首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present TropFlux wind stresses and evaluate them against observations along with other widely used daily air-sea momentum flux products (NCEP, NCEP2, ERA-I and QuikSCAT). TropFlux wind stresses are computed from the COARE v3.0 algorithm, using bias and amplitude corrected ERA-I input data and an additional climatological gustiness correction. The wind stress products are evaluated against dependent data from the TAO/TRITON, PIRATA and RAMA arrays and independent data from the OceanSITES mooring networks. Wind stress products are more consistent amongst each other than surface heat fluxes, suggesting that 10 m-winds are better constrained than near-surface thermodynamical parameters (2 m-humidity and temperature) and surface downward radiative fluxes. QuikSCAT overestimates wind stresses away from the equator, while NCEP and NCEP2 underestimate wind stresses, especially in the equatorial Pacific. QuikSCAT wind stress quality is strongly affected by rain under the Inter Tropical Convergence Zones. ERA-I and TropFlux display the best agreement with in situ data, with correlations >0.93 and rms-differences <0.012 Nm?2. TropFlux wind stresses exhibit a small, but consistent improvement (at all timescales and most locations) over ERA-I, with an overall 17 % reduction in root mean square error. ERA-I and TropFlux agree best with long-term mean zonal wind stress observations at equatorial latitudes. All products tend to underestimate the zonal wind stress seasonal cycle by ~20 % in the western and central equatorial Pacific. TropFlux and ERA-I equatorial zonal wind stresses have clearly the best phase agreement with mooring data at intraseasonal and interannual timescales (correlation of ~0.9 versus ~0.8 at best for any other product), with TropFlux correcting the ~13 % underestimation of ERA-I variance at both timescales. For example, TropFlux was the best at reproducing westerly wind bursts that played a key role in the 1997–1998 El Niño onset. Hence, we recommend the use of TropFlux for studies of equatorial ocean dynamics.  相似文献   

2.
热带太平洋SST异常对IAP-9 LAGCM 年际变率影响的模拟   总被引:3,自引:0,他引:3  
通过1960~1989年实测的热带太平洋(30.5°N~30.5°S,120°E~70°W)SST(热带太平洋区域以外用气候平均值)强迫AGCM得到的结果,以此来研究热带SST的变化对全球大气环流年际变化的影响。首先,我们分析了南方涛动,分别给出了Tahiti和Darwin海平面气压异常及赤道附近(-5°S~5°N)外逸长波辐射(OLR)时间演变,都能很好与观测相比较。然后,讨论了全球大气环流对热带SST的变化的响应,全球主要的遥相关型都能很好地再现。最后,通过奇异值分解(SVD)技术研究了热带SST与冬季北半球500 hPa位势高度主要的耦合型,模拟的相关型与NCEP再分析资料的相关型非常相似。  相似文献   

3.
The sensitivity of different atmospheric forcing on the simulation of Sea Surface Temperature (SST) in the Indian Ocean is examined using Regional Ocean Modeling System (ROMS). Model simulations using three different atmospheric forcings from the National Centers for Environmental Prediction (NCEP; 2.5 deg), National Centre for Medium Range Weather Forecasting (NCMRWF; 0.25 deg) and TropFlux (0.5 deg) are analyzed here. Model sensitivity to the atmospheric forcing is studied by analyzing the response of SST and mixed layer depth (MLD) using statistical methods. Results show that the response of NCMRWF and TropFlux forcing was almost similar in capturing the variability of SST in comparison with the corresponding observations. But NCEP was unable to capture SST variability, especially over the central part of the Arabian Sea (AS). It is shown that deeper MLD simulations by NCEP forcing due to the high magnitude of wind resulted in an unrealistic simulation of SST.  相似文献   

