首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global climate changings at the end of Pleistocene led to extinction of the typical representatives of Mammoth fauna–mammoth, woolly rhinoceros, wild horse, bison, muskox, cave lion, etc.–on the huge territories of Northern Eurasia. Undoubtedly the Mammoth fauna underwent pressure from the Upper Paleolithic Man, whose hunting activity also could play the role in decreasing the number of mammoths and other representatives of megafauna (large mammals). Archaeological data testify that the typical representatives of Mammoth fauna were the Man's hunting objects only till the end of the Pleistocene. Their bone remains are not usually found on the settlements of Mesolithic Man. Formerly it was supposed that the megafauna of ‘Mammoth complex’ was extinct by the beginning of Holocene. Nevertheless the latest data testify that the global extinction of the Mammoth fauna was sufficiently delayed in the north of Eastern Siberia. In the 1990s some radiocarbon data testified that the mammoths on the Wrangel Island existed for a long time during the Holocene from 8000 till 3700 y. BP. The present radiocarbon data show that wild horses inhabited the north of Eastern Siberia (the lower stream of the Enissey river, the Novosibirskie Islands, the East Siberian sea-shore) 3000–2000 y. BP. Musk-oxen lived on the Taimyr Peninsula and the Lena River delta about 3000 y. BP. Some bison remains from Eastern Siberia belong to the Holocene. The following circumstances could promote the process of preservation of the Mammoth fauna representatives. The cool and dry climate of this region promotes the maintenance of steppe associations – habitats of those mammals. The Late Paleolithic and Mesolithic settlements are not found in the Arctic zone of Eastern Siberia from the Taimyr Peninsula to a lower stream of the Yana River; they are very rare in the basins of the Indigirka and Kolyma Rivers. So, the small number of the Stone Age hunting tribes on the North of Eastern Siberia was another factor in the long-term preservation of some Mammoth fauna representatives.  相似文献   

2.
We present and discuss a full list of radiocarbon dates for woolly mammoth and other species of the Mammoth fauna available from Wrangel Island, northeast Siberia, Russia. Most of the radiocarbon dates are published here for the first time. Of the124 radiocarbon dates on mammoth bone, 106 fall between 3700 and 9000 yr ago. We believe these dates bracket the period of mammoth isolation on Wrangel Island and their ultimate extinction, which we attribute to natural causes. The absence of dates between 9–12 ka probably indicates a period when mammoths were absent from Wrangel Island. Long bone dimensions of Holocene mammoths from Wrangel Island indicate that these animals were comparable in size to those on the mainland; although they were not large animals, neither can they be classified as dwarfs. Occurrence of mammoth Holocene refugia on the mainland is suggested. Based on other species of the Mammoth fauna that have also been radiocarbon on Wrangel Island, including horse, bison, musk ox and woolly rhinoceros, it appears that the mammoth was the only species of that fauna that inhabited Wrangel Island in the mid-Holocene.  相似文献   

3.
4.
A set of radiocarbon dates on woolly mammoth were obtained from several regions of Arctic Siberia: the New Siberian Islands (n = 68), north of the Yana-Indigirka Lowland (n = 43), and the Taimyr Peninsula (n = 18). Based on these and earlier published dates (n = 201) from the East Arctic, a comparative analysis of the time-related density distribution of 14C dates was conducted. It was shown that the frequencies of 14C dates under certain conditions reflect temporal fluctuations in mammoth numbers. At the end of the Pleistocene the number of mammoths in the East Arctic changed in a cyclic manner in keeping with a general “Milankovitch-like” trend. The fluctuations in numbers at the end of the Pleistocene occurred synchronously with paleoenvironmental changes controlled by global climatic change. There were three minima of relative mammoth numbers during the last 50 000 years: 22 000, 14 500–19 000, and 9500 radiocarbon years ago, or around 26 000, 16–20 000, and 10 500 calendar years respectively. The last mammoths lived on the New Siberian Islands, which were connected to the continent at that time, 9470 ± 40 radiocarbon years ago (10 700 ± 70 calendar years BP). This new youngest date approximates the extinction time of mammoths in the last continental refugium of the Holarctic. The adverse combination of environmental parameters was apparently a major factor in the critical reduction in mammoth numbers. The dispersal of humans into the Arctic areas of Siberia no later than 28 000 radiocarbon years ago did not overtly influence animal numbers. Humans were not responsible for the destruction of a sustainable mammoth population. The expanding human population could have become fatal to mammoths during strong the minima of their numbers, one of which occurred at the very beginning of the Holocene.  相似文献   

