首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Reductive immobilization of uranium by the stimulation of dissimilatory metal-reducing bacteria (DMRB) has been investigated as a remediation strategy for subsurface U(VI) contamination. In those environments, DMRB may utilize a variety of electron acceptors, such as ferric iron which can lead to the formation of reactive biogenic Fe(II) phases. These biogenic phases could potentially mediate abiotic U(VI) reduction. In this work, the DMRB Shewanella putrefaciens strain CN32 was used to synthesize two biogenic Fe(II)-bearing minerals: magnetite (a mixed Fe(II)-Fe(III) oxide) and vivianite (an Fe(II)-phosphate). Analysis of abiotic redox interactions between these biogenic minerals and U(VI) showed that both biogenic minerals reduced U(VI) completely. XAS analysis indicates significant differences in speciation of the reduced uranium after reaction with the two biogenic Fe(II)-bearing minerals. While biogenic magnetite favored the formation of structurally ordered, crystalline UO2, biogenic vivianite led to the formation of a monomeric U(IV) species lacking U-U associations in the corresponding EXAFS spectrum. To investigate the role of phosphate in the formation of monomeric U(IV) such as sorbed U(IV) species complexed by mineral surfaces, versus a U(IV) mineral, uranium was reduced by biogenic magnetite that was pre-sorbed with phosphate. XAS analysis of this sample also revealed the formation of monomeric U(IV) species suggesting that the presence of phosphate hinders formation of UO2. This work shows that U(VI) reduction products formed during in situ biostimulation can be influenced by the mineralogical and geochemical composition of the surrounding environment, as well as by the interfacial solute-solid chemistry of the solid-phase reductant.  相似文献   

2.
Bacterial metal reduction is an important biogeochemical process in anaerobic environments. An understanding of electron transfer pathways from dissimilatory metal-reducing bacteria (DMRB) to solid phase metal (hydr)oxides is important for understanding metal redox cycling in soils and sediments, for utilizing DMRB in bioremedation, and for developing technologies such as microbial fuel cells. Here we hypothesize that the outer membrane cytochromes OmcA and MtrC from Shewanella oneidensis MR-1 are the only terminal reductases capable of direct electron transfer to a hematite working electrode. Cyclic voltammetry (CV) was used to study electron transfer between hematite electrodes and protein films, S. oneidensis MR-1 wild-type cell suspensions, and cytochrome deletion mutants. After controlling for hematite electrode dissolution at negative potential, the midpoint potentials of adsorbed OmcA and MtrC were measured (−201 mV and −163 mV vs. Ag/AgCl, respectively). Cell suspensions of wild-type MR-1, deletion mutants deficient in OmcA (ΔomcA), MtrC (ΔmtrC), and both OmcA and MtrC (ΔmtrC–ΔomcA) were also studied; voltammograms for ΔmtrC–ΔomcA were indistinguishable from the control. When the control was subtracted from the single deletion mutant voltammograms, redox peaks were consistent with the present cytochrome (i.e., ΔomcA consistent with MtrC and ΔmtrC consistent with OmcA). The results indicate that OmcA and MtrC are capable of direct electron exchange with hematite electrodes, consistent with a role as terminal reductases in the S. oneidensis MR-1 anaerobic respiratory pathway involving ferric minerals. There was no evidence for other terminal reductases operating under the conditions investigated. A Marcus-based approach to electron transfer kinetics indicated that the rate constant for electron transfer ket varies from 0.025 s−1 in the absence of a barrier to 63.5 s−1 with a 0.2 eV barrier.  相似文献   

