首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We discuss the constraints that future photometric and spectroscopic redshift surveys can put on dark energy through the baryon oscillations of the power spectrum. We model the dark energy either with a perfect fluid or a scalar field and take into account the information contained in the linear growth function. We show that the growth function helps to break the degeneracy in the dark energy parameters and reduce the errors on   w 0, w 1  roughly by 30 per cent, making more appealing multicolour surveys based on photometric redshifts. We find that a 200-deg2 spectroscopic survey reaching   z ≈ 3  can constrain   w 0, w 1  to within  Δ w 0= 0.21, Δ w 1= 0.26  , to  Δ w 0= 0.39, Δ w 1= 0.54  using photometric redshifts with an absolute uncertainty of 0.02, and to  Δ w 0= 0.43, Δ w 1= 0.66  with an uncertainty of 0.04. In the scalar field case, we show that the slope n of the inverse power-law potential for dark energy can be constrained to  Δ n = 0.26  (spectroscopic redshifts) or  Δ n = 0.40  (photometric redshifts), i.e. better than with future ground-based supernovae surveys or cosmic microwave background data.  相似文献   

2.
We use the present observed number density of large X-ray clusters to constrain the amplitude of matter density perturbations induced by cosmic strings on the scale of 8  h −1 Mpc ( σ 8), in both open cosmologies and flat models with a non-zero cosmological constant. We find a slightly lower value of σ 8 than that obtained in the context of primordial Gaussian fluctuations generated during inflation. This lower normalization of σ 8 results from the mild non-Gaussianity on cluster scales, where the one-point probability distribution function is well approximated by a χ 2 distribution and thus has a longer tail than a Gaussian distribution. We also show that σ 8 normalized using cluster abundance is consistent with the COBE normalization.  相似文献   

3.
The current methods available to estimate gravitational shear from astronomical images of galaxies introduce systematic errors which can affect the accuracy of weak lensing cosmological constraints. We study the impact of KSB shape measurement bias on the cosmological interpretation of tomographic two-point weak lensing shear statistics.
We use a set of realistic image simulations produced by the Shear Testing Programme (STEP) collaboration to derive shape measurement bias as a function of redshift. We define biased two-point weak lensing statistics and perform a likelihood analysis for two fiducial surveys. We present a derivation of the covariance matrix for tomography in real space and a fitting formula to calibrate it for non-Gaussianity.
We find the biased aperture mass dispersion is reduced by  ∼20 per cent  at redshift ∼1, and has a shallower scaling with redshift. This effect, if ignored in data analyses, biases σ8 and w 0 estimates by a few per cent. The power of tomography is significantly reduced when marginalizing over a range of realistic shape measurement biases. For a Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)-Wide-like survey,  [Ωm, σ8]  confidence regions are degraded by a factor of 2, whereas for a Kilo-Degree Survey (KIDS)-like survey the factor is 3.5. Our results are strictly valid only for KSB methods, but they demonstrate the need to marginalize over a redshift-dependent shape measurement bias in all future cosmological analyses.  相似文献   

4.
We present the results of a spectroscopic multisite campaign for the β Cephei star 12 (DD) Lacertae. Our study is based on more than thousand high-resolution high S/N spectra gathered with eight different telescopes in a time span of 11 months. In addition, we make use of numerous archival spectroscopic measurements. We confirm 10 independent frequencies recently discovered from photometry, as well as harmonics and combination frequencies. In particular, the slowly pulsating B-stars (SPB)-like g -mode with frequency 0.3428 d−1 reported before is detected in our spectroscopy. We identify the four main modes as  (ℓ1, m 1) = (1, 1), (ℓ2, m 2) = (0, 0), (ℓ3, m 3) = (1, 0)  and  (ℓ4, m 4) = (2, 1)  for   f 1= 5.178 964 d−1, f 2= 5.334 224 d−1, f 3= 5.066 316 d−1  and   f 4= 5.490 133 d−1  , respectively. Our seismic modelling shows that f 2 is likely the radial first overtone and that the core overshooting parameter  αov  is lower than 0.4 local pressure scale heights.  相似文献   

5.
We show how the continuity equation can be used to determine pattern speeds in the Milky Way Galaxy (MWG). This method, first discussed by Tremaine & Weinberg in the context of external galaxies, requires projected positions, ( l , b ), and line-of-sight velocities for a spatially complete sample of relaxed tracers. If the local standard of rest (LSR) has a zero velocity in the radial direction ( u LSR), then the quantity that is measured is  Δ V ≡Ωp R 0- V LSR  , where Ωp is the pattern speed of the non-axisymmetric feature, R 0 is the distance of the Sun from the Galactic centre and V LSR is the tangential motion of the LSR, including the circular velocity. We use simple models to assess the reliability of the method for measuring a single, constant pattern speed of either a bar or spiral in the inner MWG. We then apply the method to the OH/IR stars in the ATCA/VLA OH 1612-MHz survey of Sevenster et al., finding  Δ V =252±41 km s-1,  if   u LSR=0  . Assuming further that   R 0=8 kpc  and   V LSR=220 km s-1,  this gives  Ωp=59±5 km s-1 kpc-1  with a possible systematic error of perhaps 10 km s−1 kpc−1. The non-axisymmetric feature for which we measure this pattern speed must be in the disc of the MWG.  相似文献   