4.
This study discusses the representation of the intraseasonal oscillation (ISO) in three simulations with the ECHAM4 atmosphere general circulation model (GCM). First, the model is forced by AMIP sea surface temperatures (SST), then coupled to the OPYC3 global ocean GCM and third forced by OPYC3 SSTs to clarify possible air-sea interactions and connections of the ISO and the ENSO cycle. The simulations are compared to ECMWF reanalysis data and NOAA outgoing longwave radiation (OLR) observations. Although previous studies have shown that the ECHAM4 GCM simulates an ISO-like oscillation, the main deficits are an overly fast eastward propagation and an eastward displacement of the main ISO activity, which is shown with a composite analysis of daily data between 1984 to 1988 for the reanalysis and the AMIP simulation, 25 years of the coupled integration, and a five year subset of the coupled SST output used for the OPYC3 forced atmosphere GCM experiment. These deficits are common to many atmospheric GCMs. The composites are obtained by principal oscillation pattern (POP). The POPs are also used to investigate the propagation speed and the interannual variability of the main ISO activity. The present coupled model version reveals no clear improvements in the ISO simulation compared to the uncoupled version forced with OPYC3 SSTs, although it is shown that the modeled ISO influences the simulated high-frequency SST variability in the coupled GCM. Within the current analysis, ECHAM4 forced by AMIP SSTs provides the most reasonable ISO simulation. However, it is shown that the maximum amplitudes of the annual cycle of the ISO variability in all analyzed model versions are reached too late in the year (spring and summer) compared to the observations (winter and spring). Additionally, the ENSO cycle influences the interannual variability of the ISO, which is revealed by 20 years of daily reanalysis data and 100 years of the coupled integration. The ENSO cycle is simulated by the coupled model, although there is a roughly 1 K cold bias in the East Pacific in the coupled model. This leads to a diminished influence of the ENSO cycle on the spatial variability of the modeled ISO activity compared to observations. This points out the strong sensitivity of the SST on the ISO activity. Small biases in the SST appear to cause large deterioration in the modeled ISO.  相似文献   

5.
利用1951—2007年NOAA延长重构的海温资料、NCEP/NCAR再分析资料和中国160站降水资料,研究了夏季西太平洋暖池海温的年际变化特征及其与中国夏季降水的关系。结果表明,夏季西太平洋暖池海温异常具有明显的年际变化特征;夏季西太平洋暖池海温异常偏高(低)时,亚洲热低压减弱(加强),西太平洋副热带高压加强(减弱)、位置偏西(偏东),850 hPa风场上中国东部地区为偏北(南)风距平,使得东亚夏季风减弱(增强),导致长江中下游地区夏季降水偏多(少)。  相似文献   

6.
Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carried out to investigate the climate impacts of fractional vegetation cover (FVC) and leaf area index (LAI) on East Asia summer precipitation, especially in the Yellow River Basin (YRB). One set employed prescribed FVC and LAI which have no interannual variations based on the climatology of vegetation distribution; the other with FVC and LAI derived from satellite observations of the International Satellite Land Surface Climate Project (ISLSCP) for 1987 and 1988. The simulations of the two experiments were compared to study the influence of FVC, LAI on summer precipitation interannual variation in the YRB. Compared with observations and the NCEP reanalysis data, the experiment that included both the effects of satellite-derived vegetation indexes and sea surface temperature (SST) produced better seasonal and interannual precipitation variations than the experiment with SST but no interannual variations in FVC and LAI, indicating that better representations of the vegetation index and its interannual variation may be important for climate prediction. The difference between 1987 and 1988 indicated that with the increase of FVC and LAI, especially around the YRB, surface albedo decreased, net surface radiation increased, and consequently local evaporation and precipitation intensified. Further more, surface sensible heat flux, surface temperature and its diurnal variation decreased around the YRB in response to more vegetation. The decrease of surface-emitting longwave radiation due to the cooler surface outweighed the decrease of surface solar radiation income with more cloud coverage, thus maintaining the positive anomaly of net surface radiation. Further study indicated that moisture flux variations associated with changes in the general circulation also contributed to the precipitation interannual variation.  相似文献   