3.
This study identifies isotope signatures associated with autotrophic and heterotrophic microbial communities that may provide a means to determine carbon cycling relationships in situ for acid mine drainage (AMD) sites. Stable carbon isotope ratios (δ13C) of carbon sources, bulk cells, and membrane phospholipids (PLFA) were measured for autotrophic and heterotrophic microbial enrichment cultures from a mine tailings impoundment in northern Ontario, Canada, and for pure strains of the sulfur oxidizing bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The autotrophic enrichments had indistinguishable PLFA distributions from the pure cultures, and the PLFA cyc-C19:0 was determined to be a unique biomarker in this system for these sulfur oxidizing bacteria. The PLFA distributions produced by the heterotrophic enrichments were distinct from the autotrophic distributions and the C18:2 PLFA was identified as a biomarker for these heterotrophic enrichments. Genetic analysis (16S, 18S rRNA) of the heterotrophic cultures indicated that these communities were primarily composed of Acremonium fungi.Stable carbon isotope analysis revealed that bulk cellular material in all autotrophic cultures was depleted in δ13C by 5.6–10.9‰ relative to their atmospheric CO2 derived carbon source, suggesting that inorganic carbon fixation in these cultures is carbon limited. Individual PLFA from these autotrophs were further depleted by 8.2–14.6‰ compared to the bulk cell δ13C, which are among the largest biosynthetic isotope fractionation factors between bulk cell and PLFA reported in the literature. In contrast, the heterotrophic bulk cells were not significantly fractionated in δ13C relative to their carbon source and heterotrophic PLFA ranged from 3‰ enriched to 4‰ depleted relative to the isotopic composition of their total biomass. These distinct PLFA biomarkers and isotopic fractionations associated with autotrophic and heterotrophic activity in this laboratory study provide potential biomarkers for delineating autotrophic and heterotrophic carbon cycling in AMD environments.  相似文献   

4.
A one dimensional reactive transport model was developed in order to illustrate the biogeochemical behavior of arsenic and iron reduction and release to groundwater that accounts for the reaction coupling the major redox elements under reducing environment. Mass transport equation and the method of characteristics were used considering fundamental geochemical processes to simulate transport processes of different pollutants in mobile phase. The kinetic sub-model describes the heterotrophic metabolisms of several microorganisms. To model a complete redox sequence (aerobic or denitrifiers, Fe(III)-reduction, respiration bacteria of iron and arsenic compounds, and As(V) reduction) four functional bacterial groups (X 1, X 2, X 3, and X 4) were defined. Microbial growth was assumed to follow Monod type kinetics. The exchange between the different phases (mobile, bio, and matrix) was also considered in this approach. Results from a soil column experiment were used to verify the simulation results of the model. The model depicts the utilization of oxygen, nitrate, iron oxide and arsenic as electron acceptors for oxidation of organic carbon (OC) in a column. The OC as electron donor is one of the most important factors that affect the iron and arsenic reduction bacterial activity.  相似文献   

5.
Summary Regularities of memory effects in rock salt specimens under triaxial stress state were investigated. Each specimen was subjected to two loading cycles. The first cycle was axisymmetric triaxial compression (σ123). The second cycle was uniaxial compression in the direction of σ1 of the first cycle. Distinct acoustic emission (AE) and deformation memory effects were observed in the second cycle at the stress value equal to a linear combination of the first cycle principal stresses given by σ1− (k + 1) σ3, where k is about 0.5–0.6 for rock salt. Anomalies in deformation curves were found to be more reliable than the AE methods in distinguishing memory symptoms. The necessary pre-requisite for memory formation in the first cycle was that σ1 exceeded the elastic limit, corresponding to the given confining stress σ3. Inflections in uniaxial stress versus axial strain and lateral strain curves, in the second cycle, were observed at equal stress values if in the first cycle σ1 exceeded the elastic limit and memory-forming damage was induced. If there was no memory-forming damage, those inflections were seen at different stress values. This characteristic was used to distinguish between true memory effects and natural characteristic points in deformation curves derived from rock salt testing. A new memory symptom was established, namely a turn point in curve “uniaxial stress versus differential coefficient of lateral strains”. The results form a basis for application of the memory effects for stress measurement in rock salt masses.  相似文献   

6.
Methanotrophic biomass and community structure were assessed for a soil column enriched with natural gas. An increase in microbial biomass, based on phospholipid ester-linked fatty acids (PLFA), was apparent for the natural gas-enriched column relative to a control column and untreated surface soil. Following GC-MS analyses of the derivatized monounsaturated fatty acids, the major component (22% of the PLFA) of the natural gas-enriched column was identified as 18·1Δ 10c. This relatively novel fatty acid has only been previously reported as a major component in methanotrophs. Its presence in the soil, together with other supportive evidence, implies that this microbial metabolic group makes a large contribution to the column flora. Other microbial groups were also recognized and differences compared between the soils analysed. A recently developed HPLC method for the separation and characterisation of archaebacterial phospholipid-derived signature di- and tetra-ether lipids was used to examine methane-producing digesters. With this technique, methanogenic biomasses of approximately 1011 bacteria per g dry weight of digestor material were determined. Differences between ratios of diether to tetraether phospholipids were apparent for the digestors analysed, though the causes are at this stage unknown. Taken together, these two methods can be used to estimate methanotrophic and methanogenic contributions in both model systems and environmental samples.  相似文献   

