flysch deposits partly folded and thrust within the prism slid northward toward the basin, forming the olistostromes.  相似文献   

11.
The provenance of Cenomanian to Eocene flysch deposits accreted along the northern margin of the Eastern Alps has been investigated by means of zircon fission-track (FT) geochronology and zircon morphology. The Rhenodanubian flysch and Ybbsitz klippen zone comprise several nappes representing the Main flysch and Laab basins. The Laab basin received sediments of stable European provenance, indicated by pre-Variscan, Variscan, and Permian–Triassic zircon FT ages, and was thus located in the immediate south of the European margin. The Main flysch basin was supplied mainly from the evolving Eastern Alps and was therefore situated south of the Laab basin. Zircon populations with Permian to Jurassic cooling ages in the Main flysch basin are related to increased heat fluxes during the break-up of Pangaea and are probably derived from the northwestern part of the Eastern Alps. The dominant Cretaceous zircon FT cooling ages reflect Eoalpine metamorphism in the Austroalpine realm.  相似文献   

12.
The Cretaceous orogen of the Western Carpathians comprises fragments of the destructed northern Centrocarpathian domain, which is defined as Infratatric unit and formed a continental margin facing the Penninic Ocean in Jurassic and Cretaceous times. The breakup event and opening of the Penninic Ocean occurred in the Early Jurassic (Pliensbachian), which is recorded by an abrupt deepening event from shallow-water sediments to deep-water nodular limestone in the Infratatric sediment succession. The transformation of the passive into an active continental margin by the onset of subduction of the Penninic oceanic crust occurred in Santonian times and is reflected by the beginning of flysch deposition in the Infratatric Belice domain, which took the position of a forearc basin in the convergent margin setting. The forearc basin was supplied by clastic material from the more internal part of the Infratatric unit, which experienced nappe stacking, metamorphism, and subsequent exhumation in Late Cretaceous times. In the frontal part of the forearc basin an accretionary wedge was built up, which formed an outer-arc ridge and delivered detrital material into the forearc basin in Maastrichtian time. Final collision between the European and the Adriatic plate occurred in the Eocene period and is responsible for weak metamorphism in the Infratatric unit.  相似文献   

13.
秦岭的大地构造演化   总被引:53,自引:9,他引:53       下载免费PDF全文
一项中瑞合作研究成果表明,中国秦岭属碰撞型造山带。秦岭是在中生代造山运动早期由华北大陆板块与扬子大陆板块碰撞而成。原存于两大板块之间的古特提斯洋在泥盆纪时即已开始消减,仅部分洋壳残余于碰撞混杂岩中。  相似文献   

14.
In the Eastern Alps Alpine eclogites are generally associated with rocks of continental lithosphere, while eclogites that are associated with oceanic assemblages are restricted to minor exposures. Such eclogites are exposed both in the Penninic unit of the Tauern Window and in the Austroalpine nappe complex. (1) In the central southern part of the Tauern Window (Eclogite Zone) eclogites and associated high pressure metasediments of a distal continental margin are intercalated between Penninic basement units. A mylonitic eclogitic foliation and stretching lineation are contemporaneous to the high pressure metamorphism and are related to the subduction of distal Penninic continental margin sequences. Continuous subduction of cool lithosphere resulted in blueschist facies overprint of the whole Penninic nappe pile. (2) Within the Middle-AustroAlpine Koralm/Saualm region most eclogites are eclogitic mylonites documenting plastic deformation of omphacite and garnet. The meso- and macroscale structures indicate an overall extensional regime possibly related to a large-scale SE-directed ductile low-angle normal shear zone. The eclogites are associated with migmatite-like structures and are intruded by pegmatites. This indicates decreasing pressure, but isothermal or even increasing temperature conditions during exhumation.These relationships argue for the subduction of Penninic continental lithosphere in the foot-wall of the Austroalpine unit at the time of exhumation of the Koralm/Saualm eclogites. Formation of the Austroalpine eclogites is explained by subduction of continental lithosphere, and subsequent, rapid exhumation in an upper plate tectonic position within an extensional regime.  相似文献   