7.
Interannual variations of subsurface influence on SST in the Indian Ocean show strong seasonality. The subsurface influence on SST confines to the southern Indian Ocean (SIO) in boreal winter and spring; it is observed on both sides of the equator in boreal summer and fall. Interannual long Rossby waves are at the heart of this influence, and contribute significantly to the coupled climate variability in the tropical Indian Ocean (TIO). Principal forcing mechanism for the generation of these interannual waves in the Indian Ocean and the relative influence of two dominant interannual signals in the tropics, namely El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), are also discussed. Two distinct regions dominated by either of the above climate signals are identified. IOD dominates the forcing of the off-equatorial Rossby waves, north of 10°S, and the forcing comes mainly from the anomalous Ekman pumping associated with the IOD. However, after the demise of IOD activity by December, Rossby waves are dominantly forced by ENSO, particularly south of 10°S.It is found that the subsurface feedback in the northern flank of the southern Indian Ocean ridge region (north of 10°S) significantly influences the central east African rainfall in boreal fall. The Indian Ocean coupled process further holds considerable capability of predicting the east African rainfall by one season ahead. Decadal modulation of the subsurface influence is also noticed during the study period. The subsurface influence north of 10°S coherently varies with the IOD, while it varies coherently with the ENSO south of this latitude.  相似文献   

8.
Summary ?The interannual variability of broad-scale Asian summer monsoon was studied using a general circulation model (GCM) and NCEP (National Center for Environmental Prediction) data set during 1979–95. In the GCM experiment, the main emphasis was given to isolate the individual role of surface boundary conditions on the existence of winter-spring time circulation anomalies associated with the interannual variability of Asian summer monsoon. In order to understand the role of sea-surface temperatures (SSTs) alone on the existence of precursory signals, we have conducted 17 years numerical integration with a GCM forced with the real-time monthly averaged SSTs of 1979 to 1995. In this experiment, among the many surface boundary conditions only SSTs are varying interannually. The composite circulation anomalies simulated by the GCM have good resemblance with the NCEP circulation anomalies over subtropical Asia. This suggests that the root cause of the existence of winter-spring time circulation anomalies associated with the interannual variability of Asian summer monsoon is the interannual variability of SST. Empirical Orthogonal Functions (EOFs) of 200-mb winds and OLR were constructed to study the dynamic coupling between SST anomalies and winter-spring time circulation anomalies. It is found that the convective heating anomalies associated with SST anomalies and stationary eddies undergo systematic and coherent interannual variations prior to summer season. We have identified Matsuno-Gill type mode in the velocity potential and stream function fields. This suggests the existence of dynamic links between the SST anomalies and the precursory signals of Asian summer monsoon. Received June 9, 1999/Revised April 7, 2000  相似文献   

9.
PDO对西北太平洋热带气旋活动与大尺度环流关系的影响   总被引:9,自引:4,他引:5  
何鹏程  江静 《气象科学》2011,31(3):266-273
利用NCEP再分析资料和上海台风研究所整编的热带气旋资料,研究了在太平洋年代际振荡(PDO)冷暖位相中西北太平洋热带气旋频数与太平洋海表温度(SST)年际相关的分布差异,以及500 hPa高度场对热带气旋频数和生成源地的影响.结果表明,在PDO冷位相时期,热带气旋频数与赤道东太平洋SST存在显著相关,副热带高压位置偏东...  相似文献   

10.
In this paper, we evaluate several timely, daily air-sea heat flux products (NCEP, NCEP2, ERA-Interim and OAFlux/ISCCP) against observations and present the newly developed TropFlux product. This new product uses bias-corrected ERA-interim and ISCCP data as input parameters to compute air-sea fluxes from the COARE v3.0 algorithm. Wind speed is corrected for mesoscale gustiness. Surface net shortwave radiation is based on corrected ISCCP data. We extend the shortwave radiation time series by using “near real-time” SWR estimated from outgoing longwave radiation. All products reproduce consistent intraseasonal surface net heat flux variations associated with the Madden-Julian Oscillation in the Indian Ocean, but display more disparate interannual heat flux variations associated with El Ni?o in the eastern Pacific. They also exhibit marked differences in mean values and seasonal cycle. Comparison with global tropical moored buoy array data, I-COADS and fully independent mooring data sets shows that the two NCEP products display lowest correlation to mooring turbulent fluxes and significant biases. ERA-interim data captures well temporal variability, but with significant biases. OAFlux and TropFlux perform best. All products have issues in reproducing observed longwave radiation. Shortwave flux is much better captured by ISCCP data than by any of the re-analyses. Our “near real-time” shortwave radiation performs better than most re-analyses, but tends to underestimate variability over the cold tongues of the Atlantic and Pacific. Compared to independent mooring data, NCEP and NCEP2 net heat fluxes display ~0.78 correlation and >65?W?m?2 rms-difference, ERA-I performs better (~0.86 correlation and ~48?W?m?2) while OAFlux and TropFlux perform best (~0.9 correlation and ~43?W?m?2). TropFlux hence provides a useful option for studying flux variability associated with ocean–atmosphere interactions, oceanic heat budgets and climate fluctuations in the tropics.  相似文献   

