首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
ABSTRACT

From data obtained at stations set up in Chad, the Central African Republic and Congo-Brazzaville, stretching from the desert to the equatorial zone, it has been possible to compare measurements of evapotranspiration and of evaporation with results obtained by using the energy-balance method. Several difficulties arise in these comparisons since the scale of the measurements (small evaporating surfaces) is generally different from that of the climatic characteristics on which evaporation is dependent.

After proposing a model to resolve this problem and fitting the empirical coefficients of Penman's formula, the author has applied this formula to some results derived for stations in Congo-Brazzaville; the potential evapotranspiration calculated in this way is in good agreement with water balance data.

At these stations the evapotranspiration energy may be a constant percentage of global short-wave radiation.

Finally, the energy-balance method has been used at Brazzaville to measure the actual evapotranspiration over grass during the dry season. The result is that actual and potential evapotranspiration were found to be closely related.

These results indicate the importance of solar readiation in the field of hydrometeorology.  相似文献   

2.
A Note has been published for this article in Hydrological Processes 18(4) 2004, 825. Both water and heat balances were studied in a conifer plantation watershed in south‐west Japan, within the warm‐temperate East Asia monsoon area. Forest cover in the watershed consists mainly of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) plantations. Precipitation and runoff have been observed since 1991, so evapotranspiration can be compared with the water balance. Two meteorological observation towers were built to monitor evapotranspiration in the watershed. The annual average precipitation, amount of runoff and losses were 2166, 1243 and 923 mm, respectively. The evapotranspiration (latent heat flux) agreed well with the water balance losses. The average annual evapotranspiration at the tower built in the centre of the watershed was 902 mm; evapotranspiration at the other tower, further upslope, was 875 mm. The observed evapotranspiration was 39% to 40% of the average precipitation (2166 mm). The mean net radiation was c. 2·6 GJ m?2 year?1, and is considered a representative value of the net radiation (Rn) in coniferous plantations in this region. This region is classified in the humid zone based on the ratio of net radiation (Rn) to the energy required to evaporate the rainfall (λR). The mean annual evaporation of canopy‐intercepted water was 356 mm or about 15% of the average precipitation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Groundwater provides an important source of water for maize cultivation where the water table is shallow in the semi-arid Hailiutu River catchment of the Maowusu Desert on the Erdos Plateau in Northwest China. A HYDRUS-1D model of the unsaturated flow beneath a maize (Zea mays L.) field was calibrated and validated with measured soil water contents at various depths during the maize growing period from 30 April to 1 October 2011, and from 23 May to 27 September 2012, respectively. The model computed the actual maize evapotranspiration (ETa) as 580 mm during the whole growing period from 30 April to 1 October 2011. The groundwater contribution to ETa was calculated to be 220 mm, accounting for 38% of maize water use during the growing season in 2011. When the groundwater level drops below a depth of 157 cm, maize can no longer use groundwater for transpiration. The irrigation water requirement increases with the increase of groundwater table depth. These results are very important for managing crop irrigation in the area.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR L. Ruiz  相似文献   

4.
Abstract

The actual evapotranspiration and runoff trends of five major basins in China from 1956 to 2000 are investigated by combining the Budyko hypothesis and a stochastic soil moisture model. Based on the equations of Choudhury and Porporato, the actual evapotranspiration trends and the runoff trends are attributed to changes in precipitation, potential evapotranspiration, rainfall depth and water storage capacity which depends on the soil water holding capacity and the root depth. It was found that the rainfall depth increased significantly in China during the past 50 years, especially in southern basins. Contributions from changes in the water storage capacity were significant in basins where land surface characteristics have changed substantially due to human activities. It was also observed that the actual evapotranspiration trends are more sensitive to precipitation trends in water-limited basins, but more sensitive to potential evapotranspiration trends in energy-limited basins.
Editor D. Koutsoyiannis; Associate editor A. Porporato  相似文献   

