首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
Multiscale variability of streamflow changes in the Pearl River basin,China   总被引:1,自引:1,他引:0  
The Pearl River basin bears the heavy responsibility for the water supply for the neighboring cities such as Macau, Hong Kong and others. Therefore, effective water resource management is crucial for sustainable use of water resource. However, good knowledge of changing properties of streamflow changes is the first step into the effective water resource management. With this in mind, stability and variability of streamflow changes in the Pearl River basin is thoroughly analyzed based on monthly streamflow data covering last half century using Mann–Kendall trend test and scanning t- and F-test techniques. The results indicate: (1) significant increasing monthly streamflow is observed mainly in January–April, June and October–December. Monthly streamflow during May–September is in not significant changes. Besides, stations characterized by significant monthly streamflow changes are located in the middle and the lower Pearl River basin; (2) changing points of monthly streamflow series are detected mainly during mid-1960s, early 1970s, mid-1970s, early 1980s and early 1990s and these periods are roughly in good agreement with those of annual, winter and summer precipitation across the Pearl River basin, implying tremendous influences of precipitation changes on streamflow variations; (3) abrupt behaviors tend to be ambiguous from the upper to the lower Pearl River basin, which should be due to enhancing combined effects of abrupt changes of precipitation. The streamflow comes to be lower stability in recent decades. However, high stability of streamflow changes are observed at hydrological stations in the lower Pearl River basin. The results of this study will be of great scientific and practical merits in terms of effective water resource management in the Pearl River basin under the influences of climate changes and human activities.  相似文献   

2.
Low-flow is widely regarded as the primary flow conditions for the anthropogenic and aquatic communities in most rivers, particularly in such an arid and semi-arid area as the Yellow River. This study presents a method integrating Mann–Kendall trend test, wavelet transform analysis and spatial mapping techniques to identify the temporal and spatial patterns of low-flow changes in the Yellow River (1955–2005). The results indicate that: (1) no trend can be identified in the major low-flow conditions in the upper Yellow River, but downward trends can be found in the middle and lower Yellow River; (2) similar periodic patterns are detected in the 7-day minima (AM7Q) in the upper and middle Yellow River, while different patterns are found in the lower Yellow River; (3) the increasing coefficients of variance in the primary low-flow conditions suggest that the variability of the low-flow is increasing from the upper to lower stream; (4) climate change and uneven temporal-spatial patterns of precipitation, jointly with highly intensified water resource utilization, are recognized as the major factors that led to the decrease of low-flow in the lower Yellow River in recent decades. The current investigation should be helpful for regional water resources management in the Yellow River basin, which is characterized by serious water shortage.  相似文献   

3.
Many impact studies require climate change information at a finer resolution than that provided by general circulation models (GCMs). Therefore the outputs from GCMs have to be downscaled to obtain the finer resolution climate change scenarios. In this study, an automated statistical downscaling (ASD) regression-based approach is proposed for predicting the daily precipitation of 138 main meteorological stations in the Yangtze River basin for 2010–2099 by statistical downscaling of the outputs of general circulation model (HadCM3) under A2 and B2 scenarios. After that, the spatial–temporal changes of the amount and the extremes of predicted precipitation in the Yangtze River basin are investigated by Mann–Kendall trend test and spatial interpolation. The results showed that: (1) the amount and the change pattern of precipitation could be reasonably simulated by ASD; (2) the predicted annual precipitation will decrease in all sub-catchments during 2020s, while increase in all sub-catchments of the Yangtze River Basin during 2050s and during 2080s, respectively, under A2 scenario. However, they have mix-trend in each sub-catchment of Yangtze River basin during 2020s, but increase in all sub-catchments during 2050s and 2080s, except for Hanjiang River region during 2080s, as far as B2 scenario is concerned; and (3) the significant increasing trend of the precipitation intensity and maximum precipitation are mainly occurred in the northwest upper part and the middle part of the Yangtze River basin for the whole year and summer under both climate change scenarios and the middle of 2040–2060 can be regarded as the starting point for pattern change of precipitation maxima.  相似文献   