7.
The ratios M R = E/σ c for 11 heterogeneous carbonate (dolomites, limestones and chalks) rock formations collected from different regions of Israel were examined. Sixty-eight uniaxial compressive tests were conducted on weak-to-strong (5 MPa < σ c < 100 MPa) and very strong (σ c > 100 MPa) rock samples exhibiting wide ranges of elastic modulus (E = 6100–82300 MPa), uniaxial compressive strength (σ c = 14–273.9 MPa), Poisson's ratio (ν = 0.13–0.49), and dry bulk density (ρ = 1.7–2.7 g/cm3). The observed range of M R = 60.9–1011.4 and mean value of M R = 380.5 are compared with the results obtained by Deere (Rock mechanics in engineering practice, Wiley, London, pp 1–20, 1968) for limestones and dolomites, and the statistical analysis of M R distribution is performed. Mutual relations between E, σ c, ρ, M R for all studied rocks, and separately for concrete rock formations are revealed. Linear multiple correlations between E on the one hand and σ c and ρ on the other for Nekorot and Bina limestone and Aminadav dolomite are obtained. It is established that the elastic modulus and M R in very strong carbonate samples are more correlated with ρσ c combination and ε a max, respectively, than in weak to strong samples. The relation between M R and maximum axial strain (ε a max) for all studied rock samples (weak-to-strong and very strong) is discussed.  相似文献   

8.
A semi-analytical equation for the modeling of stress–strain relationship for heterogeneous carbonate rocks exhibiting large axial strains (εaf > 1%) is formulated. The equation is derived by modifying the stress–strain model based on Haldane’s distribution proposed by Palchik (2006) for carbonate rocks exhibiting ε af ≤ 1%. The developed exponential model is used to relate normalized axial stress (σ a/σ c) over the whole pre-failure strain range to current axial strain (ε a) and failure strain (ε af). For carbonate rocks exhibiting ε af > 1%, the value of pre-calculated parameter δ involved in the stress–strain model is not constant, but dependent on the failure strain value (ε af). The normalized stress–strain model can be used to calculate the failure strain in terms of uniaxial compressive strength and stress–strain measurement at one point only. The advantages of the failure strain model and ways of its use in engineering practice are discussed.  相似文献   

9.
Three bacterial strains from the genus Shewanella were used to examine the influence of specific bacteria on the products of dissimilatory iron reduction. Strains CN32, MR-4 and W3-18-1 were incubated with HFO (hydrous ferric oxide) as the terminal electron acceptor and lactate as the organic carbon and energy source. Mineral products of iron reduction were analyzed using X-ray powder diffraction, electron microscopy, coulometry and susceptometry. Under identical nutrient loadings, iron reduction rates for strains CN32 and W3-18-1 were similar, and about twice as fast as MR-4. Qualitative and quantitative assessment of mineralized end products (secondary minerals) indicated that different products were formed during experiments with similar reduction rates but different strains (CN32 and W3-18-1), and similar products were formed during experiments with different iron reduction rates and different strains (CN32 and MR-4). The major product of iron reduction by strains CN32 and MR-4 was magnetite, while for W3-18-1 it was a mixture of magnetite and iron carbonate hydroxide hydrate (green rust), a precursor to fougerite. Another notable difference was that strains CN32 and MR-4 converted all of the starting ferric iron material into magnetite, while W3-18-1 did not convert most of the Fe3+ into a recognizable crystalline material. Biofilm formation is more robust in W3-18-1 than in the other two strains used in this study. The differences in mineralization may be an indicator that EPS (or another cellular product from W3-18-1) may interfere with the crystallization of magnetite or facilitate formation of green rust. These results suggest that the relative abundance of mineral end products and the relative distribution of these products are strongly dependent on the bacterial species or strain catalyzing iron reduction.  相似文献   

