首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Vienna Basin Transfer Fault (VBTF) is a slow active fault with moderate seismicity (I max~8–9, M max~5.7) passing through the most vulnerable regions of Austria and Slovakia. We use different data to constrain the seismic potential of the VBTF including slip values computed from the seismic energy release during the 20th century, geological data on fault segmentation and a depth-extrapolated 3-D model of a generalized fault surface, which is used to define potential rupture zones. The seismic slip of the VBTF as a whole is in the range of 0.22–0.31 mm/year for a seismogenic fault thickness of 8 km. Seismic slip rates for individual segments vary from 0.00 to 0.77 mm/year. Comparing these data to geologically and GPS-derived slip velocities (>1 mm/year) proofs that the fault yields a significant seismic slip deficit. Segments of the fault with high seismic slip contrast from segments with no slip representing locked segments. Fault surfaces of segments within the seismogenic zone (4–14 km depth) vary from 55 to 400 km2. Empirical scaling relations show that these segments are sufficiently large to explain both, earthquakes observed in the last centuries, and the 4th century Carnuntum earthquake, for which archeo-seismological data suggest a magnitude of M ≥ 6. Based on the combination of all data (incomplete earthquake catalog, seismic slip deficits, locked segments, potential rupture areas, indications of strong pre-catalog earthquakes) we argue, that the maximum credible earthquake for the VBTF is in the range M max = 6.0–6.8, significantly larger than the magnitude of the strongest recorded events (M = 5.7).  相似文献   

2.
文章以地质地貌与地震遗迹野外调查获得的第一手资料为基础,重点介绍了实皆断裂的活动习性、2012年地震产生的建筑物破坏与地震地表破裂带特征.实皆断裂是一条规模宏大,以右旋走滑为主的全新世活动断裂,其水平滑动速率为18~20 mm/a.历史上沿实皆断裂曾发生10余次7级以上强震,迄今保留有1839年曼德勒因瓦M 8、193...  相似文献   

3.
Quantitative analysis of the kinematics of the active faults distributed around the Qinghai-Tibetan Plateau is critical to understand current tectonic processes of the plateau. Chronological analysis, based on the comparison among regional climate and geomorphology, digital photogrammetry, offset landforms, and the tectonics were adopted in this study on the Xianshuihe fault in the eastern Tibetan plateau. Two or more offset-age data were obtained for each segment of the Xianshuihe and the Yunongxi faults. The offset landforms, including river terrace, alluvial fan and glacial moraine, provide constraints for the late Quaternary slip rate of the Xianshuihe fault. The left-lateral strike slip rate of the Xianshuihe fault decreases from 17 mm/a on the northwest segment to 9.3 mm/a on the southeast segment. Regarding the Xianshuihe fault zone and its adjacent blocks as a regional tectonic system, vector analysis was used to quantitatively analyze the longitudinal kinematical transformation and transversal slip partitioning on the fault zone in terms of the kinematical parameters of the main faults within the zone. The results show that there is a distributed vertical uplift at a rate of 6.1 mm/yr caused by shortening across the Gongga Mountains region. Based on these results, we established a model of the slip partitioning for the southeastern segment of the Xianshuihe fault zone.  相似文献   

4.
Abstract: There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its surroundings in the process of the earthquake. This paper introduces the geological background of the Wenchuan earthquake and the profile of in-situ stress monitoring stations. In particular, data of 174 earthquakes (Ms4.0-Ms8.5) were processed and analyzed with various methods, which were recorded at the Shandan station from August 2007 to December 2008. The results were compared with other seismic data, and further analyses were done for the recoded strain seismic waves, co-seismic strain stepovers, pre-earthquake strain valleys, Earth’s free oscillations before and after the earthquake and their physical implications. During the Wenchuan earthquake, the strainmeter recorded a huge extensional strain of 70 seconds, which shows that the Wenchuan earthquake is a rupture process predominated by thrusting. Significant precursory strain anomalies were detected 48 hours, 30 hours, 8 hours and 37 minutes before the earthquake. The anomalies are very high and their forms are very similar to that of the main shock. Similar anomalies can also be found in strain curves of other shocks greater than Ms7.0, indicating that such anomalies are prevalent before a great earthquake. In this paper, it is shown that medium aftershocks (Ms5.5-6.0) can also cause Earth’s free oscillations. Study of free oscillations is of great significance to understand the internal structure of the Earth and focal mechanisms of earthquakes and to recognize slow shocks, thus providing a scientific basis for the prevention and treatment of geological disasters and the prediction of future earthquakes.  相似文献   