4.
The East River in the Pearl River basin, China, plays a vital role in the water supply for mega‐cities within and in the vicinity of the Pearl River Delta. Knowledge of statistical variability of streamflow is therefore important for water resources management in the basin. This study analyzed streamflow from four hydrological stations on the East River for a period of 1951–2009, using ensemble empirical mode decomposition (EEMD), continuous wavelet transform (CWT) technique, scanning t and F tests. Results indicated increasing/decreasing streamflow in the East River basin before/after the 1980s. After the early 1970s, the high/low flow components were decreasing/increasing. CWT‐based analysis demonstrates a significant impact of water reservoirs on the periodicity of streamflow. Scanning t and F test indicates that significantly abrupt changes in streamflow are largely influenced by both water reservoirs construction and precipitation changes. Thus, changes of streamflow, which are reflected by variations of trend, periodicity and abrupt change, are due to both water reservoir construction and precipitation changes. Further, the changes of volume of streamflow in the East River are in good agreement with precipitation changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Streamflow series of five hydrological stations were analyzed with aim to indicate variability of water resources in the Tarim River basin. Besides, impacts of climate changes on water resources were investigated by analyzing daily precipitation and temperature data of 23 meteorological stations covering 1960–2005. Some interesting and important results were obtained: (1) the study region is characterized by increasing temperature, however, only temperature in autumn is in significant increasing trend; (2) precipitation changes present different properties. Generally, increasing precipitation can be detected. However, only the precipitation in the Tienshan mountain area is in significant increasing trend. Annual streamflow of major rivers of the Tarim River basin are not in significant trends, except that of the Akesu River which is in significantly increasing trend. Due to the geomorphologic properties of the Tienshan mountain area, precipitation in this area demonstrates significant increasing trend and which in turn leads to increasing streamflow of the Akesu River. Due to the fact that the sources of streamflow of the rivers in the Tarim River basin are precipitation and melting glacial, both increasing precipitation and accelerating melting ice has the potential to cause increasing streamflow. These results are of practical and scientific merits in basin-scale water resource management in the arid regions in China under the changing environment.  相似文献   

6.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The present study explores the spatial and temporal changing patterns of the precipitation in the Haihe River basin of North China during 1957–2007 at annual, seasonal and monthly scales. The Mann–Kendall and Sen’s T tests are employed to detect the trends, and the segmented regression is applied to investigate possible change points. Meanwhile, Sen’s slope estimator is computed to represent the magnitudes of the temporal trends. The regional precipitation trends are also discussed based on the regional index series of four sub-basins in the basin. Serial correlation of the precipitation series is checked prior to the application of the statistical test to ensure the validity of trend detection. Moreover, moisture flux variations based on the NCEP/NCAR reanalysis dataset are investigated to further reveal the possible causes behind the changes in precipitation. The results show that: (1) Although the directions of annual precipitation trends at all stations are downward, only seven stations have significant trends at the 90% confidence level, and these stations are mainly located in the western and southeastern Haihe River basin. (2) Summer is the only season showing a strong downward trend. For the monthly series, significant decreasing trends are mainly found during July, August and November, while significant increasing trends are mostly observed during May and December. In comparison with the annual series, more intensive changes can be found in the monthly series, which may indicate a shift in the precipitation regime. (3) Most shifts from increasing trends to decreasing trends occurred in May–June, July, August and December series, while opposed shifts mainly occurred in November. Summer is the only season displaying strong shift trends and the change points mostly emerged during the late 1970s to early 1980s. (4) An obvious decrease in moisture flux is observed after 1980 in comparison with the observations before 1980. The results of similar changing patterns between monthly moisture budget and precipitation confirmed that large-scale atmospheric circulation may be responsible for the shift in the annual cycle of precipitation in the Haihe River basin. These findings are expected to contribute to providing more accurate results of regional changing precipitation patterns and understanding the underlying linkages between climate change and alterations of hydrological cycles in the Haihe River basin.  相似文献   

8.
In this study, the applicability of the statistical downscaling model (SDSM) in downscaling precipitation in the Yangtze River basin, China was investigated. The investigation includes the calibration of the SDSM model by using large-scale atmospheric variables encompassing NCEP/NCAR reanalysis data, the validation of the model using independent period of the NCEP/NCAR reanalysis data and the general circulation model (GCM) outputs of scenarios A2 and B2 of the HadCM3 model, and the prediction of the future regional precipitation scenarios. Selected as climate variables for downscaling were measured daily precipitation data (1961–2000) from 136 weather stations in the Yangtze River basin. The results showed that: (1) there existed good relationship between the observed and simulated precipitation during the calibration period of 1961–1990 as well as the validation period of 1991–2000. And the results of simulated monthly and seasonal precipitation were better than that of daily. The average R 2 values between the simulated and observed monthly and seasonal precipitation for the validation period were 0.78 and 0.91 respectively for the whole basin, which showed that the SDSM had a good applicability on simulating precipitation in the Yangtze River basin. (2) Under both scenarios A2 and B2, during the prediction period of 2010–2099, the change of annual mean precipitation in the Yangtze River basin would present a trend of deficit precipitation in 2020s; insignificant changes in the 2050s; and a surplus of precipitation in the 2080s as compared to the mean values of the base period. The annual mean precipitation would increase by about 15.29% under scenario A2 and increase by about 5.33% under scenario B2 in the 2080s. The winter and autumn might be the more distinct seasons with more predicted changes of precipitation than in other seasons. And (3) there would be distinctive spatial distribution differences for the change of annual mean precipitation in the river basin, but the most of Yangtze River basin would be dominated by the increasing trend.  相似文献   