10.
The redox conditions during frictional melting provide information on the physical and chemical conditions during seismic slip in the crust. Here we examine frictional melts from five localities by analyzing host rocks and corresponding pseudotachylytes using Mössbauer spectroscopy. The faults examined are located at South Mountain, Arizona; Fort Foster, Maine (two localities); Long Ridge fault, North Carolina; and the Homestake shear zone, Colorado. The main iron-bearing phases in the pseudotachylytes are phyllosilicates (biotite, muscovite and clays) and iron oxides (magnetite and hematite) and minor pyrite. The ferrous/ferric ratios of the phyllosilicates in the host rocks are the same as those in the pseudotachylytes, except for the hematite-bearing pseudotachylyte from the Long Ridge fault, which is more oxidized. The magnetites in the host rocks and the corresponding pseudotachylytes have different ferric and ferrous iron distributions, which is attributed to different cation chemistry, rather than redox conditions. With the exception of the South Mountain locality, the ferric/ferrous ratios of the micas are interpreted to record the primary redox state of the pseudotachylyte melt as the calculated oxygen fugacities are consistent with magnetite and hematite equilibria. Pyrite-bearing pseudotachylytes plot ~0–1 log10 units above the fayalite-magnetite-quartz (FMQ) buffer. Magnetite-bearing pseudotachylytes plot ~2–4 log10 units above the FMQ buffer, and hematite-bearing pseudotachylytes plot 3.5 log10 units above the hematite-magnetite (HM) buffer. Hematite-bearing pseudotachylytes, together with previous oxygen isotope data, are inferred to represent melting in the presence of externally derived pressurized water. Other localities are inferred to represent melting under rock-buffered, closed system, conditions. If the localities studied are representative of seismogenic faulting, the calculated oxygen fugacities indicate that, in the system C–O–H–S, H2O and CO2 should be the dominant fluid species. This is the first detailed study of the redox state of pseudotachylytes.  相似文献   

11.
Arsenic concentrations in groundwaters from two areas in Ghana, the Obuasi area in the Ashanti region and the Bolgatanga area of the Upper East region vary from <1–64 μg 1−1 and <1–141 μg 1−1, respectively. Sulphide minerals such as arsenopyrite and pyrite are present in the Birimian basement rocks of both areas and these form the dominant As sources. The basement aquifer is overlain by a variable thickness (ranging from <10 m to >40 m) of weathered regolith and lateritic soil. Arsenic concentrations are low in the shallowest groundwaters, but increase at greater depths (40–70 m below ground level in Obuasi and 20–40 m in Bolgatanga). At depths greater than this, total As concentrations are relatively low. The lateral and vertical variations in dissolved As concentrations are controlled by ambient pH and redox conditions and by the relative influences of sulphide oxidation and sorption. In the weathered regolith and lateritic soils, oxidation has been extensive. Shallow groundwaters are oxidizing and acidic. Under these conditions, As is readily oxidized to As(V) and may precipitate as ferric arsenate or be sorbed onto ferric hydroxide surfaces. At greater depth, groundwaters have longer contact times with the aquifer minerals and pH values are therefore higher (>6.0 in Obuasi and >6.5 in Bolgatanga). The oxidation of sulphide minerals may proceed, but dissolved O is consumed during the process and mildly reducing conditions (Eh 200–300 mV) result. Sorption of As onto ferric hydroxide minerals is less favoured under such pH and redox conditions and the element is relatively mobile. At the greatest abstraction depths, groundwaters are more reducing (Eh ≤200 mV; dissolved O <0.1 mg 1−1) and few electron acceptors are available in the system to drive sulphide oxidation. Dissolved As concentrations therefore remain relatively low. The mildly reducing groundwaters in the sulphide-bearing basement aquifer are therefore of the poorest potable quality with respect to dissolved As concentrations.  相似文献   