5.
Evidence of right‐lateral offsets associated with the 1912 earthquake (Mw 7.4) along the North Anatolian Fault (Gaziköy–Saros segment) allow us to survey (using DGPS) the co‐seismic and cumulative slip distribution. The damage distribution and surface breaks related with the earthquake show an elongated zone of maximum intensity (X MSK) parallel to the fault rupture on land but this may extend offshore to the north‐east and south‐west. Detailed mapping of the fault using topographic maps and aerial photographs indicates the existence of pull‐apart basins and pressure ridges. At several localities, the average 1912 offset along strike is 3.5–4 m and cumulative slip is 2–6 times that of individual movement. The fault rupture geometry and slip distribution suggest the existence of three subsegments with a combined total length of 110–120 km, a fault length and maximum slip similar to those of the 1999 Izmit earthquake. The amount of slip at the north‐easternmost section and in the coastal region of the Sea of Marmara reaches an average 4 m, thereby implying the offshore extension of the 1912 rupture. The results suggest that the 1912 event generated up to 150 km of surface faulting, which would imply a Mw 7.2–7.4 earthquake and which, added with rupture lengths of the 1999 earthquakes, help to constrain the remaining seismic gap in the Sea of Marmara.  相似文献   

6.
We perform 3D modeling of earthquake generation of the Xianshuihe fault, southwestern China, which is a highly active strike-slip fault with a length of about 350 km, in order to understand earthquake cycles and segmentations for a long-term forecasting and earthquake nucleation process for a short-term forecasting. Historical earthquake data over the last 300 years indicates repeated periods of seismic activity, and migration of large earthquake along the fault during active seismic periods. To develop the 3D model of earthquake cycles along the Xianshuihe fault, we use a rate- and state-dependent friction law. After analyzing the result, we find that the earthquakes occur in the reoccurrence intervals of 400–500 years. Simulation result of slip velocity distribution along the fault at the depth of 10 km during 2694 years along the Xianshuihe fault indicates that since the third earthquake cycle, the fault has been divided into 3 parts. Some earthquake ruptures terminate at the bending part of the fault line, which may means the shape of the fault line controls how earthquake ruptures. The change of slip velocity and displacement at 10 km depth is more tremendous than the change of the shallow and deep part of the fault and the largest slip velocity occurs at the depth of 10 km which is the exact depth of the seismic zone where fast rupture occurs.  相似文献   

7.
Three large earthquakes (Mw>4.5) were triggered within 5 min, 85 km west of a Mw 6.5 earthquake in the South Iceland Seismic Zone (SISZ). We report on surface effects of these triggered earthquakes, which include fresh rupture, widespread rockfall, disrupted rockslides and block slides. Field data confirm that the earthquakes occurred along N-striking right-lateral strike-slip faults. Field data also support the conclusion from modeling of InSAR data that deformation from the second triggered event was more significant than for the other two. A major hydrological effect was the draining of water through an open fissure on a lake bed, lowering the lake level by greater than 4 m. Field relationships suggest that a component of aseismic slip could have been facilitated by water draining into the fault zone.  相似文献   

8.
This article is to review results from scientific drilling and fault-zone trapped waves(FZTWs) at the south Longman-Shan fault(LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan, China. Immediately after the mainshock, two Wenchuan Fault Scientific Drilling(WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault(YBF), the middle fault strand of the south LSF zone. Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m, respectively. The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge, breccia, cataclasite and fractures. Close to WFSD-1 site, the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake. A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks. Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths. The zone is several hundred meters wide along the principal slip, within which seismic velocities are reduced by ~30–55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth. The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes. We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake. We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock. Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault(AGF), two strands of the south LSF at shallow depth. A combination of seismic, petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics, and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.  相似文献   

