首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Geochemistry》2006,21(12):2188-2200
Phosphate-induced metal stabilization involving the reactive medium Apatite II™ [Ca10−xNax(PO4)6−x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d’Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L−1), has reduced Zn to near background in this region (about 100 μg L−1), and has reduced SO4 by between 100 and 200 mg L−1 and NO3 to below detection (50 μg L−1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).  相似文献   

2.
《Applied Geochemistry》2006,21(8):1288-1300
Phosphate-induced metal stabilization involving the reactive medium Apatite II™ [Ca10−xNax(PO4)6−x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d’Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L−1), has reduced Zn to near background in this region (about 100 μg L−1), and has reduced SO4 by between 100 and 200 mg L−1 and NO3 to below detection (50 μg L−1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).  相似文献   

3.
The Quaternary Tasse basalts are exposed near the north shore of Quesnel Lake in southeastern British Columbia. They host a variety of mantle xenoliths consisting predominantly of spinel lherzolite with minor dunite and pyroxenite. Mineralogically, the xenoliths are composed of olivine, orthopyroxene, clinopyroxene and spinel characterized by forsterite (Fo87–93), enstatite (En90–92), diopside (En45–50–Wo40–45–Fs5), and Cr-spinel (6  11 wt.% Cr), respectively. All of the mantle xenoliths are coarse-grained and show granoblastic textures. Clinopyroxene and spinel display textural evidence for chemical reactions with percolating melts.The mantle xenoliths are characterized by restricted Mg-numbers (89  92) and low abundances of incompatible elements (Ba = 2  11 ppm; Sr = 3  31 ppm) and Yttrium (1  3 ppm). On the basis of REE patterns, the xenoliths are divided into three groups reflecting the various degrees of mantle metasomatism: (1) Group 1 consists of concave-up LREE patterns (La/Smcn = 0.48  1.16; Gd/Ybcn = 0.71  0.92); (2) Group 2 possesses flat to moderately LREE-enriched patterns (La/Smcn = 1.14  1.92; Gd/Ybcn = 0.87  1.09); and (3) Group 3 is characterized by strongly LREE-enriched patterns (La/Smcn = 1.53  2.45; Gd/Ybcn = 1.00  1.32). On MORB-normalized trace element diagrams, the majority of the xenolith samples share the enrichment of LILE (Rb, Ba, K), U, Th, Pb, Sr and the depletion of HFSE (Nb, Ta, Ti, Y) relative to REE. These geochemical characteristics are consistent with a compositionally heterogeneous subcontinental lithospheric mantle source that originated as subarc mantle wedge peridotite at a convergent plate margin.The Tasse basalts have alkaline compositions characterized by low SiO2 (44  46 wt.%) and high alkali (Na2O + K2O = 5.1  6.6 wt.%) contents. They are strongly enriched in incompatible elements (TiO2 = 2.4  3.1 wt.%; Ba = 580  797 ppm; Sr = 872  993 ppm) and, display OIB-like trace element patterns (La/Smn = 3.15  3.85; Gd/Ybn = 3.42  4.61). They have positive εNd (+ 3.8 to + 5.5) values, with 338  426 Ma depleted mantle model ages, and display uniform OIB-like Sr (87Sr/86Sr = 0.703346  0.703591) and Pb (206Pb/204Pb = 19.40  19.58; 207Pb/204Pb = 15.57  15.60; 208Pb/204Pb = 38.99  39.14) isotopic compositions. The basalts erupted discontinuously along a > 1000 km long SE-NW-trending linear belt with minimal compositional variation indicative of a homogenous mantle source. The Sr  Nd  Pb isotope and trace element systematics of the alkaline basalts suggests that they originated from partial melting of an upwelling asthenospheric mantle source. Melting of the asthenospheric mantle might have stemmed from extension of the overlying lithosphere in response to the early stages of back-arc basin opening in the Omineca and Intermontane belts. Ridge subduction beneath the Canadian Cordillera might have played an important role in the weakening of the lithospheric mantle prior to its extension. Alternatively, melting of the upwelling asthenosphere in response to the delamination of the lithospheric mantle beneath the Rocky Mountain Trench might have generated the alkaline lavas.  相似文献   