15.
The traverse of the Central Alps between Lake Constance and Lake Como (eastern Switzerland, northern Italy) allows the reconstruction of a cross-section through a collision belt some 140 km wide and 40 km deep. It can be described in terms of a series of structural zones (A–F), defined by the age and character of the latest phase of penetrative deformation affecting both basement and cover rocks, each zone showing a characteristic structural history. These zones do not coincide with the well-known tectono-stratigraphic Alpine subdivisions (Helvetic, Pennine, Austroalpine) which are based on gross geometry, facies and petrography. Zones A and B, in the north, developed during late Oligocene and Miocene times, affecting the Helvetic realm and the already overlying Pennine and Austroalpine units. Zone A is characterized by a steeply dipping penetrative cleavage SA, zone B by the same cleavage later modified by nappe-forming movements. Zone F, in the south, also developed during the late Oligocene and Miocene, first as a monoclinal flexure, later as a steeply dipping zone of mylonitization and cataclasis (foliation Sf), affecting Pennine and Austroalpine units. The final manifestation of these movements was the Tonale line and their net result was the uplift of the region to the north by about 20 km. Between these two belts lay an area in which late Oligocene-Miocene movements had little effect — structural zones C (Pennine), D (Pennine-Austroalpine transition) and E (Austroalpine). In zones C and D, the latest phase of penetrative deformation, resulting in large recumbent fold structures and a penetrative foliation Sc zone C, can be dated as late Eocene-early Oligocene. This seems to be related to the overriding of the Austroalpine nappe complex (zone E), which already showed the effects of a late Cretaceous orogeny.Unravelling these events backwards, reveals, at the Eocene—Oligocene boundary, a southward dipping subduction zone in the process of locking. Its mouth is full of upper Cretaceous-Eocene flysch; its throat is choked by the Pennine nappe complex, undergoing the sc ductile deformation. Before subduction, the Pennine nappe complex can best be described as a mega-mélange-a tectonic mixture of large fragments of continental basement, oceanic basement, trough-facies cover and platform-facies cover, already showing a complicated structural history. It is supposed that collision started in mid-Cretaceous times, not at a single subduction suture (trench), but by complicated surficial processes across a wide zone, as non-matching, rifted and thinned continental margins approached and small oceanic remnants were obducted. Post-mid-Oligocene events are essentially intra-plate compressional effects, combined with isostatic response.  相似文献   

16.
Eighteen Albian and Cenomanian planktic Foraminiferida from the Pieniny Klippen Belt of Poland are discussed. A local biostratigraphic zonation (six zones) is proposed and certain problems of palaeoecology are reviewed. The lithostratigraphical element is the so-called Trawne Beds, a Cretaceous flysch in the Pieniny Klippen Belt.  相似文献   

17.
The Longmen Shan region includes, from west to east, the northeastern part of the Tibetan Plateau, the Sichuan Basin, and the eastern part of the eastern Sichuan fold-and-thrust belt. In the northeast, it merges with the Micang Shan, a part of the Qinling Mountains. The Longmen Shan region can be divided into two major tectonic elements: (1) an autochthon/parautochthon, which underlies the easternmost part of the Tibetan Plateau, the Sichuan Basin, and the eastern Sichuan fold-and-thrust belt; and (2) a complex allochthon, which underlies the eastern part of the Tibetan Plateau. The allochthon was emplaced toward the southeast during Late Triassic time, and it and the western part of the autochthon/parautochthon were modified by Cenozoic deformation.

The autochthon/parautochthon was formed from the western part of the Yangtze platform and consists of a Proterozoic basement covered by a thin, incomplete succession of Late Proterozoic to Middle Triassic shallow-marine and nonmarine sedimentary rocks interrupted by Permian extension and basic magmatism in the southwest. The platform is bounded by continental margins that formed in Silurian time to the west and in Late Proterozoic time to the north. Within the southwestern part of the platform is the narrow N-trending Kungdian high, a paleogeographic unit that was positive during part of Paleozoic time and whose crest is characterized by nonmarine Upper Triassic rocks unconformably overlying Proterozoic basement.

In the western part of the Longmen Shan region, the allochthon is composed mainly of a very thick succession of strongly folded Middle and Upper Triassic Songpan Ganzi flysch. Along the eastern side and at the base of the allochthon, pre-Upper Triassic rocks crop out, forming the only exposures of the western margin of the Yangtze platform. Here, Upper Proterozoic to Ordovician, mainly shallow-marine rocks unconformably overlie Yangtze-type Proterozic basement rocks, but in Silurian time a thick section of fine-grained clastic and carbonate rocks were deposited, marking the initial subsidence of the western Yangtze platform and formation of a continental margin. Similar deep-water rocks were deposited throughout Devonian to Middle Triassic time, when Songpan Ganzi flysch deposition began. Permian conglomerate and basic volcanic rocks in the southeastern part of the allochthon indicate a second period of extension along the continental margin. Evidence suggests that the deep-water region along and west of the Yangtze continental margin was underlain mostly by thin continental crust, but its westernmost part may have contained areas underlain by oceanic crust. In the northern part of the Longmen Shan allochthon, thick Devonian to Upper Triassic shallow-water deposits of the Xue Shan platform are flanked by deep-marine rocks and the platform is interpreted to be a fragment of the Qinling continental margin transported westward during early Mesozoic transpressive tectonism.