9.
The 26 November 2005 Jiujiang-Ruichang, Jiangxi, Ms?5.7 earthquake occurred in a seismotectonic setting of moderate earthquake. The northwest-trending Xiangfan-Guangji fault (XFG) does not enter into the epicenter vicinity, but the northeast-trending Ruichang-Wuning fault (RWF) as a regional fault extends to the epicenter nearby, appearing as the Ruichang basin and its marginal faults. Tilting of the Ruichang Basin (RCB) in the Quaternary was controlled by the RCB southeast-marginal, buried fault (RSMBF). Shallow geophysical survey reveals that the RSMBF caused an offset of the reflection layers. Drill hole columnar section demonstrates that there are about 10–12?m displacement in the lower section of the middle-Pleistocene Series along the RSMBF, but no disruption is found in the upper section of the middle-Pleistocene Series. The RSMBF not only has activity in the Quaternary, but also coincides with the nodal plane I from the focal mechanism of the Jiujiang-Ruichang Ms?5.7 earthquake. This evidence, including aftershock distribution and isoseismic lines, strongly suggests that the RSMBF might be the seismogenic tectonics. The RWF is discontinuous at the surface, and consists of three en echelon Quaternary basins, which are the Ruichang, Fanzhen and Wuning basins. Three moderate earthquakes, the Fanzhen ML?4.9 earthquake, the Yejiapu ML?4.1 earthquake and the Jiujiang-Ruichang Ms?5.7 earthquake, have happened in the basins since 1995. The seismogenic tectonics of the Jiujiang-Ruichang Ms?5.7 earthquake is not isolated, but may be controlled by the RWF at depth, the slip of which causes the accumulation of energy for earthquake occurrence.  相似文献   

10.
2017年8月8日四川省九寨沟县发生Ms7.0级地震,构造部位处于青藏高原东缘的巴颜喀拉地块东北角,震中位置是岷江断裂、塔藏断裂、虎牙断裂和雪山梁子断裂围闭的空震区。哪条断裂发震,如何界定其与周边活动断裂的关系,与青藏高原东缘近年来发生的大地震是否有成因联系等问题对于理解该区域现今构造活动模式、预判地震发展趋势和部署地震地质灾害防控等工作具有重要意义。利用地震前后两期Sentinel-1合成孔径雷达数据对地表同震形变场进行了InSAR测量,获取了极震区约2000 km2范围内的雷达视线向变形(-13~28 cm)和运动方向,呈现为主动盘单侧走滑兼逆冲的变形模式,结合震源机制、断裂展布、构造背景和近年地震迁移的分析,揭示了控震构造是巴颜喀拉地块北缘边界断裂弧形旋转体系的尾端构造,发震断层是该断裂系中塔藏断裂的南段,并有与虎牙断裂贯通的趋势,因此,应重视本次地震与虎牙断裂之间的空震区未来的强震危险性问题;从区域上看,此次九寨沟地震可能与汶川地震具有一定的时空成因联系,因在巴颜喀拉地块南北边界断裂破裂基本贯通的条件下,2008年汶川地震诱发的东缘中部锁固破裂导致块体加速向东挤出,2013年鲁甸地震又释放了东缘南段挤压构造应力,从而进一步加剧了东北角的应力集中,促使九寨沟地震的发生。  相似文献   

11.
Abstract: This paper presents the 3D density structure of crust in the Longmenshan range and adjacent areas, with constraints from seismic and density data. The density structure of crust shows that the immense boundary plane of density distribution in relation to the Longmeshan fault belt is extended downward to ~80 km deep. This density boundary plane dips towards the northwest and crosses the Moho. With the proximity to the Longmenshan fault belt, it has a larger magnitude of undulation in the upper and middle crust levels. Density changes abruptly across Longmeshan fault belt. Seismic data show that most of the earthquakes in the Longmenshan area after the 2008 Ms8.0 Wenchuan Earthquake occurred within the upper to middle crust. These earthquakes are clearly distributed in the uplifted region of the basement. A few of them occurs in the transitional zone between the uplifted and subsided areas. But most of the earthquakes distributes in transitional zone from subsided to uplifted areas in the upper and middle crust where relatively large density changes occurr The 3D density structure of crust in the Longmenshan and adjacent areas can thus help us to understand the pattern of overthrusting from the standpoint of deep crust and where the earthquakes occurred.  相似文献   

