首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
模型估算法与静态箱法是水-气界面气体通量监测的主要方法,因原理不同监测结果通常存在一定差异.目前对引起上述差异的主要环境因素仍不清晰.本研究使用自行设计的静态箱对三峡支流澎溪河水-气界面CO2通量进行监测,并与同步开展的CO2通量薄边界层模型估算法结果相比较,探讨该水域引起这两种监测方法结果产生差异的主要环境因素.结果表明,瞬时风速、水汽温差及水深均会对静态箱法及模型估算法的监测结果产生影响.风速越强、水汽温差越大、水深越大,这两种方法监测结果的差异就越小;而水域面积对两种方法的差异没有影响.比较发现,两种方法所获通量数据呈显著正相关,但静态箱法所获通量数据离散性显著高于薄边界层模型估算法.从方法的稳定性角度,在峡谷河道型水库水体温室气体监测中薄边界层模型估算法可能更为适宜.  相似文献   

2.
为明确三峡水库支流澎溪河回水区的碳收支特征,以澎溪河高阳平湖水域为研究对象,建立了河道型水库主要路径碳收支估算方法,对高阳平湖从2011年9月至2012年8月一个完整水文周年内主要路径的碳通量进行了收支动态分析.结果表明,2011年9月至2012年8月,澎溪河高阳平湖水域河流输入的碳通量为133548.55 t C,输出的碳通量为125651.82 t C,水-气界面的扩散碳通量为762.56 t C,消落带土-气界面的扩散碳通量为123.74 t C,水中气泡的释放碳通量为0.38 t C,降水输入的碳通量为104.58 t C,全年高阳平湖水域碳的净积累量为7114.63 t C,宏观上呈现碳积累特征;澎溪河高阳平湖水域水体碳素总体上呈现出河道型水库特有的纵向输移特征.高阳平湖水域上游大量碳素的输入及其在高阳平湖水域的滞留可能会是该水域水-气界面温室气体释放的主要来源.尽管总体上高阳平湖全年呈现出碳积累的特点,但一些方法依然存在不确定性(水-气界面扩散碳通量和气泡释放碳通量的时空异质性等),需要更系统、更长期的工作予以验证或改进.  相似文献   

3.
邓焕广  刘涛  鲁长娟  张菊  曹起孟  姚昕 《湖泊科学》2020,32(5):1484-1495
为了解东平湖菹草(Potamogeton crispus)腐烂分解对水体温室气体溶存浓度和界面扩散通量的影响,于2016年5-7月在东平湖菹草腐烂期采集上覆水和沉积物柱样,测定上覆水和孔隙水中温室气体(N_2O、CH_4和CO_2)的溶存浓度,采用Fick第一定律和双层模型计算沉积物-水-气界面扩散通量,同时分析上覆水和沉积物的理化性质,并采用网袋分解法于现场进行菹草腐烂分解试验,以探究东平湖菹草腐烂过程中温室气体溶存和扩散的主要影响因子及其主要来源.结果表明,菹草腐烂符合二次指数模型,分为快速衰减和慢速分解两个阶段;菹草腐烂过程中上覆水pH和亚硝态氮浓度表现为先降低后升高,而溶解氧、氨氮、硝态氮和可溶性正磷酸盐浓度则为先升高后下降,沉积物中铵态氮含量表现为先升高后降低,硝态氮为先降低后显著升高,有机质和p H呈降低-升高-降低的波动变化;上覆水中各温室气体浓度和水气界面扩散通量均表现为CO_2 CH_4 N_2O,其扩散通量分别为5862.9±5441.4、31.15±41.3和0.15±0.57μmol/(m~2·h),整体表现为大气温室气体的"源",并以碳排放为主;上覆水中N_2O浓度和水-气界面扩散通量均先降低后升高,孔隙水中N_2O浓度在快速和慢速分解阶段分别出现极大值(22.7和55.6 nmol/L),而其沉积物-水界面通量前期持续增加至腐烂结束后迅速降低;上覆水和孔隙水中CH_4浓度及其各界面通量均表现为前期略有降低后持续升高;上覆水中CO_2浓度和水-气界面通量表现为持续升高后降低并趋于稳定,而孔隙水中CO_2呈波动变化,在菹草腐烂初期向孔隙水扩散,后期向上覆水扩散.水温是影响上覆水中温室气体浓度和水-气界面通量的主要因素;沉积物是水体N_2O和CH_4的主要来源,孔隙水中浓度是控制其沉积物-水界面扩散的重要因素;而上覆水中CO_2呈现多源性,但以上覆水中有机物质的矿化为主.  相似文献   