6.
We present a direct detection of the growth of large-scale structure, using weak gravitational lensing and photometric redshift data from the COMBO-17 survey. We use deep R -band imaging of two  0.5 × 0.5 deg2  fields, affording shear estimates for over 52 000 galaxies; we combine these with photometric redshift estimates from our 17-band survey, in order to obtain a 3D shear field. We find theoretical models for evolving matter power spectra and correlation functions, and fit the corresponding shear correlation functions to the data as a function of redshift. We detect the evolution of the power at the 4.7σ level given reasonable priors, and measure the rate of evolution for  0 < z < 1  . We also fit correlation functions to our 3D data as a function of cosmological parameters σ8 and  ΩΛ  . We find joint constraints on  ΩΛ  and σ8, demonstrating an improvement in accuracy by ≃40 per cent over that available from 2D weak lensing for the same area.  相似文献   

7.
We use the Hubble Ultra Deep Field to study the galaxy luminosity–size  ( M – R e )  distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the   M – R e   plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since   z ∼ 0.7  . Specifically, we demonstrate that the mean, rest-frame B -band  〈μ〉 e   for galaxies in a sample spanning 8 mag in luminosity between   M B =−22  and −14 mag increases by ∼1.0 mag arcsec−2 from   z ∼ 0.1  to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.  相似文献   

8.
We study the peculiar velocity field inferred from the Mark III spirals using a new method of analysis. We estimate optimal values of Tully–Fisher scatter and zero-point offset, and we derive the three-dimensional rms peculiar velocity ( σ v ) of the galaxies in the samples analysed. We check our statistical analysis using mock catalogues derived from numerical simulations of cold dark matter (CDM) models considering measurement uncertainties and sampling variations. Our best determination for the observations is σ v =(660±50) km s−1. We use the linear theory relation between σ v , the density parameter Ω, and the galaxy correlation function ξ ( r ) to infer the quantity     , where b is the linear bias parameter of optical galaxies and the uncertainties correspond to bootstrap resampling and an estimated cosmic variance added in quadrature. Our findings are consistent with the results of cluster abundances and redshift-space distortion of the two-point correlation function. These statistical measurements suggest a low value of the density parameter Ω∼0.4 if optical galaxies are not strongly biased tracers of mass.  相似文献   

9.
We constrain the velocity power spectrum shape parameter Γ in linear theory using the nine bulk flow and shear moments estimated from four recent peculiar velocity surveys. For each survey, a likelihood function for Γ was found after marginalizing over the power spectrum amplitude  σ8Ω0.6m  using constraints obtained from comparisons between redshift surveys and peculiar velocity data. In order to maximize the accuracy of our analyses, the velocity noise σ* was estimated directly for each survey. A statistical analysis of the differences between the values of the moments estimated from different surveys showed consistency with theoretical predictions, suggesting that all the surveys investigated reflect the same large-scale flows. The peculiar velocity surveys were combined into a composite survey yielding the constraint  Γ= 0.13+0.09−0.05  . This value is lower than, but consistent with, values obtained using redshift surveys and cosmic microwave background data.  相似文献   

10.
We use non-linear scaling relations (NSRs) to investigate the effects arising from the existence of negative correlations on the evolution of gravitational clustering in an expanding universe. It turns out that such anticorrelated regions have important dynamical effects on all scales. In particular, the mere existence of negative values for the linear two-point correlation function ξ¯ L over some range of scales starting from l = L 0 implies that the non-linear correlation function is bounded from above at all scales x < L 0 . This also results in the relation ξ¯   ∝  x −3 , at these scales, at late times, independent of the original form of the correlation function. Current observations do not rule out the existence of negative ξ¯ for 200  h −1 Mpc≲ ξ¯ ≲1000  h −1 Mpc; the present work may thus have relevance for the real Universe. The only assumption made in the analysis is the existence of NSR; the results are independent of the form of the NSR as well as of the stable clustering hypothesis.  相似文献   