12.
李细光  姚运生 《地学前缘》2003,10(4):365-371
在分析研究前人资料的基础上,结合野外实际工作和室内研究,从三峡九湾溪断裂带内各段断层泥的特征研究分析出发,探讨了九湾溪断裂带的分段性,结果发现:九湾溪断裂带存在明显的分段性,中段和南段地震活动频度和强度大,应变强度高,断层活动以粘滑为主,其分维值在2.2~2.6之间,石英碎砾表面发育各种撞击揳入现象、线状擦痕等显微构造;北段地震活动频度和强度较小,应变强度弱,断层活动以稳滑为主,兼具粘滑,其分维值在2.4~2.8之间,石英颗粒多为磨圆球砾,其刻蚀形貌以裂而不破现象为代表;中段是九湾溪断裂带最有可能发生诱发地震的地段和我们的重点监测地段。  相似文献   

13.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

14.
There have been instances of premonitory variations in tilts, displacements, strains, telluric current, seismomagnetic effects, seismic velocities ( Vp, Vs) and their ratio (Vp/Vs), b-values, radon emission, etc. preceding large and moderate earthquakes, especially in areas near epicentres and along faults and other weak zones. Intensity and duration (T) of these premonitory quantities are very much dependent on magnitude (M) of the seismic event. Hence, these quantities may be utilised for prediction of an incoming seismic event well in advance of the actual earthquake. In the recent past, tilts, strain in deep underground rock and crustal displacements have been observed in the Koyna earthquake region over a decade covering pre- and postearthquake periods; and these observations confirm their reliability for qualitative as well as quantitative premonitory indices. Tilt began to change significantly one to two years before the Koyna earthquake of December 10, 1967, of magnitude 7.0. Sudden changes in ground tilt measured in a watertube tiltmeter accompanied an earthquake of magnitude 5.2 on October 17, 1973 and in other smaller earthquakes in the Koyna region, though premonitory changes in tilt preceding smaller earthquakes were not so much in evidence. However, changes in strains in deep underground rock were observed in smaller earthquakes of magnitude 4.0 and above. Furthermore, as a very large number of earthquakes (M = 1–7.0) were recorded in the extensive seismic net in the Koyna earthquake region during 1963–1975, precise b-value variations as computed from the above data, could reveal indirectly the state of crustal (tectonic) strain variations in the earthquake focal region and consequently act as a powerful premonitory index, especially for the significant Koyna earthquakes of December 10, 1967 (M = 7.0) and October 17, 1973 (M = 5.2). The widespread geodetic and magnetic levelling observations covering the pre- and postearthquake periods indicate significant vertical and horizontal crustal displacements, possibly accompanied by large-scale migration of underground magma during the large seismic event of December 10, 1967 in the Koyna region (M = 7.0). Duration (T) of premonitory changes in tilt, strains, etc., is generally governed by the equation of the type logT = A + BM (A and B are statistically determined coefficients). Similar other instances of premonitory evidences are also observed in micro-earthquakes (M = − 1 to 2) due to activation of a fault caused by nearby reservoir water-level fluctuations.  相似文献   

15.
鲜水河断裂带全新世活动性研究进展综述   总被引:8,自引:0,他引:8  
鲜水河断裂带是中国西南山区一条现今活动强烈的大型地震断裂。本文在系统总结前人研究成果的基础上, 结合野外地质调查, 综述了鲜水河断裂带空间展布特征、活动性质及强度、历史地震地表破裂特征、地震危险性等方面的研究进展。前人研究结果表明, 鲜水河断裂带以惠远寺为界可分为两段, 进一步可细分为八段;断裂带全新世以来以左旋走滑为主, 兼具逆冲性质;整条断裂现今走滑活动速率约为10mm/a左右, 垂向变形在2mm/a以内;其中断裂带北西段活动速率为10~20mm/a, 南东段则小于10mm/a, 一般为5mm/a左右;断裂带地震活动频繁, 地震活动性北西段明显高于南东段, 强震迁移呈明显的跳跃式特征并具有原地复发性质;断裂带历史地震地表破裂特征与玉树地震所报道的地表破裂特征一致;断裂带地震危险性评价具很多不确定因素, 研究程度相对较低。   相似文献   