12.
Although the electron microprobe has become the standard microanalytical tool in modern geosciences, conventional electron microprobe analysis does not allow determination of the valence states of elements such as Fe. The correct classification of minerals and interpretation of reaction microfabrics and grain zonation require high-quality information on ferric/ferrous ratios on a scale of micrometers. The flank method developed by Höfer et?al. (1994, Eur J Mineral 6:407–418) has revived new interest in electron-induced X-ray-spectroscopy to resolve oxidation states in minerals with high spatial resolution. We have recharacterized well-documented sodic amphiboles of the glaucophane–ferroglaucophane–riebeckite–magnesioriebeckite series by electron probe microanalysis and combined the microanalytical data with ferric/ferrous ratios from Mössbauer spectroscopy, Li data from bulk ICP-AES analysis and H2O data from bulk Karl–Fischer titration. The combination of microanalysis and high-quality analysis on the bulk materials results in a data set that allows comparison of model-based stoichiometric calculations and the calibration of the high-resolution flank method. The calibration obtained allows ferric/ferrous ratios to be determined within an error of ±5%. We have found it necessary to apply an empirical correction for absorption phenomena. The advantages of the method must be weighed against the complex calibration procedures necessary and thus the flank method will probably not find use as a routine method. However, in cases where high-resolution data in terms of valence state are needed, the flank method will provide useful data on ferric/ferrous ratios down to minimum FeOtotal content of 6–8 wt%.  相似文献   

13.
Redox properties of humic substances (HS) control important biogeochemical processes. Thus, accurate estimation of redox properties of HS is essential. However, there is no general consensus regarding the best available measurement method of HS redox properties. In this study, we compared several common HS redox property measurement methods using anthraquinone-2,6-disulfonate (AQDS) as model compound, and standard Elliot soil humic acid (1S102H, ESHA), reference Pahokee peat (1R103H, PPHA), and Suwannee River natural organic matter (1R101N, SRNOM) as representative HS. We found that the H2/Pd reduction method followed by incubation with ferric citrate (FeCit) reagent was incomplete, and the H2/Pd reduction method followed by incubation with potassium ferricyanide (K3Fe(CN)6) was insensitive. Stannous chloride (SnCl2) reduction followed by titration of excess stannous (Sn2+) by potassium dichromate (K2Cr2O7) was found to be most accurate. These findings will help in future investigations on detailed characterizations of functional groups of HS responsible for oxidation/reduction reactions.  相似文献   

14.
The Fe L 2,3-edge spectra for a range of natural minerals and synthetic solid solutions have been measured using the technique of parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM). The Fe L 2,3 -edges of the minerals are characterised by two white-line features and exhibit electron energy-loss near-edge structure (ELNES) characteristic of Fe valence state. For divalent iron, the Fe L 3 -edge spectra are dominated by a sharp peak (white-line) at ca. 707.8 eV, followed by a broader and less intense peak at ca. 710.5 eV. The ELNES on the Fe L 3 -edge of trivalent iron consists of a white-line with its maximum at ca. 709.5 eV and a preceeding peak at ca. 708.0 eV. Mineral solid solutions that contain both Fe2+ and Fe3+ exhibit an Fe L 3 -edge shape that is composed of Fe L 3 -edges from the respective Fe2+- and Fe3+-bearing end members. The integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) show clear differences for Fe2+ and Fe3+. We demonstrate the feasibility of quantification of the ferrous/ferric ratio in minerals by determining the integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) as a function of the ferric iron concentration resulting in an universal curve within the experimental errors. The application of the universal curve combined with the high spatial resolution using the PEELS/TEM allows the quantification of the ferric iron concentration on a scale down to 10 nm, which is illustrated from a sample of ilmenite containing hematite exsolution lamellae that shows different Fe L 2,3 -edge shapes consistent with variations in the Fe2+-Fe3+ ratio over distances of ca. 100 nm. Received: 30 July 1997 / Revised, accepted: 26 October 1997  相似文献   