4.
为查明三峡水库蓄水初期典型支流水-气界面CO_2和CH_4通量的日变化特征,采用LGR在线分析仪-通量箱法,于2015年9月初在库腹一级支流草堂河回水区开展连续24 h的定位观测.结果表明,24 h监测期内,支流库湾水-气界面CO_2通量变幅为-81.642~180.991 mg/(m~2·h),呈"昼吸夜放"特征,均值为17.346 mg/(m~2·h),总体为释放特征;CH_4全天均表现为释放状态,释放通量均值为0.064 mg/(m~2·h),呈"昼弱夜强"变化.相关分析结果表明,CH_4和CO_2释放通量与风速呈正相关,与表层水温、溶解氧浓度、叶绿素a浓度呈负相关,说明风速物理扰动、浮游植物光合作用是控制草堂河水-气界面气体通量最重要的环境因素.同时,干-支流相互作用形成的特殊水环境(如异重流、水温分层)也与水-气界面温室气体通量过程密切相关,但是其作用机制更为复杂,应开展进一步系统观测和深入研究.  相似文献   

5.
秦宇  杨博逍  李哲  赫斌  杜海龙 《湖泊科学》2017,29(4):991-999
河流是连接大陆和海洋两大碳库的桥梁,在全球碳循环中的作用举足轻重.金沙江作为长江的上游段,对区域碳循环及区域化学风化的影响非常重要.于2015年8月8-18日对金沙江下游水-气界面CO_2与CH_4通量特征进行监测与分析.采用顶空平衡法结合薄边界层模型估算法计算表层水体CO_2与CH_4的分压以及水-气界面的交换通量,并分析环境变量与其之间的相关性.研究发现,金沙江下游表层水体p(CO_2)平均值为2724.84±477.18μatm,表层水体p(CH_4)平均值为59.96±6.74μatm;水-气界面CO_2通量平均值为2.24±0.50 mmol/(m2·h),CH_4通量平均值为0.000163±0.00009 mmol/(m2·h),通量与分压趋势基本保持一致.表层水体p(CO_2)与溶解性无机碳浓度、碱度均呈显著正相关,而p(CH_4)与水温、叶绿素a浓度均呈显著正相关,CO_2通量与p(CO_2)、溶解性无机碳浓度、碱度均呈正相关,CH_4通量与p(CH_4)、风速均呈正相关,其他环境因素对通量的影响不明显,仍需进一步研究.金沙江下游水-气界面CH_4扩散通量较低,而CO_2扩散通量在世界主要河流中属于中等水平.  相似文献   

6.
基于不同模型的大型湖泊水气界面气体传输速率估算   总被引:1,自引:0,他引:1  
气体传输速率是湖泊水—气界面温室气体交换通量的重要驱动因子,但其估算具有不确定性.本研究选择3种不同的参数化方程估算大型(面积2400 km2)浅水(平均水深1.9 m)湖泊——太湖水—气界面的气体传输速率,探讨大型湖泊气体传输速率的控制因子和变化范围,为估算模型的选取提供参考.结果表明,气体传输速率的两个重要参数风应力和水体对流混合速率存在夜间高、白天低的变化特征,因此气体传输速率也存在夜间高、白天低的变化特征.总体上太湖气体传输速率主要由风力控制,可以通过风速函数估算得到.太湖水—气界面气体传输速率的年均值为1.27~1.46m/d.因气体传输速率存在空间变化,单一站点参数化的模型可能不适合其他区域湖泊水—气界面气体传输速率的估算,但湖泊的面积可能是一个有效的预测因子.  相似文献   

7.
三峡水库澎溪河水-气界面CO2、CH4扩散通量昼夜动态初探   总被引:6,自引:2,他引:4  
李哲  姚骁  何萍  王钦  郭劲松  陈永柏 《湖泊科学》2014,26(4):576-584
三峡水库温室气体效应近年来备受关注.为揭示三峡水库典型支流澎溪河水-气界面CO2和CH4通量的昼夜动态规律,明晰短时间尺度下该水域温室气体释放的影响因素,在2010年6月至2011年5月的一个完整水文周年内,选择4个具有代表性的时段(2010年8、11月和2011年2、5月)对澎溪河高阳平湖水域开展昼夜跟踪观测.结果表明:2010年8、11月和2011年2、5月4次采样的CO2日总通量值分别为-8.34、73.94、28.13和-20.12 mmol/(m2·d),相应的CH4日总通量值分别为2.22、0.11、0.32和7.16 mmol/(m2·d),不同时期昼夜变化明显.研究水域CO2和CH4通量过程不具同步性:CO2昼夜通量变化可能更显著地受到水柱光合/呼吸过程的影响,但瞬时气象过程(水汽温差、瞬时风速等)在高水位时期亦可对CO2通量产生显著影响;CH4昼夜通量变化与水温条件改变更为密切.  相似文献   