4.
A significant belt of carbonate-hosted Pb–Zn mineralization occurs in the Himalayan–Zagros collisional orogenic system. Three differing types of these Pb–Zn deposits within this belt have been identified based on variations in gangue mineral assemblages, leading to the classification of carbonate-, quartz- and fluorite-rich classes of Pb–Zn deposits. The third Pb–Zn mineralization (fluorite-rich) type is common in this orogenic system, but little research has been undertaken on it. Here, we focus on the Mohailaheng deposit, a large-sized fluorite-rich carbonate-hosted Pb–Zn deposit (> 100 Mt Pb + Zn ores with average grade of 2.18%–4.23%); the deposit is located in the Sanjiang Cenozoic thrust-fold belt, an important part of the Himalayan–Zagros collisional orogenic system and an area that formed during the early Tertiary India–Eurasia collision. The main orebodies in this deposit are stratabound and are hosted by Carboniferous limestones that are located along secondary faults associated with a regional thrust fault. The main assemblage is a sphalerite + galena + pyrite sulfide assemblage associated with a calcite + fluorite + barite + quartz + dolomite gangue assemblage. Detailed field and experimental work indicates that the deposit formed during three distinct phases of hydrothermal activity. Studies on fluid inclusion and stable isotopes of gangue minerals indicate that two dominant distinct fluids involving the deposit formation. They include (1) a low-temperature (130–140 °C), high-salinity (23–24 wt.% NaCl equivalent) basinal brine containing Na+–K+–Mg2 +–Ca2 +–Cl ions and abnormally high SO42  concentrations, which probably derived from Tertiary basins in the regional district, and (2) a low- to moderate-temperature (170–180 °C) and moderate- to high-salinity (19–20 wt.% NaCl equivalent) metamorphic fluid containing Na+–K+–Mg2 +–Cl–SO42  ions and abnormally high F and organic matter concentrations, that probably formed during regional metamorphism. Some evaporated seawaters and meteoric fluids were also identified in mixtures with these two dominant fluids. The Pb–Zn mineralization at Mohailaheng formed during three distinct stages, consistent with the regional tectonic history. The first stage involved the formation of favorable lithological and structural traps at Mohailaheng during regional thrusting, leading to the migration of compressed metamorphic waters at depth along a detachment zone, sequestering metals from sediments within the region. Basinal brines at the surface also began to infiltrate down along the secondary faults, dissolving gypsum from the underlying sediments. The second stage was associated with the cessation of thrusting and the onset of strike-slip movements along these thrust faults. Metamorphic fluids containing high concentrations of halogen ions, organic gases, and metals ascended into the structural traps at Mohailaheng along the reactivated thrust faults, causing fluorite, calcite, and some sulfide precipitation. Then, basinal brines rich in SO42  quickly descended into the structural traps along the reactivated faults, causing reduction of SO42  by organic matter, and producing significant amounts of H2S. The reduced sulfur then reacted with the metals in the fluids, causing significant sulfide precipitation. The third stage was associated with metal-depleted fluids, which only resulted in the precipitation of calcite from the diluted basinal brines. Combining these findings with research results on other fluorite-rich carbonate-hosted Pb–Zn deposits in the Himalayan–Zagros orogenic system suggests that this type of carbonate-hosted Pb–Zn deposits can also be classified as Mississippi Valley-type (MVT) deposits, and that the origin of the fluorite in these deposits may be related to multiple hydrothermal fluids involved in the mineralization evolution.  相似文献   

5.
《Applied Geochemistry》2006,21(3):515-527
Dissolved and particulate Hg fluxes in the Lot–Garonne–Gironde fluvial-estuarine system were obtained from observation of daily discharge and suspended particulate matter (SPM) concentrations. In addition to the measurements of the total dissolved (<0.45 μm) and particulate Hg (>0.45 μm), called HgTD and HgTP respectively, the dissolved inorganic Hg species (HgRD) were determined monthly. Geochemical background values for HgTP in sediments and SPM were similar to crustal values and to typical concentrations in SPM of non-contaminated river systems, respectively. The Riou Mort watershed already known as the origin of important historical polymetallic (e.g., Cd, Zn) pollution was identified as an important Hg point source. In the downstream Lot River, Hg concentrations were clearly higher than those in other moderately contaminated systems. The mean relative contribution of HgRD to HgTD in the Lot River and in the Garonne River was close to 25% and 50%, respectively, and showed no correlation with water discharge or SPM concentration. Depending on the origin and nature of SPM, HgTP concentrations were correlated or not with particulate organic C (POC). Maximum HgTP concentrations were measured in samples containing low POC concentrations and were attributed to sediment resuspension. In contrast, high POC concentrations (6–17%) during algal blooms were associated with low/moderate HgTP concentrations (<0.5 mg kg−1) at different sites, suggesting that Hg concentrations in fluvial phytoplankton may be limited by bioavailability of dissolved Hg and/or physiologically controlled Hg accumulation. Mercury was mostly (up to 98%) transported in the particulate phase with estimated annual Hg fluxes at the outlet of the Lot River system ranging from 35 to 530 kg a−1 for the past decade. The minimum anthropogenic component (58–84% of total Hg fluxes) could not be explained by present Riou Mort point source contributions, suggesting important Hg release from contaminated sediment as a major source and from downstream point sources (e.g., coal-fired power plants and/or metal processing industries). HgTP concentrations and fluxes were strongly related to hydrologic variations and were clearly increased by riverbed dredging during lock construction. Therefore, the estimated Hg stocks in the Lot River sediment (5–13 tons) represent an important potential Hg source for the downstream fluvial-estuarine system.  相似文献   

6.
《Applied Geochemistry》2006,21(11):1837-1854
Total dissolved and total particulate Hg mass balances were estimated during one hydrological period (July 2001–June 2002) in the Thur River basin, which is heavily polluted by chlor-alkali industrial activity. The seasonal variations of the Hg dynamics in the aquatic environment were assessed using total Hg concentrations in bottom sediment and suspended matter, and total and reactive dissolved Hg concentrations in the water. The impact of the chlor-alkali plant (CAP) remains the largest concern for Hg contamination of this river system. Upstream from the CAP, the Hg partitioning between dissolved and particulate phases was principally controlled by the dissolved fraction due to snow melting during spring high flow, while during low flow, Hg was primarily adsorbed onto particulates. Downstream from the CAP, the Hg partitioning is controlled by the concentration of dissolved organic and inorganic ligands and by the total suspended sediment (TSS) concentrations. Nevertheless, the particulate fluxes were five times higher than the dissolved ones. Most of the total annual flux of Hg supplied by the CAP to the river is transported to the outlet of the catchment (total Hg flux: 70 μg m−2 a−1). Downstream from the CAP, the bottom sediment, mainly composed of coarse sediment (>63 μm) and depleted in organic matter, has a weak capacity to trap Hg in the river channel and the stock of Hg is low (4 mg m−2) showing that the residence time of Hg in this river is short.  相似文献   