15.
Scorodite, ferric arsenate and arsenical ferrihydrite are important arsenic carriers occurring in a wide range of environments and are also common precipitates used by metallurgical industries to control arsenic in effluents. Solubility and stability of these compounds are controversial because of the complexities in their identification and characterization in heterogeneous media. To provide insights into the formation of scorodite, ferric arsenate and ferrihydrite, series of synthesis experiments were carried out at 70 °C and pH 1, 2, 3 and 4.5 from 0.2 M Fe(SO4)1.5 solutions also containing 0.02-0.2 M Na2HAsO4. The precipitates were characterized by transmission electron microscopy, X-ray diffraction and X-ray absorption fine structure techniques. Ferric arsenate, characterized by two broad diffuse peaks on the XRD pattern and having the structural formula of FeAsO4·4-7H2O, is a precursor to scorodite formation. As defined by As XAFS and Fe XAFS, the local structure of ferric arsenate is profoundly different than that of scorodite. It is postulated that the ferric arsenate structure is made of single chains of corner-sharing Fe(O,OH)6 octahedra with bridging arsenate tetrahedra alternating along the chains. Scorodite was precipitated from solutions with Fe/As molar ratios of 1 over the pH range of 1-4.5. The pH strongly controls the kinetics of scorodite formation and its transformation from ferric arsenate. The scorodite crystallite size increased from 7 to 33 nm by ripening and aggregation. Precipitates, resulting from continuous synthesis at pH 4.5 from solutions having Fe/As molar ratios ranging from 1 to 4 and resembling the compounds referred to as ferric arsenate, arsenical ferrihydrite and As-rich hydrous ferric oxide in the literature, represent variable mixtures of ferric arsenate and ferrihydrite. When the Fe/As ratio increases, the proportion of ferrihydrite increases at the expense of ferric arsenate. Arsenate adsorption appears to retard ferrihydrite growth in the precipitates with molar Fe/As ratios of 1-4, whereas increased reaction gradually transforms two-line ferrihydrite to six-line ferrihydrite at Fe/As ratios of 5 and greater.  相似文献   

16.
In this paper an experimental study was planned on rock mass model with three joint sets under triaxial and true-triaxial stress states to assess the influence of joint geometry and stress ratios on deformational behaviour of rock mass. The physical models were composed of three continuous orthogonal joint sets in which joint set-I was inclined at angle θ=0°, 20°, 40°, 60°, 80° and 90° with x-axis, joint set-II was produced at staggering s=0.5 and joint set-III was kept always vertical. Thus, rock mass models with medium interlocked smooth joints (ϕ j =36.8°) were simulated under true triaxial compression (σ123). Modulus of rock mass shows anisotropy with joint inclination θ which diminishes with increase in σ23 ratio. The rock mass at θ=60° shows the highest modulus enhancement (599.9%) whereas it is minimum (32.3%) at θ=90°. Further two empirical expressions for estimation of deformation modulus were suggested based on experimental results, which were developed by incorporating two basic concepts, e.g. Janbu’s coefficients and joint factor, J f.  相似文献   

17.
The detailed understanding of in situ biodegradation of petroleum hydrocarbons in porous aquifers requires knowledge on biogeochemical gradients, the distribution of individual redox species and microorganisms. The generally limited spatial resolution of conventional monitoring wells, however, hampers appropriate characterization of small-scale gradients and thus localization of the relevant processes. Groundwater sampling across a BTEX plume in a sandy aquifer by means of a novel high-resolution multi-level well (HR-MLW) is presented here. The presence of distinct and steep biogeochemical gradients is demonstrated in the centimeter and decimeter scale, which could not be resolved with a conventional multi-level well. The thin BTEX plume with a vertical extension of only 80 cm exhibited a decline of contaminant concentrations by two orders of magnitude within a few centimeters in the upper and lower fringe zone. The small-scale distribution of sulfate, sulfide and Fe(II) in relation to the contaminants and elevated δ34S and δ18O values of groundwater sulfate strongly indicated sulfate and iron reduction to be the dominant redox processes involved in biodegradation. High microbial activities and biomass especially at the plume fringes and the slope of chemical gradients supported the concept that the latter are regulated by microbial processes and transverse dispersion, i.e. vertical mixing of electron donors and acceptors. Transverse dispersion therefore was suggested to be a driving factor controlling biodegradation in porous aquifers, but not exclusively limiting natural attenuation processes at this site. Broad overlapping zones of electron donors and electron acceptors point towards additional factors limiting anaerobic biodegradation in situ. The identification of small-scale gradients substantially contributed to a better understanding of biodegradation processes and hence is a prerequisite for the development of reliable predictive mathematical models and future remediation strategies.  相似文献   