In the Longmen Shan region, the allochthon, carrying the western part of the Yangtze continental margin and Songpan Ganzi flysch, was emplaced to the southeast above rocks of the Yangtze platform autochthon. The eastern margin of the allochthon in the northern Longmen Shan is unconformably overlapped by both Lower and Middle Jurassic strata that are continuous with rocks of the autochthon. Folded rocks of the allochthon are unconformably overlapped by Lower and Middle Jurassic rocks in rare outcrops in the northern part of the region. They also are extensively intruded by a poorly dated, generally undeformed belt, of plutons whose ages (mostly K/Ar ages) range from Late Triassic to early Cenozoic, but most of the reliable ages are early Mesozoic. All evidence indicates that the major deformation within the allochthon is Late Triassic/Early Jurassic in age (Indosinian). The eastern front of the allochthon trends southwest across the present mountain front, so it lies along the mountain front in the northeast, but is located well to the west of the present mountain front on the south.

The Late Triassic deformation is characterized by upright to overturned folded and refolded Triassic flysch, with generally NW-trending axial traces in the western part of the region. Folds and thrust faults curve to the north when traced to the east, so that along the eastern front of the allochthon structures trend northeast, involve pre-Triassic rocks, and parallel the eastern boundary of the allochthon. The curvature of structural trends is interpreted as forming part of a left-lateral transpressive boundary developed during emplacement of the allochthon. Regionally, the Longmen Shan lies along a NE-trending transpressive margin of the Yangtze platform within a broad zone of generally N-S shortening. North of the Longmen Shan region, northward subduction led to collision of the South and North China continental fragments along the Qinling Mountains, but northwest of the Longmen Shan region, subduction led to shortening within the Songpan Ganzi flysch basin, forming a detached fold-and-thrust belt. South of the Longmen Shan region, the flysch basin is bounded by the Shaluli Shan/Chola Shan arc—an originally Sfacing arc that reversed polarity in Late Triassic time, leading to shortening along the southern margin of the Songpan Ganzi flysch belt. Shortening within the flysch belt was oblique to the Yangtze continental margin such that the allochthon in the Longmen Shan region was emplaced within a left-lateral transpressive environment. Possible clockwise rotation of the Yangtze platform (part of the South China continental fragment) also may have contributed to left-lateral transpression with SE-directed shortening. During left-lateral transpression, the Xue Shan platform was displaced southwestward from the Qinling orogen and incorporated into the Longmen Shan allochthon. Westward movement of the platform caused complex refolding in the northern part of the Longmen Shan region.

Emplacement of the allochthon flexurally loaded the western part of the Yangtze platform autochthon, forming a Late Triassic foredeep. Foredeep deposition, often involving thick conglomerate units derived from the west, continued from Middle Jurassic into Cretaceous time, although evidence for deformation of this age in the allochthon is generally lacking.

Folding in the eastern Sichuan fold-and-thrust belt along the eastern side of the Sichuan Basin can be dated as Late Jurassic or Early Cretaceous in age, but only in areas 100 km east of the westernmost folds. Folding and thrusting was related to convergent activity far to the east along the eastern margin of South China. The westernmost folds trend southwest and merge to the south with folds and locally form refolded folds that involve Upper Cretaceous and lower Cenozoic rocks. The boundary between Cenozoic and late Mesozoic folding on the eastern and southern margins of the Sichuan Basin remains poorly determined.

The present mountainous eastern margin of the Tibetan Plateau in the Longmen Shan region is a consequence of Cenozoic deformation. It rises within 100 km from 500–600 m in the Sichuan Basin to peaks in the west reaching 5500 m and 7500 m in the north and south, respectively. West of these high peaks is the eastern part of the Tibetan Plateau, an area of low relief at an elevations of about 4000 m.