11.
The monsoon reversal winds in different seasons and high influx of freshwater from various rivers make the Bay of Bengal (BoB) a unique region. Thus, the knowledge of the dynamics of the mixed layer over this region is very important to assess the climatic variation of the Indian subcontinent. A comprehensive study of the role of external forcing on the seasonal and interannual mixed layer depth (MLD) variability over the BoB is carried out for 36 years (1980–2015) using reanalysis products. A weak and strong seasonality of MLD is observed over the northern and the southern BoB (NBoB and SBoB) respectively. The partial correlation suggests that the net heat flux (Qnet) is the major contributor to the deepening of MLD over the NBoB, whereas the wind stress controls the deepening over the SBoB. The seasonal variability reveals the deepening of MLD during summer and winter monsoon and the shallowing during pre- and post-monsoon over the BoB. The relation of the interannual MLD variability and the different phases of the Indian Ocean Dipole (IOD) reveals that the negative phase of IOD is associated with deeper MLD over BoB while the positive phase of IOD depicts shallower MLD. In addition, the opposing characteristic of MLD is highly prominent during October-December. This is majorly contributed by variations related to the second downwelling Kelvin and associated Rossby waves over BoB for the opposing phases of the IOD years.  相似文献   

12.
In situ buoy observation data spanning four years(2008-2011) were used to demonstrate the year-to-year variations of the monsoon onset processes in the Bay of Bengal(BoB).A significant early(late) monsoon onset event in 2009(2010) was analyzed in detail.It is found that the year-to-year variations of monsoon onset can be attributed to either the interannual variability in the BoB SST or the irregular activities of the intra-seasonal oscillation(ISO).This finding raises concern over the potential difficulties in simulating or predicting the monsoon onset in the BoB region.This uncertainty largely comes from the unsatisfactory model behavior at the intra-seasonal time scale.  相似文献   

13.
 The interannual variability over the tropical Pacific and a possible link with the mean state or the seasonal cycle is examined in four coupled ocean-atmosphere general circulation models (GCM). Each model is composed of a high-resolution ocean GCM of either the tropical Pacific or near-global oceans coupled to a moderate-resolution atmospheric GCM, without using flux correction. The oceanic subsurface is considered to describe the mean state or the seasonal cycle through the analytical formulations of some potential coupled processes. These coupled processes characterise the zonal gradient of sea surface temperature (hereafter SST), the oceanic vertical gradient of temperature and the equatorial upwelling. The simulated SST patterns of the mean state and the interannual signals are generally too narrow. The grid of the oceanic model could control the structure of the SST interannual signals while the behaviour of the atmospheric model could be important in the link between the oceanic surface and the subsurface. The first SST EOFs are different between the coupled models, however, the second SST EOFs are quite similar and could correspond to the return to the normal state while that of the observations (COADS) could favour the initial anomaly. All the models seem to simulate a similar equatorial wave-like dynamics to return to the normal state. The more the basic state is unstable from the coupled processes point of view, the more the interannual signal are high. It seems that the basic state could control the intensity of the interannual variability. Two models, which have a significant seasonal variation of the interannual variance, also have a significant seasonal variation of the instability with a few months lag. The potential seasonal phase locking of the interannual fluctuations need to be examined in more models to confirm its existence in current tropical GCMs. Received: 30 July 1999 / Accepted: 25 April 2000  相似文献   