11.
We assess the constraints imposed by the observed extragalactic background light (EBL) on the cosmic history of star formation and the stellar-mass density today. The logarithmic slope of the galaxy number–magnitude relation from the Southern Hubble Deep Field imaging survey is flatter than 0.4 in all seven UBVIJHK optical bandpasses, i.e. the light from resolved galaxies has converged from the UV to the near-IR. We find a lower limit to the surface brightness of the optical extragalactic sky of about 15 nW m−2 sr−1, comparable to the intensity of the far-IR background from COBE data. Assuming a Salpeter initial mass function with a lower cut-off consistent with observations of M subdwarf disc stars, we set a lower limit of Ωg+s h 2>0.0013  I 50 to the visible (processed gas + stars) mass density required to generate an EBL at a level of 50  I 50 nW m−2 sr−1; our 'best-guess' value is Ωg+s h 2≈0.0031  I 50. Motivated by the recent microlensing results of the MACHO collaboration, we consider the possibility that massive dark haloes around spiral galaxies are composed of faint white dwarfs, and show that only a small fraction (≲5 per cent) of the nucleosynthetic baryons can be locked in the remnants of intermediate-mass stars forming at z F≲5, as the bright early phases of such haloes would otherwise overproduce the observed EBL.  相似文献   

12.
Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalize this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint χ 2 function a set of 'hyper-parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the hyper-parameters, is very simple: instead of minimizing     (where     is per data set j ) we propose to minimize     (where N j is the number of data points per data set j ). We illustrate the method by estimating the Hubble constant H 0 from different sets of recent cosmic microwave background (CMB) experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang ). The approach can be generalized for combinations of cosmic probes, and for other priors on the hyper-parameters.  相似文献   

13.
We present a stable procedure for defining and measuring the two point angular autocorrelation function,   w (θ) =[θ/θ0( V )]−Γ  , of faint  (25 < V < 29)  , barely resolved and unresolved sources in the Hubble Space Telescope Great Observatories Origins Deep Survey and Ultra Deep Field data sets. We construct catalogues that include close pairs and faint detections. We show, for the first time, that, on subarcsec scales, the correlation function exceeds unity. This correlation function is well fit by a power law with index  Γ≈ 2.5  and a  θ0= 10−0.1( V −25.8) arcsec  . This is very different from the values of  Γ≈ 0.7  and  θ0( r ) = 10−0.4( r −21.5) arcsec  associated with the gravitational clustering of brighter galaxies. This observed clustering probably reflects the presence of giant star-forming regions within galactic-scale potential wells. Its measurement enables a new approach to measuring the redshift distribution of the faintest sources in the sky.  相似文献   

14.
The subject of this paper is a quantification of the impact of uncertainties in bias and bias evolution on the interpretation of measurements of the integrated Sachs–Wolfe (ISW) effect, in particular on the estimation of cosmological parameters. We carry out a Fisher matrix analysis for quantifying the degeneracies between the parameters of a dark energy cosmology and bias evolution, for the combination of the PLANCK microwave sky survey with the EUCLID main galaxy sample, where bias evolution   b ( a ) = b 0+ (1 − a ) ba   is modelled with two parameters b 0 and   ba   . Using a realistic bias model introduces a characteristic suppression of the ISW spectrum on large angular scales, due to the altered distance-weighting functions. The errors in estimating cosmological parameters if the data with evolving bias is interpreted in the framework of cosmologies with constant bias are quantified in an extended Fisher formalism. We find that the best-fitting values of all parameters are shifted by an amount comparable to the statistical accuracy: the estimation bias in units of the statistical accuracy amounts to 1.19 for Ωm, 0.27 for σ8 and 0.72 for w for bias evolution with   ba = 1  . Leaving   ba   open as a free parameter deteriorates the statistical accuracy, in particular on Ωm and w .  相似文献   

15.
We investigate the large-scale clustering of radio sources in the FIRST 1.4-GHz survey by analysing the distribution function ( counts in cells ). We select a reliable sample from the the FIRST catalogue, paying particular attention to the problem of how to define single radio sources from the multiple components listed. We also consider the incompleteness of the catalogue. We estimate the angular two-point correlation function w (θ), the variance Ψ2 and skewness Ψ3 of the distribution for the various subsamples chosen on different criteria. Both w (θ) and Ψ2 show power-law behaviour with an amplitude corresponding to a spatial correlation length of r 0 ∼ 10  h −1Mpc. We detect significant skewness in the distribution, the first such detection in radio surveys. This skewness is found to be related to the variance through Ψ3 =  S 32)α, with α = 1.9 ± 0.1, consistent with the non-linear gravitational growth of perturbations from primordial Gaussian initial conditions. We show that the amplitude of variance and the skewness are consistent with realistic models of galaxy clustering.  相似文献   