5.
Arguments over the extinction of Pleistocene megafauna have become particularly polarised in recent years. Causes for the extinctions are widely debated with climate change, human hunting and/or habitat modification, or a combination of those factors, being the dominant hypotheses. However, a lack of a spatially constrained chronology for many megafauna renders most hypotheses difficult to test. Here, we present several new U/Th dates for a series of previously undated, megafauna-bearing localities from southeastern Queensland, Australia. The sites were previously used to argue for or against various megafauna extinction hypotheses, and are the type localities for two now-extinct Pleistocene marsupials (including the giant koala, Phascolarctos stirtoni). The new dating allows the deposits to be placed in a spatially- and temporally constrained context relevant to the understanding of Australian megafaunal extinctions. The results indicate that The Joint (Texas Caves) megafaunal assemblage is middle Pleistocene or older (>292 ky); the Cement Mills (Gore) megafaunal assemblage is late Pleistocene or older (>53 ky); and the Russenden Cave Bone Chamber (Texas Caves) megafaunal assemblage is late Pleistocene (~55 ky). Importantly, the new results broadly show that the sites date prior to the hypothesised megafaunal extinction ‘window’ (i.e., ~30–50 ky), and therefore, cannot be used to argue exclusively for or against human/climate change extinction models, without first exploring their palaeoecological significance on wider temporal and spatial scales.  相似文献   

6.
Woolly mammoths were large, herbivorous, cold-adapted mammals of the Late Pleistocene. The diet and habitat requirements of the species set certain constraints on the palaeoenvironments it could occupy. The relationship between the mammoth’s shifting range and changing environments can be explored using independent data on ice sheet configuration, temperature, and vegetation, provided the locality and age of the fossil remains can be validated. Here we present a comprehensive record of occurrence of the woolly mammoth in the circum-Baltic region of northern Europe during the last glaciation, based on a compilation of radiocarbon-dated remains. The record shows that the mammoth was widespread in northern and north-eastern Europe during Marine Isotope Stage 3 (MIS 3), at 50,000–30,000 calibrated years ago (50–30 ka). The presence of the species up to 65°N latitude supports the restriction of the Scandinavian Ice Sheet (SIS) during MIS 3. The widest distribution range round 30 ka was followed by a decline that led to the disappearance of mammoths from the area during the maximum extent of the SIS, from 22 to 18 ka. The woolly mammoth re-colonized the Baltic region and southern Scandinavia after the onset of the late-glacial deglaciation at 17 ka. The late-glacial record suggests a markedly fluctuating population changing its range in tune with the rapid environmental changes. The last appearance of mammoth in our study region was in Estonia during the Younger Dryas (Greenland Stadial 1; GS1) at about 12 ka. The two major periods of occurrence during MIS 3 and the late-glacial stadial suggest that mammoth had a wide tolerance of open to semi-open tundra and steppe-tundra habitats with intermediately cold climate, whereas the 22–18 ka disappearance suggests a major southward and/or eastward retreat in response to extremely cold, glacial conditions near the SIS margin. The final regional extinction correlates with the re-forestation during the rapid warming at the Younger Dryas–Holocene boundary.  相似文献   

7.
《Earth》2008,89(3-4):167-187
Palaeoenvironmental evidence indicative of former climatic conditions in the Eastern and adjoining Western Cape during the last ~ 45 000 yr is presented and summarised. Interstadial conditions began before 43 000 BP but were succeeded by stadial conditions at ~ 24 000 BP. These climatic phases are designated the Birnam Interstadial and the Bottelnek Stadial after the type sites at which they were identified in the Eastern Cape. The Bottelnek Stadial apparently equates with the Last Glacial Maximum. Late Glacial warming was apparent by 18/17 000 BP. Sea level rose markedly by ~ 14 000 BP. Climatic oscillations marked the end of the Late Glacial. The Early Holocene was drier than the Late Holocene and, at least in the Drakensberg, there was marked aridity in the mid-Holocene. Human responses to these climatic events are briefly described.  相似文献   