16.
花东纵谷断层是中国台湾动力作用和地壳运动变形最强烈的断层之一,其断层运动特征和强震危险程度一直备受学者的关注。文中分别以同震地表位移、1992-1999年震间形变数据为约束,反演2003年成功MW 6.8地震同震位错分布和花东纵谷断层震间运动特征。结果表明:花东纵谷断层北段处于强闭锁状态(闭锁率高达0.9),闭锁深度深(约27 km);南段闭锁程度较弱(闭锁率约0.5),闭锁深度较浅(约12 km);中段闭锁程度与闭锁深度介于南北段之间。另一方面,2003年成功MW 6.8地震微观震中位于震间无震滑移区与闭锁区的过渡带附近。依据同震位错、震间断层运动反演结果,以及历史强震破裂分布特征,分析认为,花东纵谷断层南北段运动方式存在差异性,北段主要以强震形式运动,南段以蠕滑和地震两种形式运动。自1951年花莲-台东ML 7.3地震序列后,花东纵谷断层南段、中段和北段至2016年所累积的矩能量分别等价MW 6.4、MW 7.0、MW 7.4地震;若发生级联破裂,整个断层至2016年所累积的矩能量等价MW 7.5地震。  相似文献   

17.
2001年昆仑山口西8.1级地震地表破裂带   总被引:30,自引:8,他引:30       下载免费PDF全文
2001年11月14日昆仑山口西8.1级地震是近50年来在我国大陆发生的震级最大、地表破裂最长的地震事件.地震地表破裂带全长426km,宽数米至数百米,总体走向90°~110°,具有明显的破裂分段特征,自西向东由5条次级破裂段组成.各破裂段又由若干更次级左阶或右阶斜列的破裂组成,具有自相似的分形结构特征.地震破裂带以左旋走滑为主,倾滑量很小.宏观震中区位于库赛湖东北93.0°~93.5°E一带的昆仑山南麓断层谷地内.最大地表同震左旋水平位移6.4m,最大垂直位移为4m.地表水平位移沿地震破裂带走向出现6个峰值,各峰值之间存在相对独立的衰减序列,这表明此地震具有多点破裂特征.  相似文献   

18.
Empirical mb, Ms and Mo data are used to develop an average spectral scaling relation for plate-margin earthquakes. Using equations based upon a rectangular, bilateral dislocation model with uniform rupture velocity, the spectra give values of fault rupture length and width, static stress drop and average fault displacement as a function of mb, Ms and Mo. Compared to mid-plate earthquakes of the same seismic moment, the large average plate-margin earthquake has a bigger rupture length, rupture area and average fault displacement and a smaller rupture width and static stress drop.  相似文献   

19.
We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike–slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr.  相似文献   

20.
The 1511 Western Slovenia earthquake (M = 6.9) is the largest event occurred so far in the region of the Alps–Dinarides junction. Though it strongly influences the regional seismic hazard assessment, the epicenter and mechanism are still under debate. The complexity of the active tectonics of the Alps–Dinarides junction is reflected by the presence of both compressional and transpressional deformations. This complexity is witnessed by the recent occurrence of three main earthquake sequences, the 1976 Friuli thrust faulting events, the 1998 Bovec–Krn Mountain and the 2004 Kobarid strike-slip events. The epicenters of the 1998 and 2004 strike-slip earthquakes (Ms = 5.7 and Ms = 4.9, respectively) lie only 50 km far from the 1976 thrust earthquake (Ms = 6.5).We use the available macroseismic data and recent active tectonics studies, to assess a possible epicenter and mechanism for the 1511 earthquake and causative fault. According with previous works reported in the literature, we analyze both a two-and a single-event case, defining several input fault models. We compute synthetic seismograms up to 1 Hz in an extended-source approximation, testing different rupture propagations and applying a uniform seismic moment distribution on the fault segments. We extract the maximum horizontal velocities from the synthetics and we convert them into intensities by means of an empirical relation. A rounded-to-integer misfit between observed and computed intensities is performed, considering both a minimized and a maximized databases, built to avoid the use of half-degree macroseismic intensity data points. Our results are consistent with a 6.9 magnitude single event rupturing 50 km of the Idrija right-lateral strike-slip fault with bilateral rupture propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号