5.
Abstract

Stable isotopes are powerful research tools in environmental sciences and their use in ecosystem research is increasing. Stable isotope measurements allow the study of evapotranspiration fluxes, soil evaporation and leaf transpiration phenomena. Soil water and leaf water are the sources of the evapotranspiration that transfers large quantities of water from land to the atmosphere; as a result the isotopic composition of water left in the leaves is modified towards enrichment. Evaporation also changes the isotopic composition of water bodies creating a natural isotopic signal. The isotopic identity of soil water affects the oxygen isotopic signature of leaf and stem water. In this paper we present the isotopic data of bulk leaf water, showing the enrichment in isotopic value of oxygen due to evapotranspiration from leaves in conjunction with the isotopic signal of rainwater and other environmental factors such as humidity and temperature. Results suggest that the variation in the values of δ18O of Eucalyptus citriodora, Dalbergia sissoo, Melia azedarach and Pinus roxburghii is due to the seasonal changes in the δ18O of the source water for plants, i. e. rain. It is further observed that leaf water δ18O values are depleted during the months of July, August and September. This occurs due to the following reasons: (a) the sampling areas receive about 50% of the average annual rain during these months, and (b) rainfalls during these months are isotopically depleted compared with winter rains.

Citation Butt, S., Ali, M., Fazil, M. & Latif, Z. (2010) Seasonal variations in the isotopic composition of leaf and stem water from an arid region of Southeast Asia. Hydrol. Sci. J. 55(5), 844–848.  相似文献   

6.
Assessments of hydrological response to climatic changes are characterized by different types of uncertainties. Here, the uncertainty caused by weather noise associated with the chaotic character of atmospheric processes is considered. A technique for estimating such uncertainty in simulated water balance components based on application of the land surface model SWAP and the climate model ECHAM5 is described. The technique is applied for estimating the uncertainties in the simulated water balance components (precipitation, river runoff and evapotranspiration) of some northern river basins of Russia. It is shown that the larger the area of a basin the less the uncertainty. This dependency is smoothed by differences in natural conditions of the basins. Analysis of the spectral densities of water balance components shows that a river basin filters out high-frequency harmonics of spectral density of precipitation (corresponding to synoptic or sub-seasonal scale) during its transformation into evapotranspiration and especially into runoff.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR H. Kreibich  相似文献   

7.
Abstract

The study analyses a 2-year period of hourly rates of real evapotranspiration (ETr) derived from eddy covariance measurements and soil water contents at depths from 8 to 90 cm, monitored by time domain reflectometry probes at the grass-covered boundary-layer field site Falkenberg of the Lindenberg Meteorological Observatory – Richard-Aßmann-Observatory, operated by the German Meteorological Service (DWD). The ETr rates and soil water contents were compared with the results of a modelling approach consisting of the Penman-Monteith equation and the soil water balance model Hydrus-1D using a noncompensatory and a compensatory root-water uptake model. After optimization of soil hydraulic parameters by inverse modelling, using measured soil water contents as the objective function, simulated and measured model outputs showed good agreement for soil water contents above 90 cm depth and for ETr rates simulated by our modelling approaches using noncompensatory root-water uptake. The application of a compensatory root-water uptake model led to a decrease in the simulation quality for the total investigation period.

Editor Z.W. Kundzewicz

Citation Wegehenkel, M. and Beyrich, F., 2014. Modelling of hourly evapotranspiration and soil water content at the grass-covered boundary-layer field site Falkenberg, Germany. Hydrological Sciences Journal, 59 (2), 376–394.  相似文献   

8.
Sierra Nevada forests transpire a significant amount of California's water resources, sparking interest in applying forest management to improve California's water supply. Determining the source water of evapotranspiration enables forest managers to make informed decisions. To this end, a significant interest in critical zone science is to develop new methods to work across time scales to predict subsurface water storage and use. In this study, forest vegetation accessed young water and switched sources depending on availability, suggesting that forest drought vulnerability may depend on the range of water sources available (rain, snowmelt and deeply stored water). This finding also suggests that changes in transpiration rates may have immediate effects on water sources in close proximity to vegetation, and delayed effects on storage and runoff. New δ18O, δ2H and 3H data were used to track precipitation, runoff, evapotranspiration and storage through the critical zone seasonally, including seasons where evapotranspiration and snowmelt were in phase (winter snowmelt) and out of phase (seasonally dry summer). The main source of this headwater catchment's runoff is derived from its meadow saturated zone water, which was dominated by snowmelt. Water that originated as snowmelt contributed to transpiration, unless other sources, such as recent rain, became available. In cases where xylem δ18O and δ2H signatures matched those of deeper saturated zone water, 3H data showed that xylem water was distinctly younger than the deep saturated zone water. During 2016, which experienced relatively normal snowpack in winter and seasonally dry summer conditions, mean summer saturated zone water and vegetation water were similar in δ18O, −12.4 ± 0.04 ‰ and − 12.5 ± 0.3 ‰, respectively, but were distinctly different in 3H, 5.5 ± 0.2 pCi/L and 13.7 ± 1.1 pCi/L, respectively. While δ18O shows that vegetation and meadow saturated zone water have similar origins, 3H shows they have dissimilar ages.  相似文献   