8.
湖泊沉积物-水界面营养盐释放是研究湖泊环境行为的重点关注对象,但目前对于湖泊通量的估算方法选择缺乏横向定量比较.以南京莫愁湖为研究对象,在冬春夏3季采用静态释放培养法、机械搅拌培养法、流动培养法和间隙水浓度扩散模型法4种常见的湖泊通量培养方法进行氮磷释放对比实验.结果表明,非扩散模型法(静态释放、机械搅拌、流动培养)在冬季存在负通量,随着气温升高,夏季通量估算值为正,且该3种方法通量数值差异不显著.间隙水扩散模型法在三季实验中结果数值无负值,对比非扩散模型组具有显著差异,约低一个数量级.不同方法在培育过程中溶解氧和pH变化差异显著,流动培养法最为稳定.4种方法的通量结果在不同季节变化趋势具有显著相关性,非扩散模型法估算结果作为表观通量值,适用于计算湖泊沉积物营养盐释放总量,其中静态释放法结果稳定性较差,平行组相对标准偏差最高达70%;流动培养法稳定性最好,平行组相对标准偏差最高仅21%.扩散模型法估算结果作为理论释放值,在估算浅水湖泊通量时低于实际释放通量,适于探究深水湖泊沉积物间隙水动态释放过程,有助于分析湖泊沉积物性质.不同培养方法,有其侧重点,根据不同湖泊状况,应选取合适方法进行通量估算.  相似文献   

9.
模型估算法是水-气界面甲烷(CH4)通量监测的主要方法.本研究选择6种不同的参数化模型方法估算了2015年6、8和10月两个亚热带河口养殖塘水-气界面CH4传输速率(kx)及其扩散通量,探讨了河口养殖塘kx及CH4扩散通量的变化特征和影响因子.结果表明:研究期间,不同模型估算下的kx及其扩散通量均值在闽江河口养殖塘变化范围分别为1.60±0.75~6.29±1.30 cm/h和9.19±2.67~30.64±6.28 μmol/(m2·h),在九龙江河口养殖塘的变化范围分别为0.89±0.19~6.07±0.61 cm/h和3.18±0.48~21.03±2.13 μmol/(m2·h);kx及其扩散通量在两个河口区均呈现随时间推移而升高的特征;整个养殖期间,养殖塘水-气界面平均CH4传输速率kx呈现闽江河口略高于九龙江河口(P>0.05),但水-气界面平均CH4扩散通量呈现闽江河口显著高于九龙江河口的特征(P<0.05);风速、水体溶解CH4浓度和盐度是调控河口区养殖塘水-气界面CH4扩散通量变化的重要因子;不同模型估算出的河口养殖塘水-气界面CH4传输速率kx存在差异,表明模型估算法获得的水-气界面CH4扩散通量存在一定的不确定性.  相似文献   

10.
湖泊、河流等内陆水体是连接陆地生态系统和海洋的“长程碳环路”的重要节点,也是温室气体二氧化碳(CO2)排放源,在调节陆地、海洋间的碳迁移转换中发挥着重要作用。相对于自然水体,城市水体因面积小、水深浅且受监测方法限制,水-气界面碳通量经常被忽略。为探讨我国亚热带城市水体温室气体排放特征,本研究以湖南省长沙市典型城市水体,包括洋湖、西湖、松雅湖、月湖4个湖泊和湘江长沙段为研究对象,分别于2022年4和10月采用光化学反馈-腔增强吸收光谱法(OF-CEAS)和扩散模型法对水-气界面CO2通量进行对比测定。结果表明,长沙城市湖泊与河流春季为CO2排放源,秋季为吸收汇,河流水-气界面CO2通量呈显著季节差异。河湖之间CO2通量在春季表现为显著差异,秋季差异不显著。CO2通量与水体溶解氧、水体总氮浓度等呈显著正相关。2种方法的CO2通量对比测定在湖泊上显著相关,但对河流而言相关性不显著。研究揭示的城市湖泊与河流CO2气体的排放特征有利于深入探究城市水体碳的迁移转化,可对全面了解全球气候变化过程和河湖湿地温室气体减排和调控提供科学支撑。  相似文献   