16.
We calculate analytically and numerically the distance–redshift equation in perfect fluid quintessence models and give an accurate fit to the numerical solutions for all the values of the density parameter and the quintessence equation of state. Then we apply our solutions to the estimation of H 0 from multiple image time delays and find that the inclusion of quintessence modifies significantly the likelihood distribution of H 0, generally reducing the best estimate with respect to a pure cosmological constant. Marginalizing over the other parameters (Ω m and the quintessence equation of state) we obtain H 0=71±6 km s−1 Mpc−1 for an empty beam and H 0=64±4 km s−1 Mpc−1 for a filled beam. These errors, however, do not take into account the uncertainty on the modelling of the lens. We also discuss the future prospects for distinguishing quintessence from a cosmological constant with time delays.  相似文献   

17.
correlator of the galaxy density field Q 21 is examined from the point of view of biasing. It is shown that, to leading order, it depends on two biasing parameters b b 2, and on q 21, the underlying cumulant correlator of the mass. As the skewness Q 3 has analogous properties, the slope of the correlation function −γ, Q 3 and Q 21 uniquely determine the bias parameter on a particular scale to be b  = γ/6( Q 21 −  Q 3), when working in the context of gravitational instability with Gaussian initial conditions. Thus on large scales, easily accessible with the future Sloan Digital Sky Survey and the 2 Degree Field Survey, it will be possible to extract b b 2 from simple counts-in-cells measurements. Moreover, the higher order cumulants, Q N , successively determine the higher order biasing parameters. From these it is possible to predict higher order cumulant correlators as well. Comparison of the predictions with the measurements will provide internal consistency checks on the validity of the assumptions in the theory, most notably perturbation theory of the growth of fluctuations by gravity and Gaussian initial conditions. Since the method is insensitive Ω, it can be successfully combined with results from velocity fields, which determine Ω0.6/b, to measure the total density parameter in the Universe.  相似文献   

18.
Using a sample of almost 7000 strong Mg  ii absorbers with   W 0 > 1 Å  and  0.4 < z < 2.2  detected in the SDSS DR4 data set, we investigate the gravitational lensing and dust extinction effects they induce on background quasars. After carefully quantifying several selection biases, we isolate the reddening effects as a function of redshift and absorber rest equivalent width, W 0. We find the amount of dust to increase with cosmic time as  τ( z ) ∝ (1 + z )−1.1±0.4  , following the evolution of cosmic star density or integrated star formation rate. We measure the reddening effects over a factor of 30 in E ( B − V ) and we find that  τ∝ ( W 0)1.9±0.1  , providing us with an important scaling for theoretical modelling of metal absorbers. We also measure the dust-to-metal ratio and find it similar to that of the Milky Way. In contrast to previous studies, we do not detect any gravitational magnification by Mg  ii systems. We measure the upper limit  μ < 1.10  and discuss the origin of the discrepancy. Finally, we estimate the fraction of absorbers missed due to extinction effects and show that it rises from 1 to 50 per cent in the range  1 < W 0 < 6 Å  . We parametrize this effect and provide a correction for recovering the intrinsic  ∂ N /∂ W 0  distribution.  相似文献   

19.
To study the kinematics of O-B5 giant stars (luminosity class III), 290 non-Gould belt stars with proper motions taken from the Hipparcos catalogue are used, of which 107 have radial velocities taken from other sources. Semidefinite programming solves for the kinematical parameters and the coefficients of the velocity ellipsoid. The condition that both solutions must yield the same solar velocity is enforced. The results obtained are reasonable: solar velocity of 13.83 ± 0.17 km s−1; Oort's constants, in units of km s−1 kpc−1, A = 16.08 ± 0.72 and   B =−10.74 ± 0.65,  implying a rotational velocity of 228.0 ± 21.4 km s−1 if we take the distance to the Galactic Centre as 8.5 ± 1.1 kpc; velocity dispersions, in units of km s−1, of  σ x = 32.44 ± 5.04, σ y = 26.16 ± 2.75, σ z = 18.71 ± 2.39  with a vertex deviation of      相似文献   

20.
We present results of a Chandra survey of the ultraluminous X-ray sources (ULX) in 13 normal galaxies, in which we combine source detection with X-ray flux measurement. 22 ULX were detected, i.e. with   L x > 1 × 1039 erg s−1 ( L 10)  and 39 other sources were detected with   L x > 5 × 1038 erg s−1 ( L 5)  . We also use radial intensity profiles to remove extended sources from the sample. The majority of sources are not extended, which for a typical distance constrains the emission region size to less than 50 pc. X-ray colour–colour diagrams and spectral fitting results were examined for indicators of the ULX nature. In the case of the brighter sources, spectral fitting generally requires two-component models. In only a few cases do colour–colour diagrams or spectral fitting provide evidence of a black hole nature. We find no evidence of a correlation with stellar mass, however, there is a strong correlation with star formation as indicated by the 60-μm flux as found in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号