7.
The polymetallic Mykonos vein system in the Cyclades, Greece, consists of 15 tension-gashes filled with barite, quartz, pyrite, sphalerite, chalcopyrite and galena in ca. 13.5 Ma, I-type, Mykonos monzogranite. Zones of silica and chlorite–muscovite alteration are associated with the veins and overprint pervasive silicification, phyllic and argillic alteration that affected large parts of the monzogranite. The mineralization cements breccias and consists of an early barite–silica–pyrite–sphalerite–chalcopyrite assemblage followed by later argentiferous galena. A combination of fluid inclusion and stable isotope data suggests that the barite and associated mineralization were deposited from fluids containing 2 to 17 wt.% NaCl equivalent, at temperatures of ~ 225° to 370 °C, under a hydrostatic pressure of ≤ 100 bars. The mineralizing fluids boiled and were saturated in H2S and SO2.Calculated δ18OH2O and δDH2O, initial 87Sr/86Sr isotope compositions and the trace and REEs elements contents are consistent with a model in which the mineralizing fluids were derived during alteration of the Mykonos intrusion and subsequently mixed with Miocene seawater. Heterogeneities in the calculated δ34SSO4 2 and δ34SH2S compositions of the ore fluids indicate two distinct sources for sulfur, namely of magmatic and seawater origin, and precipitation due to reduction of the SO4 2 during fluid mixing. The physicochemical conditions of the fluids were pH = 5.0 to 6.2, logfS2 =  13.8 to − 12.5, logfO2 =  31.9 to − 30.9, logfH2S(g) =  1.9 to − 1.7, logfTe2 =  7.9 and logα(SO4 2(aq)/H2S(aq)) = + 2.6 to + 5.5. We propose that retrograde mesothermal hydrothermal alteration of the Mykonos monzogranite released barium and silica from the alkali feldspars. Barite was precipitated due to mixing of SO4 2-rich Miocene seawater with the ascending Ba-rich magmatic fluid venting upwards in the pluton.  相似文献   

8.
The current study was designed to investigate the extent and severity of contamination as well as the fractionation of potentially toxic elements (As, Cd, Cr, Cu, Pb, Zn, Ni) in minesoils and agricultural soils around a Pb–Zn mine in central Iran. For this purpose, 20 agricultural soils and eight minesoils were geochemically characterized. Results showed that minesoils contained elevated concentrations of As (12.9–254 mg kg−1), Cd (1.2–55.1 mg kg−1), Pb (137–6239 mg kg−1) and Zn (516–48,889 mg kg−1). The agricultural soils were also polluted by As (5.5–57.1 mg kg−1), Cd (0.2–8.5 mg kg−1), Pb (22–3451 mg kg−1) and Zn (94–9907 mg kg−1). The highest recorded concentrations for these elements were in soils influenced directly by tailing ponds. Chromium, Cu and Ni content in agricultural soils (with average value of 74.1, 34.6 and 50.7 mg kg−1, respectively) were slightly higher than the minesoils (with average value of 54.5, 33.1 and 43.4 mg kg−1, respectively). Sequential extraction data indicated that there were some differences between the speciation of PTEs in soil samples. In the agricultural soils, Zn and Cd were mainly associated with carbonate bound fraction, As and Pb with reducible fraction, Cu with oxidisable fraction and Cr and Ni with residual phase. With respect to mobility factor values, Zn and Cd in the agricultural soils have been found to be the most mobile while As mobility is negligible. Also, the mobility factor of As, Cd and Pb in agricultural soils adjoining tailing ponds was high. In minesoil sample Cd was most abundant in the carbonate form, whereas other studied elements were mainly present in the reducible and residual fractions; therefore, despite the high total concentrations of As, Pb and Zn in the minesoils, the environmental risk of these elements was low. Based on the obtained data, a portion of Cu, Cr and Ni input was from agricultural activities.  相似文献   