8.
This study presents the results of the palynological and diatom analyses of the sediment core recovered in Hoton-Nur Lake (48°37′18″N, 88°20′45″E, 2083 m) in 2004. Quantitative reconstruction of the Holocene vegetation and climate dynamics in the semiarid Mongolian Altai suggests that boreal woodland replaced the primarily open landscape of northwestern Mongolia at about 10 kyr BP (1 kyr = 1000 cal yr) in response to a noticeable increase in precipitation from 200–250 mm/yr to 450–550 mm/yr. A decline of the forest vegetation and a return to a predominance of open vegetation types occurred after 5 kyr BP when precipitation sums decreased to 250–300 mm/yr. Prior to 11.5 kyr BP diatom concentrations are relatively low and the lake is dominated by planktonic Cyclotella and small Fragilariaceae, suggesting the existence of a relatively deep and oligotrophic/mesotrophic lake. The great abundance of Staurosirella pinnata from the beginning of the record until 10.7 kyr BP might imply intensified erosion processes in the catchment and this is fully consistent with the presence of scarce and dry vegetation and the generally arid climate during this period. From about 10.7 kyr BP, more planktonic diatom taxa appeared and increased in abundance, indicating that the lake became more productive as diatom concentration increased. This change correlates well with the development of boreal woodland in the catchment. Decrease in precipitation and changes in the vegetation towards steppe are reflected by the rapid increase in Aulacoseira distans from about 5 kyr BP. The Holocene pollen and diatom records do not indicate soil and vegetation cover disturbances by the anthropogenic activities, implying that the main transformations of the regional vegetation occurred as a result of the natural climate change. Our reconstruction is in agreement with the paleomonsoon records from China, demonstrating an abrupt strengthening of the summer monsoon at 12 kyr BP and an associated increase in precipitation and in lake levels between 11 and 8 kyr BP, followed by the stepwise attenuation of the monsoon circulation and climate aridization towards the modern level. The records from the neighboring areas of Kazakhstan and Russia, situated west and north of Hoton-Nur, demonstrate spatially and temporally different Holocene vegetation and climate histories, indicating that the Altai Mountains as a climate boundary are of pivotal importance for the Holocene environmental and, possibly, habitation history of Central Asia.  相似文献   

9.
10.
At the close of the Pleistocene, fire regimes in North America changed significantly in response to climate change, megafaunal extinctions, anthropogenic burning and, possibly, even an extraterrestrial impact. On California's Channel Islands, researchers have long debated the nature of late Pleistocene “fire areas,” discrete red zones in sedimentary deposits, interpreted by some as prehistoric mammoth-roasting pits created by humans. Further research found no evidence that these red zones were cultural in origin, and two hypotheses were advanced to explain their origin: natural fires and groundwater processes. Radiocarbon dating, X-ray diffraction analysis, and identification of charcoal from six red zones on Santa Rosa Island suggest that the studied features date between ~ 27,500 and 11,400 cal yr BP and resulted from burning or heating, not from groundwater processes. Our results show that fire was a component of late Pleistocene Channel Island ecology prior to and after human colonization of the islands, with no clear evidence for increased fire frequency coincident with Paleoindian settlement, extinction of pygmy mammoths, or a proposed Younger Dryas impact event.  相似文献   