14.
Using a high-resolution ocean general circulation model forced by NCEP/NCAR reanalysis data, the interannual variability of the Guinea Dome is studied from a new viewpoint of its possible link with the Atlantic Meridional Mode (AMM), which is related to the meridional migration of the Intertropical Convergence Zone (ITCZ). The dome develops off Dakar seasonally from late spring to late fall owing to the wind-induced Ekman upwelling; its seasonal evolution is associated with the northward migration of the ITCZ. When the ITCZ is located anomalously northward (southward) from late spring to early summer, as a result of the wind-evaporation-sea surface temperature (SST) positive feedback with positive (negative) SST anomaly over the Northern Hemisphere, the dome becomes unusually strong (weak) in fall as a result of stronger (weaker) Ekman upwelling. This may contribute to the decay of the AMM. Thus, the coupled nature between the AMM and the Guinea Dome could be important in understanding, modeling, and predicting the tropical Atlantic variability.  相似文献   

15.
大气季节内振荡:其全球同步性及其与ENSO的关系   总被引:9,自引:0,他引:9  
利用美国国家环境预报中心和大气研究中心的大气再分析资料,分析研究了大气季节内振荡的年际变化及其与ENSO的关系。揭示了全球不同纬度带之间存在着的大气季节内振荡年际变化的同步性,以及大气季节内振荡与海温和大气向外长波辐射之关系的复杂性。我们还发现大气季节内振荡与Nino3指数的关系存在年代际尺度的变化,即,这种关系有时强时弱的现象。  相似文献   

16.
This paper analyzes surface climate variability in the climate forecast system reanalysis (CFSR) recently completed at the National Centers for Environmental Prediction (NCEP). The CFSR represents a new generation of reanalysis effort with first guess from a coupled atmosphere?Cocean?Csea ice?Cland forecast system. This study focuses on the analysis of climate variability for a set of surface variables including precipitation, surface air 2-m temperature (T2m), and surface heat fluxes. None of these quantities are assimilated directly and thus an assessment of their variability provides an independent measure of the accuracy. The CFSR is compared with observational estimates and three previous reanalyses (the NCEP/NCAR reanalysis or R1, the NCEP/DOE reanalysis or R2, and the ERA40 produced by the European Centre for Medium-Range Weather Forecasts). The CFSR has improved time-mean precipitation distribution over various regions compared to the three previous reanalyses, leading to a better representation of freshwater flux (evaporation minus precipitation). For interannual variability, the CFSR shows improved precipitation correlation with observations over the Indian Ocean, Maritime Continent, and western Pacific. The T2m of the CFSR is superior to R1 and R2 with more realistic interannual variability and long-term trend. On the other hand, the CFSR overestimates downward solar radiation flux over the tropical Western Hemisphere warm pool, consistent with a negative cloudiness bias and a positive sea surface temperature bias. Meanwhile, the evaporative latent heat flux in CFSR appears to be larger than other observational estimates over most of the globe. A few deficiencies in the long-term variations are identified in the CFSR. Firstly, dramatic changes are found around 1998?C2001 in the global average of a number of variables, possibly related to the changes in the assimilated satellite observations. Secondly, the use of multiple streams for the CFSR induces spurious jumps in soil moisture between adjacent streams. Thirdly, there is an inconsistency in long-term sea ice extent variations over the Arctic regions between the CFSR and other observations with the CFSR showing smaller sea ice extent before 1997 and larger extent starting in 1997. These deficiencies may have impacts on the application of the CFSR for climate diagnoses and predictions. Relationships between surface heat fluxes and SST tendency and between SST and precipitation are analyzed and compared with observational estimates and other reanalyses. Global mean fields of surface heat and water fluxes together with radiation fluxes at the top of the atmosphere are documented and presented over the entire globe, and for the ocean and land separately.  相似文献   

17.
位于东亚中纬度上空的东亚高空副热带西风急流是东亚季风环流系统中的重要成员,我国夏季降水雨带的季节内变化受东亚高空副热带西风急流位置季节内异常变化影响。根据1979~2008年中国降水资料、NCEP/NCAR再分析资料以及NOAA ERSST V3月平均海表温度资料,利用统计分析和物理量诊断方法对夏季东亚高空副热带西风急流位置季节内异常的东亚大气环流特征及外强迫信号的物理过程进行了探讨。研究指出:6月东亚高空副热带西风急流位置异常主要受欧亚大陆中高纬东传的Rossby波列位相变化影响,春季北大西洋海温异常是欧亚大陆中高纬度Rossby波列位相变化的最显著的外强迫信号;7月东亚高空副热带西风急流位置异常主要受西太平洋热带向副热带传播的Rossby波列位相变化影响,春季西太平洋热带海温异常是西太平洋热带向副热带传播的Rossby波列位相变化的最显著的外强迫信号;8月东亚高空副热带西风急流位置异常主要受南亚大陆向东亚大陆热带、副热带传播的Rossby波列位相变化影响,春季印度洋海温异常是南亚大陆向东亚大陆热带、副热带传播的Rossby波列位相变化的最显著的外强迫信号。  相似文献   