9.
The Bear Lodge alkaline complex in northeastern Wyoming (USA) is host to potentially economic rare-earth mineralization in carbonatite and carbonatite-related veins and dikes that intrude heterolithic diatreme breccias in the Bull Hill area of the Bear Lodge Mountains. The deposit is zoned and consists of pervasively oxidized material at and near the surface, which passes through a thin transitional zone at a depth of ~ 120–183 m, and grades into unaltered carbonatites at depths greater than ~ 183–190 m. Carbonatites in the unoxidized zone consist of coarse and fine-grained calcite that is Sr-, Mn- and inclusion-rich and are characterized by the presence of primary burbankite, early-stage parisite and synchysite with minor bastnäsite that have high (La/Nd)cn and (La/Ce)cn values. The early minerals are replaced with polycrystalline pseudomorphs consisting of secondary rare-earth fluorocarbonates and ancylite with minor monazite. Different secondary parageneses can be distinguished on the basis of the relative abundances and composition of individual minerals. Variations in key element ratios, such as (La/Nd)cn, and chondrite-normalized profiles of the rare-earth minerals and calcite record multiple stages of hydrothermal deposition involving fluids of different chemistry. A single sample of primary calcite shows mantle-like δ18OV-SMOW and δ13CV-PDB values, whereas most other samples are somewhat depleted in 13C (δ13CV-PDB   8 to − 10‰) and show a small positive shift in δ18OV-SMOW due to degassing and wall-rock interaction. Isotopic re-equilibration is more pronounced in the transitional and oxidized zones; large shifts in δ18OV-SMOW (to ~ 18‰) reflect the input of meteoric water during pervasive hydrothermal reworking and supergene oxidation. The textural relations, mineral chemistry and C and O stable-isotopic variations record a polygenetic sequence of rare-earth mineralization in the deposit. With the exception of one Pb-poor sample showing an appreciable positive shift in 208Pb/204Pb value (~ 39.2), the Bear Lodge carbonatites are remarkably uniform in their Nd, Sr and Pb isotopic composition: 143Nd/144Ndt = 0.512591–0.512608; εNdt = 0.2–0.6; 87Sr/86Srt = 0.704555–0.704639; εSrt =  1.5–2.7; 206Pb/204Pbt = 18.071–18.320; 207Pb/204Pbt = 15.543–15.593; and 208Pb/204Pbt = 38.045–39.165. These isotopic characteristics indicate that the source of the carbonatitic magma was in the subcontinental lithospheric mantle, and modified by subduction-related metasomatism. Carbonatites are interpreted to be generated from small degrees of partial melt that may have been produced via interaction of upwelling asthenosphere giving a small depleted MORB component, with an EM1 component likely derived from subducted Farallon crust.  相似文献   

10.
Concentrations and isotopic compositions of Hg and Pb were measured in a sediment core collected from Lake Ballinger, near Seattle, Washington, USA. Lake Ballinger has been affected by input of metal contaminants emitted from the Tacoma smelter, which operated from 1887 to 1986 and was located about 53 km south of the lake. Concentrations and loadings of Hg and Pb in Lake Ballinger increased by as much as three orders of magnitude during the period of smelting as compared to the pre-smelting period. Concentrations and loadings of Hg and Pb then decreased by about 55% and 75%, respectively, after smelting ended. Isotopic compositions of Hg changed considerably during the period of smelting (δ202Hg = −2.29‰ to −0.38‰, mean −1.23‰, n = 9) compared to the pre-smelting period (δ202Hg = −2.91‰ to −2.50‰, mean −2.75‰, n = 4). Variations were also observed in 206Pb/207Pb and 208Pb/207Pb isotopic compositions during these periods. Data for Δ199Hg and Δ201Hg indicate mass independent fractionation (MIF) of Hg isotopes in Lake Ballinger sediment during the smelting and post-smelting period and suggest MIF in the ore smelted, during the smelting process, or chemical modification at some point in the past. Negative values for Δ199Hg and Δ201Hg for the pre-smelting period are similar to those previously reported for soil, peat, and lichen, likely suggesting some component of atmospheric Hg. Variations in the concentrations and isotopic compositions of Hg and Pb were useful in tracing contaminant sources and the understanding of the depositional history of sedimentation in Lake Ballinger.  相似文献   

11.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

12.
The Hongshan Cu-polymetallic deposit is located in the southern Yidun arc in southwestern China, where both subduction-related (Late Triassic) and post-collisional (Late Cretaceous) porphyry–skarn–epithermal mineralization systems have been previously recognized. In this study, two distinct magmatic events, represented by diorite porphyry and quartz monzonite porphyry, have been revealed in the Hongshan deposit, with zircon SHRIMP U–Pb ages of 214 ± 2 Ma and 73.4 ± 0.7 Ma, respectively. The 73 Ma age is comparable to the Re–Os ages of 77 to 80 Ma of ore minerals from the Hongshan deposit, indicating that the mineralization is related to the Late Cretaceous quartz monzonite porphyries rather than Late Triassic diorite porphyries. The Late Triassic diorite porphyries belong to the high-K calc-alkaline series and show arc magmatic geochemical characteristics such as enrichment in Rb, Ba, Th and U and depletion in HFSEs, indicating that they were formed during the westward subduction of the Garzê–Litang Ocean. In contrast, the Late Cretaceous quartz monzonite porphyries show shoshonitic I-type geochemical characteristics, with high SiO2, K2O, LILE, low HREE, Y and Yb contents, and high LREE/HREE and La/Yb ratios. These geochemical characteristics, together with the Sr–Nd–Pb isotopic compositions (average (87Sr/86Sr)i = 0.7085; εNd(t) =  6.0; 206Pb/204Pb = 19.064, 207Pb/204Pb = 15.738, 208Pb/204Pb = 39.733) suggest that the quartz monzonite porphyries originated from the partial melting of the ancient lower crust in response to underplating of mafic magma from subduction metasomatized mantle lithosphere, possibly triggered by regional extension in the post-collisional tectonic stage. The S isotopic compositions (δ34SV-CDT = 3.81‰ to 5.80‰) and Pb isotopic compositions (206Pb/204Pb = 18.014 to 18.809, 207Pb/204Pb = 15.550 to 15.785, and 208Pb/204Pb = 38.057 to 39.468) of ore sulfides indicate that the sulfur and metals were derived from mixed mantle and crustal sources. It is proposed that although the Late Triassic magmatic event is not directly related to mineralization, it contributed to the Late Cretaceous mineralization system through the storage of large amounts of sulfur and metals as well as water in the cumulate zone in the mantle lithosphere through subduction metasomatism. Re-melting of the mantle lithosphere including the hydrous cumulate zone and ancient lower crust during the post-collisional stage produced fertile magmas, which ascended to shallow depths to form quartz monzonite porphyries. Hydrothermal fluids released from the intrusions resulted in porphyry-type Mo–Cu ores in and near the intrusions, skarn-type Cu–Mo ores in the country rocks above the intrusions, and hydrothermal Pb–Zn ores in the periphery.  相似文献   