9.
Hydrological processes change from the impacts of climate variability and human activities. Runoff in the upper reaches of the Hun‐Taizi River basin, which is mainly covered by forests in northeast China, decreased from 1960 to 2006. The data used in this study were based on runoff records from six hydrological stations in the upper reaches of the Hun‐Taizi River basin. Nonparametric Mann–Kendall statistic was used to identify change trends and abrupt change points and consequently analyze the change characteristics in hydrological processes. The abrupt change in the annual runoff in most subcatchments appeared after 1975. Finally, the effects of climate change and land cover change on water resources were identified using regression analysis and a hydrology model. Results of the regression analysis suggest that the correlation coefficients between precipitation and runoff prior to the abrupt change were higher compared with those after the abrupt change. Moreover, using hydrology model analysis, the water yield was found to increase because of the decrease in forest land. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(1):90-100
Abstract

In the past 50 years, influenced by global climate change, the East Asian summer monsoon intensity (SMI) changed significantly, leading to a response by the water cycle of the Yellow River basin. The variation in SMI has three stages: (1) 1951–1963, SMI increased; (2) 1963–1965, SMI declined sharply, a feature that may be regarded as an abrupt change; and (3) 1965–2000, SMI remained at low levels and showed a tendency to decline slowly. The decreased SMI led to a reduction in water vapour transfer from the ocean to the Yellow River basin, and thus precipitation decreased and the natural river runoff of the Yellow River also decreased. Due to the increase in population and therefore in irrigated land area, the ratio of net water diversion to natural river runoff increased continuously. Comparison of the ratio of net water diversion to natural river runoff before and after the abrupt change in SMI indicates some discontinuity in the response of the man-induced lateral branch of the water cycle to the abrupt change in SMI. The frequently occurring flow desiccation in the lower Yellow River can be regarded as a response of the water cycle system to the decreasing summer monsoon intensity and increasing population. When the ratio of net water diversion exceeded the ratio of natural runoff of the low-flow season to the annual total natural runoff, flow desiccation in the lower Yellow River would occur. When the ratio of net water diversion is 0.3 larger than the ratio of the natural runoff of the low-flow season to the annual total natural runoff, an abrupt increase in the number of flow desiccation events is likely to occur.  相似文献   

11.
ABSTRACT

Climate change/variability accompanied by anthropogenic activities can alter the runoff response of landscapes. In this study we investigate the integrated impacts of precipitation change/variability and landscape changes, specifically wetland drainage practices, on streamflow regimes in wetland-dominated landscapes in the Assiniboine and Saskatchewan River basins of the North American Prairies. Precipitation and streamflow metrics were examined for gradual (trend type) and abrupt (shift type) changes using the modified Mann-Kendall trend test and a Bayesian change point detection methodology. Results of statistical analyses indicate that precipitation metrics did not experience statistically significant increasing or decreasing changes and there was no statistical evidence of streamflow regime change over the study area except for one of the smaller watersheds. The absence of widespread streamflow and precipitation changes suggests that wetland drainage did not lead to detectable changes in streamflow metrics over most of the Canadian portion of the Prairies between 1967 and 2007.
Editor Z.W. Kundzewicz Associate editor None assigned  相似文献   