11.
水柱中CO2分压(pCO2)的时空分布在一定程度上可反映水中碳的环境地化特征.本研究在夏季分层期间对三峡水库澎溪河(小江)流域高阳回水区段进行了昼夜连续观测发现,恒定的温跃层中pCO2随水深增加而显著增大,表层0.5 m处pCO2均值为152±71μatm,而在水深10.0 m处pCO2均值为4568±1089μatm,同水温、pH及DO存在明显的负相关关系,进一步分析认为水温等将影响微生物、浮游植物的代谢过程及水气界面对流传输,进而对pCO2分布产生影响.对水气界面CO2扩散通量的估算结果表明,夏季分层期间高阳水域总体上表现为CO2的汇,其对大气CO2的吸收量最大值于15:00左右,达到-0.33 mmol/(m2.h);最弱在次日凌晨3:00左右,吸收量仅为-0.17 mmol/(m2.h).  相似文献   

12.
自成库以来,三峡水库CO2、CH4等温室气体通量较蓄水前发生明显改变。如何科学认识和客观评估三峡水库修建及运行对其CO2、CH4等温室气体通量的影响备受关注。本文简要回顾了自2009年以来在三峡水库开展CO2、CH4等温室气体通量监测与分析工作,综述认为,现阶段三峡水库温室气体排放以水-气界面扩散释放为主要途径。陆源输入的有机碳是主导三峡水库CO2、CH4产生的主要碳源,但在局部区段或时段自源性有机碳的贡献亦十分显著。同蓄水前相比,三峡水库碳排放量呈现为净增加,淹没效应约占水库C净增量的20%,库区内点面源污染负荷并未对CO2排放的净增量产生显著贡献,阻隔效应和生态系统重建效应对三峡水库碳排放的净增量产生显著贡献。近10年来,监测方法比对、监测点位优化等工作在一定程度上完善了三峡水库温室气体通量监测体系。新方法、新技术的引入也为三峡水库温室气体通量监测分析提供了有利支撑和保障,但复杂水文环境...  相似文献   

13.
水动力条件对沉积物-水界面氧通量的影响   总被引:2,自引:0,他引:2  
氧环境决定了水体沉积物中各种生命所需元素的最终归趋,沉积物-水界面是水相与沉积物相氧传递的重要场所,而水动力条件是影响沉积物-水界面氧传递的重要因素.选择三峡库区一级支流御临河为研究对象,根据长年监测数据建立实验室模型,采用声学多普勒流速测试仪及微电极测试系统构建了非侵入式涡度相关测试系统,探究了不同水动力条件对沉积物-水界面氧通量的影响.结果表明:水体静止状态下沉积物-水界面溶解氧浓度随时间的增加而减少,非静止状态下随时间的增加而增加;沉积物-水界面氧通量随水体流速的增加而增加.根据氧通量求解对应流速下垂直涡动扩散系数并进行线性拟合,当水体流速为0.01~0.14 m/s时,垂直涡动扩散系数与水体流速的相关性最好,此时沉积物-水界面氧通量的传递以涡动扩散为主导.  相似文献   

14.
肖启涛  胡正华  张弥  王伟  肖薇 《湖泊科学》2021,33(2):561-570
外源引水等水力调控措施常用于湖泊水环境综合整治中,作为人类施加到湖泊显著的外界活动,其对湖泊甲烷(CH4)扩散通量的影响鲜有报道.贡湖湾作为"引江济太"工程长江来水进入太湖的第一站,其CH4通量变化是对水力调控的最好响应.基于2011年11月至2013年8月逐月的野外观测表明,贡湖湾平均CH4扩散排放量为0.073 mmol/(m2·d),显著高于参考水域(湖心区) CH4排放量(均值:0.017 mmol/(m2·d)).贡湖湾不同站点间CH4通量也表现出显著差异,但湖心区域无此现象.贡湖湾和湖心2个区域的CH4扩散通量均有明显的时间变化,且与水温呈显著正相关.但因受到外源来水的影响,贡湖湾CH4通量时间变化的温度依赖性相对较低.总体上外源引水显著提高了湖体CH4排放量,考虑到湖泊CH4通量受内部因子和外部因子的综合协调影响,其潜在的控制机制还需要进一步探讨.  相似文献   