13.
Xiaolonghe is a poorly studied greisen-type tin deposit that is hosted by biotite granite in the western Yunnan tin belt. The mineralisation-related metaluminous and weak peraluminous granite is characterised by high Si, Al and K and low Mg, Fe and Ca, with an average A/CNK of 1.02. The granite is enriched in LILEs (K and Rb), LREEs and HFSEs (Zr, Hf, Th, U and Ce) and depleted in Ba, Nb, Sr, P, and Ti, with zircon εHf(t) =  10.8 to − 7.5 (TDM2 = 1.61–1.82 Ga). These characteristics indicate that the magma was generated by the partial melting of a thickened ancient crust. LA-ICP-MS U–Pb dating of igneous zircon and hydrothermal cassiterite yield ages of 71.4 ± 0.4 Ma and 71.6 ± 4.8 Ma, respectively. The igneous biotite and hydrothermal muscovite samples show Ar–Ar plateau ages of 72.3 ± 0.4 Ma and 70.6 ± 0.2 Ma, respectively. The close temporal relationship between the igneous emplacement and hydrothermal activity suggests that the tin mineralisation was closely linked to the igneous emplacement. The δ18O and δD values for the deposit range from + 3.11‰ to − 4.5‰ and from − 127.3‰ to − 94.7‰, respectively. The hydrothermal calcite C and O isotopic data show a wide range of δ13CPDB values from − 5.7‰ to − 4.4‰, and the δ18OSMOW values range from + 1.4‰ to + 11.2‰. The δ34SV-CDT data range from + 4.8‰ to + 8.9‰ for pyrite, and the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios range from 18.708 to 18.760, from 15.728 to 15.754 and from 39.237 to 39.341, respectively. The stable isotopic (C–H–O–S–Pb) compositions are all similar to those of magmatic and mantle-derived fluids, which indicate that the ore-forming fluids and materials were mainly derived from magmatic sources that were accompanied by meteoric water. The tin mineralisation in the Xiaolonghe district was closely associated with the Late Cretaceous crustal-melting S-type granites that formed during the subduction of the Neo-Tethys oceanic lithosphere. Combined with the tin deposits in the Southeast Asian tin belt, Tengchong block and Central Lhasa, we interpreted that a giant intermittent tin mineralisation belt should be present along the Asian Neo-Tethys margin.  相似文献   