12.
This paper uses monthly streamflow, suspended sediment concentration, and meteorological data to examine the impact of human activity and climate change on streamflow and sediment load in the Pearl River basin from the 1950s to the 2000s. The influences of climate change and human activities on hydrological processes were quantitatively evaluated using the Mann–Kendall abrupt change test and power rating curves. The results showed that:(1) abrupt changes and turning points in streamflow occurred in 1963, 1983, and 1991 which were found to be consistent with global ENSO events and volcanic eruptions. However, abrupt changes in sediment load showed significant spatial differences across the Pearl River basin. For the Xijiang River, an abrupt change in sediment load occurred in 2002, and after 2007 the change becomes significant at the 95% confidence level. At Beijiang and Dongjiang, abrupt changes in sediment load occurred in 1998 and 1988, respectively.(2) The time series of sediment load data was divided into four periods according to abrupt changes. The contribution of climate change and human activities is different in the different rivers. For the Xijiang River, compared with the first period, climate change and human activities contributed 83% and 17%, respectively, to the increasing sediment load during the second period. In the third period, the variation of sediment load followed a decreasing trend. The contribution from climate change and human activities also changed to t236% and -136%, respectively. In the fourth period, climate change and human activities contributed -32% and t132%, respectively. Meanwhile, For the Beijiang River, climate change and human activities contributed 90% and 10% in the second period, the contribution of climate change increased to t115% and human activities decreased to -15% in the third period. In the fourth period, the value for climate change decreased to t36% and human activities increased to t64%. For the Dongjiang River, the contribution of human activities was from 74.5% to 90%, and the values for climate change were from 11% to 25%. Therefore, the effect of human activity showed both spatial and temporal differences, and it seems likely that the decreased sediment load will continue to be controlled mainly by human activities in the future.  相似文献   

13.
Huai River Basin, as the sixth largest river basin in China, has a high‐regulated river system and has been facing severe water problems. In this article, the changing patterns of runoff and precipitation at 10 hydrological stations from 1956 to 2000 on the highly regulated river (Shaying River) and less‐regulated river (Huai River) in the basin are evaluated at the monthly, seasonal and annual scales using the Mann–Kendall test and simple linear regression model. The results showed that: (1) No statistically significant trends of precipitation in the upper and middle Huai River Basins were detected at the annual scale, but the trend of annual runoff at Baiguishan, Zhoukou and Fuyang stations in Shaying River decreased significantly, whereas the others were not. Moreover, the decreasing trends of runoff for most months were significant in Shaying River, although the trend of monthly precipitation decreased significantly only in April in the whole research area and the number of months in the dry season having significantly decreasing trends in runoff was more than that in the wet season. (2) The rainfall–runoff relationship was significant in both highly regulated river and less‐regulated river. In regulated river, the reservoirs have larger regulation capacity than the floodgates and thus have the smaller correlation coefficient and t‐value. In Huai River, the correlation coefficients decreased from upper stream to downstream. (3) The regulation of dams and floodgates for flood control and water supply was the principal reason for the decreasing runoff in Huai River Basin, although the decreasing precipitation in April in this basin was statistically significant. The findings are useful for recognizing hydrology variation and will provide scientific foundation to integrated water resources management in Huai River Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
1961-2003年间鄱阳湖流域气候变化趋势及突变分析   总被引:21,自引:2,他引:19  
本文利用1961-2003年间鄱阳湖流域14个气象站的气温、降水量、蒸发量等观测数据和8个主要水文站的流量数据,研究该时段内鄱阳湖流域的气候变化趋势、突变及其空间分布的差异.研究表明,鄱阳潮流域气温和降水均在1990年发生突变,继而呈现显著的上升趋势;在季节变化上,冬季平均气温在1986年发生突变,增温显著;夏季降水量和夏季暴雨频率均在1992年发生突变增加,暴雨频率增加是夏季降水量增加的主要原因;蒸发皿蒸发量和参照蒸散量均呈现显著下降趋势,该变化在夏季尤为明显.上述变化趋势均以1990s最为显著,这与长江流域气候变化趋势基本一致.在空间分布上,饶河水系、信江水系和赣江下游等气候变化更为显著.笔者认为,鄱阳湖流域气候变化在长江流域中比较突出.该流域1990s暖湿气候在加强;气温的升高、降水量和暴雨频率的增加以及蒸发量的下降强化了五河流量的增加趋势,由此可大致判定鄱阳湖流域气候变化与洪涝灾害之间可能存在的关系,这可为理解气候变化在该流域的响应和预测该流域未来可能的洪涝灾害提供依据.  相似文献   

15.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Wavelet analysis of rainfall variation in the Hebei Plain   总被引:5,自引:0,他引:5  
Rainfall is an important climate factor, which has significant impacts on agricultural production and na-tional economic development[1]. Being part of the North China Plain, the Hebei Plain is an agricultural region. Under the continental monsoon climate, it is cold and dry in winter, hot and rainy in summer, and its variable rainfall is concentrated in summer. Droughts and floods occur frequently and impose sig-nificant impacts on agricultural production. Studies on the characteristics and …  相似文献   