18.
Axial-symmetric and real triaxial deformation tests on Solnhofen limestones were made in the range of 20 to 650° C. Stress, strain and time observations as functions of temperature and the ratios of the external stresses are plotted as stress-strain and strain-time curves. Mechanical twinning on e (01¯12) and syntectonic recrystallization (at temperatures above 500° C) is assumed to be the dominant flow mechanism. On samples of high permanent strain the textural changes and development of preferred orientations were investigated by means of the X-ray diffractometer. In all tests the symmetry of the polefigures is exactly identical with the symmetry of the external stress-field.In tests with 1>2=3 the poles of the planes investigated (10¯11; 10¯12; 11¯20) occupy girdles about the unique principle compressive axis. When all principle stresses are different (1>2>3) the poles of the planes investigated tend to maxima (in the case of plane strain) ore to girdle-occupations about the principle axis of maximum extension. The deduced c-diagrams show a fairly similar tendency of the spacial orientations.The pole figures (as well as the calculated orientation of the c-axis) must be explained by the superposition of reflected intensities on planes in twinned and untwinned grains. In every diagram partial occupations—possibly representing the orientations of twinned grains-are in fairly good agreement with the orientation predicted by the theory of Brace-MacDonald for the stable orientation of anisotropic minerals in a non-hydrostatic stress-field.

Herrn Prof. Dr. F. Karl danke ich sehr herzlich für zahlreiche Diskussionen sowie für die kritische Durchsicht des Manuskripts. Mein Dank gilt auch der Deutschen Forschungsgemeinschaft, welche die Untersuchung durch eine Sachbeihilfe unterstützte.  相似文献   

19.
Surface-parallel slabbing is a failure mode often observed in highly stressed hard rocks in underground excavations. This paper presents the results of experimental studies on slabbing failure of hard rock with different sample height-to-width ratios. The main purpose of this study was to find out the condition to create slabbing failure under uniaxial compression and to determine the slabbing strength of hard rock in the laboratory. Uniaxial compression tests were carried out using five groups of granite specimens. The mechanical parameters of the sample rock, Iddefjord granite from Norway, were measured on the cylindrical and Brazilian disc specimens. The transition of the failure mode was studied using rectangular prism specimens. The initiation and the propagation of slabbing fractures in specimens were identified by examining the relationship among the applied stress, strain and the acoustic emission. The stress thresholds identified were compared to those reported by other authors for crack initiation and brittle failure. It is observed that the macro failure mode will be transformed from shear to slabbing when the height/width ratio is reduced to 0.5 in the prism specimens under uniaxial compression. Micro σ 1-parallel fractures initiate when the lateral strain departs from its linearity. Slabbing fractures are approximately parallel to the loading direction. Labotatory tests show that the slabbing strength (σ sl) of hard rock is about 60% of its uniaxial compression strength. It means that if the maximum tangential stress surrounding an underground excavation reaches about the slabbing threshold, slabbing fractures may take place on the boundary of the excavation. Therefore, the best way to stop or eliminate slabbing failure is to control the excavation boundary to avoid the big stress concentration, so that the maximum tangential stress could be under the slabbing threshold.  相似文献   

20.
It is suggested that the GRIP Greenland ice-core should constitute the stratotype for the Last Termination. Based on the oxygen isotope signal in that core, a new event stratigraphy spanning the time interval from ca. 22.0 to 11.5 k GRIP yr BP (ca. 19.0–10.0 k 14C yr BP) is proposed for the North Atlantic region. This covers the period from the Last Glacial Maximum, through Termination 1 of the deep-ocean record, to the Pleistocene–Holocene boundary, and encompasses the Last Glacial Late-glacial of the traditional northwest European stratigraphy. The isotopic record for this period is divided into two stadial episodes, Greenland Stadials 1 (GS-1) and 2 (GS-2), and two interstadial events, Greenland Interstadials 1 (GI-1) and2 (GI-2). In addition, GI-1 and GS-2 are further subdivided into shorter episodes. The event stratigraphy is equally applicable to ice-core, marine and terrestrial records and is considered to be a more appropriate classificatory scheme than the terrestrially based radiocarbon-dated chronostratigraphy that has been used hitherto. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号