Cenozoic deformation can be demonstrated in the autochthon of the southern Longmen Shan, where the stratigraphic sequence is without an angular unconformity from Paleozoic to Eocene or Oligocene time. During Cenozoic deformation, the western part of the Yangtze platform (part of the autochthon for Late Triassic deformation) was deformed into a N- to NE-trending foldandthrust belt. In its eastern part the fold-thrust belt is detached near the base of the platform succession and affects rocks within and along the western and southern margin of the Sichuan Basin, but to the west and south the detachment is within Proterozoic basement rocks. The westernmost structures of the fold-thrust belt form a belt of exposed basement massifs. During the middle and later part of the Cenozoic deformation, strike-slip faulting became important; the fold-thrust belt became partly right-lateral transpressive in the central and northeastern Longmen Shan. The southern part of the fold-thrust belt has a more complex evolution. Early Nto NE-trending folds and thrust faults are deformed by NW-trending basementinvolved folds and thrust faults that intersect with the NE-trending right-lateral strike-slip faults. Youngest structures in this southern area are dominated by left-lateral transpression related to movement on the Xianshuihe fault system.

The extent of Cenozoic deformation within the area underlain by the early Mesozoic allochthon remains unknown, because of the absence of rocks of the appropriate age to date Cenozoic deformation. Klippen of the allochthon were emplaced above the Cenozoic fold-andthrust belt in the central part of the eastern Longmen Shan, indicating that the allochthon was at least partly reactivated during Cenozoic time. Only in the Min Shan in the northern part of the allochthon is Cenozoic deformation demonstrated along two active zones of E-W shortening and associated left-slip. These structures trend obliquely across early Mesozoic structures and are probably related to shortening transferred from a major zone of active left-slip faulting that trends through the western Qinling Mountains. Active deformation is along the left-slip transpressive NW-trending Xianshuihe fault zone in the south, right-slip transpression along several major NE-trending faults in the central and northeastern Longmen Shan, and E-W shortening with minor left-slip movement along the Min Jiang and Huya fault zones in the north.

Our estimates of Cenozoic shortening along the eastern margin of the Tibetan Plateau appear to be inadequate to account for the thick crust and high elevation of the plateau. We suggest here that the thick crust and high elevation is caused by lateral flow of the middle and lower crust eastward from the central part of the plateau and only minor crustal shortening in the upper crust. Upper crustal structure is largely controlled in the Longmen Shan region by older crustal anisotropics; thus shortening and eastward movement of upper crustal material is characterized by irregular deformation localized along older structural boundaries.  相似文献   

18.
The Triassic to Cretaceous sediment succession of the Lechtal Nappe in the western part of the Northern Calcareous Alps (NCA) has been deformed into large-scale folds and crosscut by thrust and extensional faults during Late Cretaceous (Eoalpine) and Tertiary orogenic processes. The following sequence of deformation is developed from overprinting relations in the field: (D1) NW-vergent folds related to thrusting; (D2) N–S shortening leading to east–west-trending folds and to the formation of a steep belt (Arlberg Steep Zone) along the southern border of the NCA; (D3) E–W to NE–SW extension and vertical shortening, leading to low-angle normal faulting and recumbent “collapse folds” like the Wildberg Syncline. D1 and D2 are Cretaceous in age and predate the Eocene emplacement of the Austroalpine on the Penninic Nappes along the Austroalpine basal thrust; the same is probably true for D3. Finally, the basal thrust was deformed by folds related to out-of-sequence thrusting. These results suggest that the NCA were at least partly in a state of extension during the sedimentation of the Gosau Group in the Late Cretaceous.  相似文献   

19.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

20.
During the Jurassic and Cretaceous, the Pieniny Klippen Belt units of the Outer Western Carpathians were situated on the edge of the Paleoeuropean shelf rimming the northermost margin of the Mediterranean Tethys. During the late early Aptian humid event, Lower Cretaceous pelagic carbonate (Maiolica) sedimentation was interrupted by terrigenous input as a consequence of the first major mid-Cretaceous climate perturbations. The fluctuation of radiolarian abundance indicated an expansion of the oxygen-minimum zone due to upwelling conditions and salinity changes. Foraminifera, radiolarians, non-calcareous dinocysts, and calcareous nannofossils encountered in the West Carpathian Rochovica section enable a comparison of the black shales of the upper lower Aptian Koňhora Formation with the well-known Selli Event. Subsequent anoxia patterns (depositional, productive, and stagnant) have taken part in the depositional regime. Early Aptian climate perturbations both in the Outer Western Carpathians, Swiss Prealps (situated in a similar position on the distal southern edge of the former Paleoeuropean shelf) and/or in other parts of the world are traceable with sedimentological, biological, and chemical proxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号