17.
Z. X. Xu  J. Y. Li  C. M. Liu 《水文研究》2007,21(14):1935-1948
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Yonghui Yang  Fei Tian   《Journal of Hydrology》2009,374(3-4):373-383
Runoff in Haihe River Catchment of China is steadily declining due to climate change and human activity. Determining abrupt changes in runoff could enhance identification of the main driving factors for the sudden changes. In this study, the sequential Mann–Kendall test analysis is used to determine abrupt changes in runoff in eight sub-catchments of Haihe River Catchment, while trend analysis via the traditional Mann–Kendall test for the period 1960–1999 is used to identify the basic trend of precipitation and runoff. The results suggest an insignificant change in precipitation and a significant decline in runoff in five of the eight sub-catchments. For most of the sub-catchments, abrupt changes in runoff occurred in 1978–1985. Through correlation comparisons for precipitation and runoff for the periods prior to and after abrupt runoff changes, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. It is also noted that abrupt decline in runoff was actually at the beginning of China’s 1978–1985 land reform. Given that the land reform motivated farmers to productively manage their reallocated lands, agricultural water use therefore increased. Hence percent agricultural land is analyzed in relation to land use/cover pattern for the late 1970s and early 1980s. The analysis shows that when cultivated farmland exceeds 25% of a sub-catchment area, an abrupt decline in runoff occurs. It is therefore concluded that high percent agricultural land and related agricultural water use are the most probable driving factors of runoff decline in the catchment.  相似文献   

19.
The Jialingjiang River basin is one of the main sediment contributing areas in the upper reaches of the Changjiang River. Great changes have taken place in the runoff and sediment discharge in recent years. Comparing the data of 1991-2003 with the data of 1954-1990, the annual runoff of the Jialingjiang River basin decreased by 23 %, and the suspended sediment transport decreased by 74% or 105 million tons. The main factors affecting the reduction include a decrease in rainfall, sediment detention of hydraulic structures, soil and water conservation activities, sedimentation and sand dredging in the river channel. Thorough investigation and analysis of the contribution of each factor to the sediment decrease at Beibei Station was determined for the first time. The following are the contributing percentages for each factor: a decrease in runoff accounted for 32.9%; soil and water conservation measures accounted for 16.4%; sediment detention of hydraulic structures accounted for 30.5%; sedimentation, river channel sand dredging, and other factors accounted for 20.2%. These findings are very important for forecasting the trend of inflow sediment discharge variation.  相似文献   

20.
Spatiotemporal variations of Chinese Loess Plateau vegetation cover during 1981–2006 have been investigated using GIMMS and SPOT VGT NDVI data and the cause of vegetation cover changes has been analyzed, considering the climate changes and human activities. Vegetation cover changes on the Loess Plateau have experienced four stages as follows: (1) vegetation cover showed a continued increasing phase during 1981–1989; (2) vegetation cover changes came into a relative steady phase with small fluctuations during 1990–1998; (3) vegetation cover declined rapidly during 1999–2001; and (4) vegetation cover increased rapidly during 2002–2006. The vegetation cover changes of the Loess Plateau show a notable spatial difference. The vegetation cover has obviously increased in the Inner Mongolia and Ningxia plain along the Yellow River and the ecological rehabilitated region of Ordos Plateau, however the vegetation cover evidently decreased in the hilly and gully areas of Loess Plateau, Liupan Mountains region and the northern hillside of Qinling Mountains. The response of NDVI to climate changes varied with different vegetation types. NDVI of sandy land vegetation, grassland and cultivated land show a significant increasing trend, but forest shows a decreasing trend. The results obtained in this study show that the spatiotemporal variations of vegetation cover are the outcome of climate changes and human activities. Temperature is a control factor of the seasonal change of vegetation growth. The increased temperature makes soil drier and unfavors vegetation growth in summer, but it favors vegetation growth in spring and autumn because of a longer growing period. There is a significant correlation between vegetation cover and precipitation and thus, the change in precipitation is an important factor for vegetation variation. The improved agricultural production has resulted in an increase of NDVI in the farmland, and the implementation of large-scale vegetation construction has led to some beneficial effect in ecology. Supported by the National Natural Science Foundation of China (Grant No. 40671019) and the Knowledge Innovation Project of the Institute of Geographical Sciences and Natural Resources Research of Chinese Academy of Sciences  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号