14.
The Huangshaping polymetallic deposit is located in southeastern Hunan Province, China. It is a world-class W–Mo–Pb–Zn–Cu skarn deposit in the Nanling Range Metallogenic Belt, with estimated reserves of 74.31 Mt of W–Mo ore at 0.28% WO3 and 0.07% Mo, 22.43 Mt of Pb–Zn ore at 3.6% Pb and 8.00% Zn, and 20.35 Mt of Cu ore at 1.12% Cu. The ore district is predominantly underlained by carbonate formations of the Lower Carboniferous period, with stocks of quartz porphyry, granite porphyry, and granophyre. Skarns occurred in contact zones between stocks and their carbonate wall rocks, which are spatially associated with the above-mentioned three types of ores (i.e., W–Mo, Pb–Zn, and Cu ores).Three types of fluid inclusions have been identified in the ores of the Huangshaping deposit: aqueous liquid–vapor inclusions (Type I), daughter-mineral-bearing aqueous inclusions (Type II), and H2O–CO2 inclusions (Type III). Systematic microthermometrical, laser Raman spectroscopic, and salinity analyses indicate that high-temperature and high-salinity immiscible magmatic fluid is responsible for the W–Mo mineralization, whereas low-temperature and low-salinity magmatic-meteoric mixed fluid is responsible for the subsequent Pb–Zn mineralization. Another magmatic fluid derived from deep-rooted magma is responsible for Cu mineralization.Chondrite-normalized rare earth element patterns and trace element features of calcites from W–Mo, Pb–Zn, and Cu ores are different from one another. Calcite from Cu ores is rich in heavy rare earth elements (187.4–190.5 ppm), Na (0.17%–0.19%), Bi (1.96–64.60 ppm), Y (113–135 ppm), and As (9.1–29.7 ppm), whereas calcite from W–Mo and Pb–Zn ores is rich in Mn (> 10.000 ppm) and Sr (178–248 ppm) with higher Sr/Y ratios (53.94–72.94). δ18O values also differ between W–Mo/Pb–Zn ores (δ18O = 8.10‰–8.41‰) and Cu ores (δ18O = 4.34‰–4.96‰), indicating that two sources of fluids were, respectively, involved in the W–Mo, Pb–Zn, and Cu mineralization.Sulfur isotopes from sulfides also reveal that the large variation (4‰–19‰) within the Huangshaping deposit is likely due to a magmatic sulfur source with a contribution of reduced sulfate sulfur host in the Carboniferous limestone/dolomite and more magmatic sulfur involved in the Cu mineralization than that in W–Mo and Pb–Zn mineralization. The lead isotopic data for sulfide (galena: 206Pb/204Pb = 18.48–19.19, 207/204Pb = 15.45–15.91, 208/204Pb = 38.95–39.78; sphalerite: 206Pb/204Pb = 18.54–19.03, 207/204Pb = 15.60–16.28, 208/204Pb = 38.62–40.27; molybdenite: 206Pb/204Pb = 18.45–19.21, 207/204Pb = 15.53–15.95, 208/204Pb = 38.77–39.58 chalcopyrite: 206Pb/204Pb = 18.67–19.38, 207/204Pb = 15.76–19.90, and 208/204Pb = 39.13–39.56) and oxide (scheelite: 206Pb/204Pb = 18.57–19.46, 207/204Pb = 15.71–15.77, 208/204Pb = 38.95–39.13) are different from those of the wall rock limestone (206Pb/204Pb = 18.34–18.60, 207/204Pb = 15.49–15.69, 208/204Pb = 38.57–38.88) and porphyries (206Pb/204Pb = 17.88–18.66, 207/204Pb = 15.59–15.69, 208/204Pb = 38.22–38.83), suggesting Pb206-, U238-, and Th 232-rich material are involved in the mineralization. The Sm–Nd isotopes of scheelite (εNd(t) =  6.1 to − 2.9), garnet (εNd(t) =  6.8 to − 6.1), and calcite (εNd(t) =  6.3) from W–Mo ores as well as calcite (εNd(t) =  5.4 to − 5.3) and scheelite (εNd(t) =  2.9) from the Cu ores demonstrate suggest more mantle-derived materials involved in the Cu mineralization.In the present study we conclude that two sources of ore-forming fluids were involved in production of the Huangshaping W–Mo–Pb–Zn–Cu deposit. One is associated with the granite porphyry magmas responsible for the W–Mo and then Pb–Zn mineralization during which its fluid evolved from magmatic immiscible to a magmatic–meteoritic mixing, and the other is derived from deep-rooted magma, which is related to Cu-related mineralization.  相似文献   

15.
To better understand the formative mechanism of the Cretaceous Gyeongsang Basin in South Korea, we determined the geochemical compositions of Early Cretaceous syntectonic basaltic rocks intercalated with basin sedimentary assemblages. Two distinct compositional groups appeared: tholeiitic to calc-alkaline basalts from the Yeongyang sub-basin and high-K to shoshonitic basaltic trachyandesites from the Jinju and Uiseong sub-basins. All collected samples exhibit patterns of light rare earth element enrichment and chondrite-normalized (La/Yb)N ratios ranging from 2.4 to 23.6. In a primitive-mantle-normalized spidergram, the samples show distinctive negative anomalies in Nb, Ta, and Ti and a positive anomaly in Pb. The basalts exhibit no or a weak positive U anomaly in a spidergram, but the basaltic trachyandesites show a negative U anomaly. The basalts have highly radiogenic Sr [(87Sr/86Sr)i = 0.70722–0.71145], slightly negative εNd, positive εHf [(εNd)i = −2.7 to 0.0; (εHf)i = +2.9 to +6.4], and radiogenic Pb isotopic compositions [(206Pb/204Pb)i = 18.20–19.19; (207Pb/204Pb)i = 15.60–15.77; (208Pb/204Pb)i = 38.38–39.11]. The basaltic trachyandesites are characterized by radiogenic Sr [(87Sr/86Sr)i = 0.70576–0.71119] and unradiogenic Nd, Hf, and Pb isotopic compositions [(εNd)i = −14.0 to −1.4; (εHf)i = −17.9 to +3.7; (206Pb/204Pb)i = 17.83–18.25; (207Pb/204Pb)i = 15.57–15.63; (208Pb/204Pb)i = 38.20–38.70]. The “crust-like” signatures, such as negative Nb–Ta anomalies, elevated Sr isotopic compositions, and negative εNd(t) and εHf(t) values, of the basaltic trachyandesites resemble the geochemistry of Early Cretaceous mafic volcanic rocks from the southern portion of the eastern North China Craton. Considering the lower-crust-like low U/Pb and high Th/U ratios and the unradiogenic Pb isotopic compositions, the basaltic trachyandesites are considered to be derived from lithospheric mantle modified by interaction with melts that originated from foundered eclogite. Basaltic volcanism in the Yeongyang sub-basin is coeval with the basaltic trachyandesite magmatism, but it exhibits an elevated 87Sr/86Sr ratio at a given 143Nd/144Nd and highly radiogenic Pb isotopic compositions, which imply an origin from an enriched but heterogeneous lithospheric mantle source. Melts from subducted altered oceanic basalt and pelagic sediments are considered to be the most likely source for the metasomatism. An extensional tectonic regime induced by highly oblique subduction of the Izanagi Plate beneath the eastern Asian margin during the Early Cretaceous might have triggered the opening of the Gyeongsang Basin. Lithospheric thinning and the resultant thermal effect of asthenospheric upwelling could have caused melting of the metasomatized lithospheric mantle, producing the Early Cretaceous basaltic volcanism in the Gyeongsang Basin.  相似文献   