11.
Easter Island (SE Pacific, 27°S) provides a unique opportunity to reconstruct past climate changes in the South Pacific region based on terrestrial archives. Although the general climate evolution of the south Pacific since the Last Glacial Maximum (LGM) is coherent with terrestrial records in southern South America and Polynesia, the details of the dynamics of the shifting Westerlies, the South Pacific Convergence Zone and the South Pacific Anticyclone during the glacial–interglacial transition and the Holocene, and the large scale controls on precipitation in tropical and extratropical regions remain elusive. Here we present a high-resolution reconstruction of lake dynamics, watershed processes and paleohydrology for the last 34 000 cal yrs BP based on a sedimentological and geochemical multiproxy study of 8 cores from the Raraku Lake sediments constrained by 22 AMS radiocarbon dates. This multicore strategy has reconstructed the sedimentary architecture of the lake infilling and provided a stratigraphic framework to integrate and correlate previous core and vegetation studies conducted in the lake. High lake levels and clastic input dominated sedimentation in Raraku Lake between 34 and 28 cal kyr BP. Sedimentological and geochemical evidences support previously reported pollen data showing a relatively open forest and a cold and relatively humid climate during the Glacial period. Between 28 and 17.3 cal kyr BP, including the LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The coherent climate patterns in subtropical and mid latitudes of Chile and Eastern Island for the LGM (more humid conditions) suggest stronger influence of the Antarctic circumpolar current and an enhancement of the Westerlies. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major flood events and erosion of littoral sediments. Deglaciation (Termination 1) between 17.3 and 12.5 cal kyr BP was characterized by an increase in lake productivity, a decrease in the terrigenous input and a rapid lake level recovery, inaugurating a period of intermediate lake levels, dominance of organic deposition and algal lamination. The timing and duration of deglaciation events in Easter Island broadly agree with other mid- and low-latitude circum South Pacific terrestrial records. The transition to the Holocene was characterized by lower lake levels. The lake level dropped during the early Holocene (ca 9.5 cal kyr BP) and swamp and shallow lake conditions dominated till mid Holocene, partially favored by the infilling of the lacustrine basin. During the mid- to late-Holocene drought phases led to periods of persistent low water table, subaerial exposure and erosion, generating a sedimentary hiatus in the Raraku sequence, from 4.2 to 0.8 cal kyr BP. The presence of this dry mid Holocene phase, also identified in low Andean latitudes and in Patagonian mid latitudes, suggests that the shift of storm tracks caused by changes in the austral summer insolation or forced by “El Niño-like” dominant conditions have occurred at a regional scale. The palm deforestation of the Easter Island, attributed to the human impact could have started earlier, during the 4.2–0.8 cal kyr BP sedimentary gap. Our paleoclimatic data provides insights about the climate scenarios that could favor the arrival of the Polynesian people to the island. If it occurred at ca AD 800 it coincided with the warmer conditions of the Medieval Climate Anomaly, whereas if it took place at ca AD 1300 it was favored by enhanced westerlies at the onset of the Little Ice Age. Changes in land uses (farming, intensive cattle) during the last century had a large impact in the hydrology and limnology (eutrophication) of the lake.  相似文献   

12.
The causes of large animal extinctions at the end of the Pleistocene remain a hotly debated topic focused primarily on the effects of human over hunting and climate change. Here we examine multiple, large radiocarbon data sets for humans and extinct proboscideans and explore how variation in their temporal and geographic distributions were related prior to proboscidean extinction. These data include 4532 archaeological determinations from Europe and Siberia and 1177 mammoth and mastodont determinations from Europe, Siberia, and North America. All span the period from 45,000 to 12,000 calendar years BP. We show that while the geographic ranges of dated human occupations and proboscidean remains overlap across the terminal Pleistocene of the Old World, the two groups remain largely segregated and increases in the frequency of human occupations do not coincide with declines in proboscidean remains. Prior to the Last Glacial Maximum (LGM; ca 21,000 years BP), archaeological 14C determinations increase slightly in frequency worldwide while the frequency of dated proboscidean remains varies depending on taxon and location. After the LGM, both sympatric and allopatric groups of humans and proboscideans increase sharply as climatic conditions ameliorate. Post-LGM radiocarbon frequencies among proboscideans peak at different times, also depending upon taxon and location. Woolly mammoths in Beringia reach a maximum and then decline beginning between 16,000 and 15,500 years BP, woolly mammoths in Europe and Siberia ca 14,500 and 13,500 BP, and Columbian mammoth and American mastodont only after 13,000 BP. Declines among woolly mammoths appear to coincide with the restructuring of biotic communities following the Pleistocene–Holocene transition.  相似文献   