15.
甲烷(CH4)对全球温室效应有着较大的贡献。三峡水库自2003年蓄水以来,其CH4排放问题已受到广泛关注。但三峡水库反季节的运行方式,使支流库湾CH4的产生和传输过程受到多方面的影响,进而导致其CH4排放效应尚不十分明确。本文综述了三峡水库支流CH4排放的研究进展,典型支流的CH4排放通量普遍高于干流,位于三峡水库库尾的部分支流CH4排放通量高于三峡水库库首及库中支流。大多数典型支流的CH4通量在夏季均达到全年峰值,而在冬季高水位运行期均处于相对较低的水平。同时本文主要从水环境条件、水动力条件、人类活动及气象条件4个方面阐述了三峡水库支流CH4排放的影响因素。1)水环境条件:支流水华后藻类衰亡分解过程会驱动CH4释放,且藻类的演替过程会加剧CH4的产生;温度可以直接影响CH4的生成速率和消耗速率,也能通过促进藻的生长间接影响CH4排放;支流相对较低的甲烷氧化菌丰度是其CH4通量较高的原因之一。2)水动力条件:蓄水期CH4主要以扩散的方式进行释放,支流较低的流速促进了悬浮物的沉积,上游沉积物中的CH4含量高于下游;泄水期CH4主要以冒泡的方式进行释放,下游沉积物中TOC急剧增加,但干流的入侵会削弱支流的温度分层,破坏藻类生长环境,间接影响CH4通量。3)人类活动:农业耕作使支流水体中的营养物浓度增加,甲烷氧化菌的丰富度降低,细菌群落的营养相关代谢增强;建设用地扩大、支流筑坝增加抑制了有机物的传输,增加了水体中的产CH4底物,促进了CH4的产生。4)气象条件:降雨会携带更多营养物质进入支流,同时会增加水体浊度、破坏水体的温度分层,从而对CH4的产生和传输过程造成影响。最后对未来的研究热点进行了展望,以期为三峡水库CH4排放的控制和管理提供参考。  相似文献   

16.
水库或湖泊的热分层结构是其动力与环境过程的重要研究方面,虽然很多学者针对水体分层结构和演变机理开展了大量研究,但水体通过水-气界面与大气进行热交换的过程,各气象因子的贡献机理等研究成果还很缺乏。本文基于三峡水库香溪河库湾2019年3月-2020年2月期间的水温、水位及气象等监测数据,针对水-气界面热交换过程如何影响水温垂向结构及表层水体湍流混合作用开展研究。结果表明,(1)香溪河水体年内呈高温期分层、低温期混合的基本特征,高温期混合层深度小于8 m,低温期混合层深度超过30 m。(2)太阳短波辐射是香溪河水体的主要热源,潜热通量和长波辐射是香溪河水体的主要冷源,感热通量贡献极小。(3)香溪河平均风速较弱,约为1.6 m/s,主要通过增强潜热和感热通量的方式影响水体垂向稳定性结构特征,其机械扰动作用较弱。(4)表层水体湍能通量在高温期较低(10-7m3/s3量级),此时水体处于分层状态,风应力大概率主导表层水体湍流发育;低温期表层水体湍能通量较高(10-6 m3/s3<...  相似文献   

17.
三峡水库156m蓄水前后澎溪河回水区藻类多样性变化特征   总被引:3,自引:2,他引:1  
为了解156 m蓄水前后三峡水库次级河流藻类多样性变化特征,对2007年7月至2008年1月澎溪河回水区的藻类种群结构的变化进行连续监测.基于三峡水库水位调度特点,将监测期划分为蓄水前、中、后三个时段,即7-9月、10月、11月至翌年1月,应用Shannon-Weaver多样性指数H’对藻类多样性进行评价,通过Connell中度扰动假说理论结合优势藻种探讨蓄水过程水动力变化及藻类多样性的变化特征.结果表明:2007年7-9月蓄水前H’均值为3.466±0.317,10月蓄水期则降为3.246±0.338,而11月蓄水后高水位阶段H’均值上升为3.431±0.352.蓄水前澎溪河回水区具有河流型特征,流量与降雨作为主要的物理扰动因子影响水体扰动强度,进而引起多样性变化.10月蓄水期间水位突升、流量骤降导致水体扰动强度加剧,较蓄水前藻类多样性下降.自11月蓄水后的高水位阶段,降雨较小、流量趋于稳定,水体扰动降低,多样性回升并维持在相对稳定的状态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号