16.
Active and abandoned mine activities constitute the sources of deterioration of water and soil quality in many parts of the world, particularly in the African Copperbelt regions. The accumulation in soils and the release of toxic substances into the aquatic ecosystem can lead to water resources pollution and may place aquatic organisms and human health at risk. In this study, the impact of past mining activity (i.e., abandoned mine) on aquatic ecosystems has been studied using ICP-MS analysis for trace metals and Rare Earth Elements (REE) in sediment samples from Lubumbashi River (RL) and Tshamilemba Canal (CT), Katanga, Democratic Republic of the Congo (DRC). Soil samples from surrounding CT were collected to evaluate trace metal and REE concentrations and their spatial distribution. The extent of trace metal contamination compared to the background area was assessed by Enrichment Factor (EF) and Geoaccumulation Index (Igeo). Additionally, the trace metal concentrations probable effect levels (PELs) for their potential environmental impact was achieved by comparing the trace metal concentrations in the sediment/soil samples with the Sediment Quality Guidelines (SQGs). Spearman's Rank-order correlation was used to identify the source and origin of contaminants. The results highlighted high concentrations of trace metals in surface sediments of CT reaching the values of 40152, 15586, 610, 10322, 60704 and 15152 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. In the RL, the concentrations reached the values of 24093, 2046, 5463, 3340, 68290 and 769 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. The ΣREE varied from 66 to 218 and 142–331 mg kg−1 for CT and RL, respectively. The soil samples are characterized by variable levels of trace metals. The EF analysis showed “extremely severe enrichment” for Cu and Co. However, no enrichment was observed for REE. Except for Mo, Th, U, Eu, Mo, Ho and Tm for which Igeo is classified as “moderately polluted and/or unpolluted”, all elements in different sites are classified in the class 6, “extremely polluted”. The trace metal concentrations in all sampling sites largely exceeded the SQGs and the PELs for the Protection of Aquatic Life recommendation. Cu and Co had positive correlation coefficient values (r = 0.741, P < 0.05, n = 14). This research presents useful tools for the evaluation of water contamination in abandoned and active mining areas.  相似文献   

17.
《Applied Geochemistry》2006,21(11):1955-1968
Elemental Hg–Au amalgamation mining practices are used widely in many developing countries resulting in significant Hg contamination of surrounding ecosystems. The authors examined for the first time Hg contamination in air, water, sediment, soil and crops in the Tongguan Au mining area, China, where elemental Hg has been used to extract Au for many years. Total gaseous Hg (TGM) concentrations in ambient air in the Tongguan area were significantly elevated compared to regional background concentrations. The average TGM concentrations in ambient air in a Au mill reached 18,000 ng m−3, which exceeds the maximum allowable occupational standard for TGM of 10,000 ng m−3 in China. Both total and methyl-Hg concentrations in stream water, stream sediment, and soil samples collected in the Tongguan area were elevated compared to methyl-Hg reported in artisanal Au mining areas in Suriname and the Amazon River basin. Total Hg concentrations in vegetable and wheat samples ranged from 42 to 640 μg kg−1, all of which significantly exceed the Chinese guidance limit for vegetables (10 μg kg−1) and foodstuffs other than fish (20 μg kg−1). Fortunately, methyl-Hg was not significantly accumulated in the crops sampled in this study, where concentrations varied from 0.2 to 7.7 μg kg−1.  相似文献   

18.
Several metabasite lenses in Ganghe, Central Dabie, that were previously described as pillow lavas are studied by elemental, Sr–Nd–Pb isotopic, and mineral oxygen isotopic analysis as well as zircon SHRIMP U–Pb dating. Zircon U–Pb geochronology results indicate that the protolith emplacement age of these metabasites is approximately 717 ± 38 Ma, consistent with the age of the volcanoclastic rocks in the same unit, and that they experienced the Triassic HP eclogite-facies retrograde metamorphism at 221 ± 2 Ma during exhumation after subduction to mantle depth and peak ultra-high pressure metamorphism. The low δ18O values of −5.5‰ to −2.0‰ indicate that the protoliths underwent high temperature meteoric-hydrothermal alteration before subduction but had no seawater interaction. These metabasites had similar formation processes, water–rock interactions and metamorphisms as other eclogite-facies rocks cropped out in the Central Dabie terrain. They showed negative abnormalities in Nb, Sr, and Ti content and positive abnormalities in Ba, Th, and Pb content; they also showed LREE enrichment. The insusceptible Sm–Nd isotopes during metamorphism yielded εNd (t) = −12 to −10 and TDM = 2.2–2.8 Ga for samples from lenses #1 to #3 and −7 to −6 and 2.1–2.2 Ga for lens #4; the samples also showed low radiogenic Pb isotope compositions of (206Pb/204Pb)i = 15.34–16.50, (207Pb/204Pb)i = 15.23–15.32, and (208Pb/204Pb)i = 35.93–37.04. The data suggest that the protolith sources of the metabasites were contaminated to variable degrees by old crustal materials during formation. Unlike the Maowu layered intrusions, which were contaminated by upper crust, the magmas of the metabasites were contaminated by lower crust in the magma chamber and during eruption. It can be concluded that the protoliths of these metabasites were derived from old crustal-contaminated mantle sources and initially emplaced in the crust at the Neoproterozoic and that they were altered by meteoric water at high temperatures. In this respect, they might be similar to the Neoproterozoic mafic intrusions in the North Huaiyang terrain. However, the studied metabasites experienced the Permo-Triassic subduction and metamorphism, whereas the North Huaiyang Neoproterozoic mafic intrusions did not.  相似文献   