13.
Excavations at Bonneville Estates Rockshelter, Nevada recovered rodent remains from stratified deposits spanning the past ca. 12,500 14C yr BP (14,800 cal yr BP). Specimens from horizons dating to the late Pleistocene and early Holocene include species adapted to montane and moist and cool habitats, including yellow-bellied marmot (Marmota flaviventris) and bushy-tailed woodrat (Neotoma cinerea). Shortly after 9000 14C BP (10,200 cal yr BP) these mammals became locally extinct, or nearly so, taxonomic diversity declined, and the region became dominated by desert woodrats (Neotoma lepida) and other species well-adapted to xeric, low-elevation settings. The timing and nature of changes in the Bonneville Estates rodent fauna are similar to records reported from nearby Homestead and Camels Back caves and provide corroborative data on terminal Pleistocene–early Holocene environments and mammalian responses to middle Holocene desertification. Moreover, the presence of northern pocket gopher (Thomomys talpoides) at Bonneville Estates adds to a sparse regional record for that species and, similar to Homestead Cave, it appears that the ca. 9500 14C yr BP (10,800 cal yr BP) replacement of the northern pocket gopher by Botta's pocket gopher in the Great Salt Lake Desert vicinity was also in response to climate change.  相似文献   

14.
The latest Pleistocene—Holocene megafauna extinction is a global event, particularly dramatic in the Americas. In a previous paper the authors hypothesised a scenario for this extinction event in South America, where mastodonts first suffered from the changing climate environment, followed by the mylodonts and equids. These different latest Pleistocene—Holocene megafauna extinction “waves” in Ecuadorian Andes have been dated using 14C methods on material from selected sites in north and central Ecuadorian Interandean Depression. An outline of the physiographic evolution of the Interandean Depression in Ecuador is offered and the stratigraphic setting of the fossiliferous sites is discussed. The present results confirm the author's hypothesis on the megafauna extinction pattern, previously published in terms of relative age. The importance of climatic changes during Last Glacial Maximum at low latitudes is discussed.  相似文献   

15.
The sensitivity of ice sheets to climate change influences the return of meltwater to the oceans. Here we track the Laurentide Ice Sheet along a ~400 km long transect spanning about 6000 yr of retreat during the major climate oscillations of the lateglacial. Thunder Bay, Ontario is near a major topographic drainage divide, thus terrestrial ablation processes are the primary forcers of ice margin recession in the study area. During deglaciation three major moraine sets were produced, and have been assigned minimum ages of 13.9 ± 0.2, 12.3 ± 0.2–12.1 ± 0.1, and 11.2 ± 0.2 cal ka BP from south to north. These define a slow retreat (~10–50 m/a) prior to major climate oscillations which was then followed by a factor of ~2 increase during the Bölling–Alleröd, and an additional increase during the early Holocene. When compared to retreat rates in other terrestrial settings of the ice sheet, nearly identical patterns emerge. However this becomes problematic because a key control on retreat rates is the surface slope of the ice sheet and this should vary considerably over areas of so-called hard and soft beds. Further these ice margin reconstructions would not allow meltwater sourced in the Hudson Basin to drain into the Atlantic basin until after Younger Dryas time.  相似文献   

16.
《Quaternary Science Reviews》2007,26(19-21):2438-2462
Curves for Holocene lake levels and salinity changes are presented for An Loch Mór, a small oligohaline lake on the Aran Islands off the west coast of Ireland, based on palaeoecological investigations of a 12 m long, lake-sediment core. New insights are also provided into Holocene sea-level change in the Galway Bay region. Particular emphasis has been placed on the ostracod fauna, both past and present. Salinity and lake-level changes were reconstructed from the fossil ostracod assemblages, based on the known tolerances of individual species and on the assemblages as a whole. Additional evidence was provided by other proxies including strontium–isotope ratios derived from ostracod shells and other carbonates, plant macrofossil and pollen analyses, and sedimentological changes. The early Holocene (pre-Boreal, i.e. 11.5–10 ka) was characterised by low lake levels and slightly elevated salinity values, probably the result of high evapotranspiration and low precipitation rather than elevated sea levels. Early Holocene plant and animal migration to the island does not seem to have been impeded but relative sea levels were not necessarily so low (below −40 m a.s.l.) that landbridges were present to the mainland. Between ca 10 and 8.5 ka, relatively high lake levels prevailed. At 8.3 and 7.5 ka, minor fluctuations (lowering) of the lake level occurred that are assumed to relate to early Holocene abrupt events. Beginning at 7.05 ka, lake levels declined sharply. A general trend towards rising lake levels started at ca 6.4 ka and accelerated at ca 5.6 ka as runoff increased as a result of Neolithic clearances. At ca 4.8 ka, lake levels began to rise once again, probably in response to changes in rainfall and/or evapotranspiration and runoff. Lower lake levels during the first half of the 1st millennium AD were probably a response to decreased runoff as a result of a drier climate coupled with regeneration of woody vegetation. The sharpest rise in both lake levels and salinity began during the ninth century AD, which is attributed to a rapid rise in relative sea level.  相似文献   