18.
利用农业气象站观测资料对长江中下游地区1988-2010年遥感土壤湿度进行了验证,并与NCEP和ERA-Interim土壤湿度做了对比分析。研究表明,ECV遥感土壤湿度冬季平均土壤湿度最高,春季和秋季次之,夏季平均土壤湿度最低;这种季节性干湿变化与农业气象站观测资料一致。但是,NCEP和ERA-Interim土壤湿度再分析资料,则夏季平均土壤湿度高,春季和秋季次之,而冬季平均土壤湿度最低;这种季节性变化与ECV遥感土壤湿度和农业气象站观测资料呈反位相。就年际变化而言,ECV遥感土壤湿度与农业气象站观测资料和两套再分析资料均有较高的一致性,并在春季和秋季最高,尤其是在长江以北地区和长江以南洞庭湖、鄱阳湖两大湖区,相关系数达到0.7~0.9;而夏季一致性最低,相关系数仅为0.4左右。在研究时段,ECV土壤湿度在冬季明显增加,在夏季则有明显下降趋势。  相似文献   

19.
长江流域水分收支以及再分析资料可用性分析   总被引:9,自引:0,他引:9  
赵瑞霞  吴国雄 《气象学报》2007,65(3):416-427
首先利用实测资料定量计算了长江流域水分收支的各分量,包括降水、径流、蒸发、水汽辐合等,分析其季节循环、年际变化以及线性趋势变化。结果表明,多年平均该流域是水汽汇区,主要来自平均流输送造成的水汽辐合,而与天气过程密切相关的瞬变波则主要造成流域的水汽辐散。蒸发所占比例接近于径流,对流域水分循环十分重要。大部分要素的季节变化和年际变化都很大,只有蒸发和大气含水量的年际变化较小。降水和平均流输送造成的水汽辐合一般在6月达到年内最大,12月达到年内最小,而径流和大气含水量则一般滞后1个月于7月达到年内最大,1月降为年内最小。1958—1983年,夏半年降水略微增加,冬半年略微减少,各月实测径流为弱的增长趋势,但均不显著,年平均蒸发亦无显著的趋势变化。然后将实测资料同ECMWF及NCEP/NCAR再分析资料作进一步对比分析,以检验两套再分析资料对长江流域水分循环的描述能力。在量值上,NCEP/NCAR再分析资料中的降水、蒸发、径流均比实测偏大很多,大气含水量及由平均流输送所造成的水汽辐合则偏小很多;ECMWF再分析资料中的降水量、径流量基本上与实测接近,蒸发量偏大,大气含水量及由平均流输送所造成的水汽辐合偏小,但比NCEP/NCAR再分析资料要接近实测。另外,该两套再分析资料均可以较好地描述长江流域水分收支的季节循环和年际变化,而且同样是ECMWF再分析资料与实测资料的一致性更好。但是两套再分析资料在1958—1983年均存在十分夸张的线性趋势变化,尤其是ECMWF再分析资料。  相似文献   

20.
ENSO事件对云南及临近地区春末初夏降水的影响   总被引:3,自引:0,他引:3  
杨亚力  杜岩  陈海山 《大气科学》2011,35(4):729-738
本文采用合成及相关分析的方法,应用55年中国降水资料、美国NOAA海表温度资料以及NCEP/NCAR再分析资料,研究了ENSO事件对我国云南及其邻近地区春末初夏降水的影响及物理机理.研究结果表明:(1)在El Ni(n)o (La Ni(n)a)年,云南大部分地区4~5月降水偏少(多),东部地区相关信号尤其明显;(2)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号