19.
The Qiangma gold deposit is hosted in the > 1.9 Ga Taihua Supergroup metamorphic rocks in the Xiaoqinling terrane, Qinling Orogen, on the southern margin of the North China Craton. The mineralization can be divided as follows: quartz-pyrite veins early, quartz-polymetallic sulfide veinlets middle, and carbonate-quartz veinlets late stages, with gold being mainly introduced in the middle stage. Three types of fluid inclusions were identified based on petrography and laser Raman spectroscopy, i.e., pure carbonic, carbonic-aqueous (CO2–H2O) and aqueous inclusions.The early-stage quartz contains pure carbonic and CO2–H2O inclusions with salinities up to 12.7 wt.% NaCl equiv., bulk densities of 0.67 to 0.86 g/cm3, and homogenization temperatures of 280−365 °C. The early-stage is related to H2O–CO2 ± N2 ± CH4 fluids with isotopic signatures consistent with a metamorphic origin (δ18Owater = 3.1 to 5.2‰, δD =  37 to − 73‰). The middle-stage quartz contains all three types of fluid inclusions, of which the CO2–H2O and aqueous inclusions yield homogenization temperatures of 249−346 °C and 230−345 °C, respectively. The CO2–H2O inclusions have salinities up to 10.9 wt.% NaCl equiv. and bulk densities of 0.70 to 0.98 g/cm3, with vapor bubbles composed of CO2 and N2. The isotopic ratios (δ18Owater = 2.2 to 3.6‰, δD =  47 to − 79‰) suggest that the middle-stage fluids were mixed by metamorphic and meteoric fluids. In the late-stage quartz only the aqueous inclusions are observed, which have low salinities (0.9−9.9 wt.% NaCl equiv.) and low homogenization temperatures (145−223 °C). The isotopic composition (δ18Owater =  1.9 to 0.5‰, δD =  55 to − 66‰) indicates the late-stage fluids were mainly meteoric water.Trapping pressures estimated from CO2–H2O inclusions are 100−285 MPa for the middle stage, suggesting that gold mineralization mainly occurred at depths of 10 km. Fluid boiling and mixing caused rapid precipitation of sulfides and native Au. Through boiling and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from metamorphic to meteoric, as indicated by decreasing δ18Owater values from early to late. The carbon, sulfur and lead isotope compositions suggest the hostrocks within the Taihua Supergroup to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, and fluid inclusion and C–H–O–S–Pb isotope geochemistry, we conclude that the Qiangma gold deposit was an orogenic-type system formed in the tectonic transition from compression to extension during the Jurassic−Early Cretaceous continental collision between the North China and Yangtze cratons.  相似文献   

20.
Dissolved and particulate Zn and Ni concentrations were determined at 76 locations along the Yangtze River basin from the headwaters to the estuary during flood and dry seasons. Spatial and temporal variations of Zn and Ni were investigated and six major source zones were identified. The Three Gorges Dam (TGD) blocked most of the suspended loads and extremely low concentration of Zn and Ni were observed downstream of the dam. Dissolved (ranging from 0.062 to 8.0 μg L−1) and particulate (ranging from 12 to 110 mg kg−1) Ni showed similar levels of concentrations during flood and dry seasons, whereas dissolved (ranging from 0.43 to 49 μg L−1) and particulate (ranging from 54 to 1100 mg kg−1) Zn were slightly and much lower in the flood season than dry season, respectively. This was attributed to the increased water discharge during the flood season causing a dilution effect and sediment resuspension. In the flood season, average concentrations of Zn and Ni were higher in the main channel than in tributaries, due to soil erosion and mining activities providing the dominant inputs. The situation was opposite in the dry season, attributed to the contribution of municipal sewage, industrial activities, and waste disposal. During the flood season, dissolved Zn and Ni concentrations were negatively correlated with pH. Water and suspended particulate matter (SPM) from the upper reaches, middle reaches, and lower reaches of the Yangtze River were characterized by their Zn and Ni concentrations. The Panzhihua, Nanling and Tongling mining areas were considered as the most important source zones of particulate Zn and Ni. The Chongqing region, Wuhan region and the Yangtze River Delta provided most of the dissolved Zn and Ni inputs into the river. Annual net flux of Zn (10–72 × 105 kg a−1) and Ni (5.0–19 × 105 kg a−1) in each source zone were estimated according to their respective influent and effluent fluxes. Contributions of the source zones to Zn and Ni transport decreased from the upper reaches to the lower reaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号