17.
Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450–1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.  相似文献   

18.
A sediment core from Lake Arapisto, Finland, was examined for fossil diatom assemblages to reconstruct changes in Holocene nutrient availability. Our aim was to investigate the long-term relationship between lake trophic status and climate by comparing the diatom-based phosphorus reconstruction with paleoclimatic proxies. Our results showed that the cold early Holocene was characterized by elevated nutrient conditions concurrent with newly exposed fertile ground. As the climate rapidly warmed and ice sheet further retreated, the catchment vegetation developed, which resulted in decreased nutrient flux into the lake. The Holocene Thermal Maximum (HTM), between ~ 8000 and 4000 cal yr BP, was characterized by oligotrophic conditions, which may have been caused by low effective precipitation and stable watershed vegetation. After the HTM, the lake became more productive. There was no particular increase in the trophic state that could be connected to more recent human influence. Although lake productivity has been shown to be affected by temperature, our record indicated that the nutrient dynamics were driven by complex interactions between changes in temperature, precipitation, catchment, and in-lake processes. Understanding of long-term nutrient dynamics and the associated processes can help in resolving relationships between lake productivity and climate during past and present climate changes.  相似文献   

19.
《Quaternary Research》2014,81(3):500-507
We analyzed climate proxies from loessic-soil sections of the southern Chinese Loess Plateau. The early Holocene paleosol, S0, is 3.2 m thick and contains six sub-soil units. Co-eval soils from the central Loess Plateau are thinner (~ 1 m). Consequently higher-resolution stratigraphic analyses can be made on our new sections and provide more insight into Holocene temporal variation of the East Asian monsoon. Both summer and winter monsoon evolution signals are recorded in the same sections, enabling the study of phase relationships between the signals. Our analyses consist of (i) measurements of magnetic properties sensitive to the production of fine-grained magnetic minerals which reflect precipitation intensity and summer monsoon strength; and (ii) grain-size analyses which reflect winter monsoon strength. Our results indicate that the Holocene precipitation maximum occurred in the mid-Holocene, ~ 7.8–3.5 cal ka BP, with an arid interval at 6.3–5.3 cal ka BP. The winter monsoon intensity declined to a minimum during 5.0–3.4 cal ka BP. These results suggest that the East Asian summer and winter monsoons were out of phase during the Holocene, possibly due to their different sensitivities to ice and snow coverage at high latitudes and to sea-surface temperature at low latitudes.  相似文献   

20.
Germania Havn Sø is located at the outermost coast of northeastern Greenland. According to radiocarbon dating, the lake basin was deglaciated in the early Holocene, around 11,000 cal yr BP. At that time the lake was a marine bay, but the lake was isolated soon after deglaciation at ~ 10,600 cal yr BP. The marine fauna was species-poor, indicating harsh conditions with a high sedimentation rate and lowered salinity due to glacial meltwater supply. The pioneer vegetation around the lake was dominated by mosses and herbs. Deposition of relatively coarse sediments during the early Holocene indicates erosion of the newly deglaciated terrain. Remains of the first woody plant (Salix herbacea) appear at 7600 cal yr BP and remains of other woody plants (Salix arctica, Dryas octopetala, Cassiope tetragona and Empetrum nigrum) appear around one millennium later. Declining concentrations of D. octopetala and the caddis fly Apatania zonella in the late Holocene probably imply falling summer temperatures. Only moderate changes in the granulometric and geochemical record during the Holocene indicate relatively stable environmental settings in the lake, which can probably be explained by its location at the outer coast and the buffering effect of the neighboring ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号