9.
Land use changes in wetland areas can alter evapotranspiration, a major component of the water balance, which eventually affects the water cycle and ecosystem. This study assessed the effect of introduced rice‐cropping on evapotranspiration in seasonal wetlands of northern Namibia. By using the Bowen ratio–energy balance method, measurements of evapotranspiration were performed over a period of 2.5 years at two wetland sites—a rice field (RF) and a natural vegetation field (NVF)—and at one upland field (UF) devoid of surface water. The mean evapotranspiration rates of RF (1.9 mm daytime?1) and NVF (1.8 mm daytime?1) were greater than that in UF (1.0 mm daytime?1). RF and NVF showed a slight difference in seasonal variations in evapotranspiration rates. During the dry season, RF evapotranspiration was less than the NVF evapotranspiration. The net radiation in RF was less in this period because of the higher albedo of the non‐vegetated surface after rice harvesting. In the early growth period of rice during the wet season, evapotranspiration in RF was higher than that in NVF, which was attributed to a difference in the evaporation efficiency and the transfer coefficient for latent heat that were both affected by leaf area index (LAI). Evapotranspiration sharply negatively responded to an increase in LAI when surface water is present according to sensitivity analysis, probably because a higher LAI over a surface suppresses evaporation. The control of LAI is therefore a key for reducing evaporation and conserving water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

The distribution of environmental tritium, deuterium and oxygen-18 in the unsaturated zone and the underlying sandy phreatic aquifer was studied throughout 1981 in an area of high pine forests in the Rhine valley near Heidelberg. The observed vertical distribution of isotopes in the unsaturated zone can be satisfactorily explained by the combined use of a multi-cell model for moisture transport and an evapotranspiration model. The distribution in the underlying aquifer of the tracer input at the water table obtained using this method is found by replacing the total vertical diffusion coefficient in the diffusion equation with the dispersion coefficient. In this way observed tritium profiles are satisfactorily simulated for the period 1966–1981. The stable isotope profile in the unsaturated zone however remains largely unexplained due to inadequate data on the stable isotope content of precipitation over the investigated area.  相似文献   

11.
Z. Jia  S. Tang  W. Luo  Y. Hai 《水文科学杂志》2013,58(16):2946-2956
ABSTRACT

Constructed wetlands can be used for reducing nonpoint-source pollution and providing ecological services in a watershed. This paper presents a field monitoring study on water quality improvement in constructed wetlands of five cells in series. The wetland system covers 59.9 ha, or 0.08% of the watershed area; it diverts 7.3 million m3 (hm3) water (or 4.3% annual flow) from a degraded river. The results showed that the hydraulic retention times (HRT) of the five cells ranged from 5 to 15 days, 18.4% inflow was lost to seepage and increased evapotranspiration (ET) in the wetlands; the wetlands retained 99.1% total suspended solids (TSS), 60.9% total phosphorus (TP), and 54.4% total nitrogen (TN) from the inflow. Major reductions of TSS and TP were observed in the first two large cells that occupied 57% of the total wetland area. The smaller cells did not show advantages over the bigger ones in pollutant retention as reported in some studies. Although significant water quality benefit can be achieved by the constructed wetlands, the increased water loss may be a concern, particularly in dry regions.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR T. Okruszko  相似文献   

12.
Subalpine forests are hydrologically important to the function and health of mountain basins. Identifying the specific water sources and the proportions used by subalpine forests is necessary to understand potential impacts to these forests under a changing climate. The recent “Two Water Worlds” hypothesis suggests that trees can favour tightly bound soil water instead of readily available free-flowing soil water. Little is known about the specific sources of water used by subalpine trees Abies lasiocarpa (Subalpine fir) and Picea engelmannii (Engelmann spruce) in the Canadian Rocky Mountains. In this study, stable water isotope (δ18O and δ2H) samples were obtained from S. fir and Engelmann spruce trees at three points of the growing season in combination with water sources available at time of sampling (snow, vadose zone water, saturated zone water, precipitation). Using the Bayesian Mixing Model, MixSIAR, relative source water proportions were calculated. In the drought summer examined, there was a net loss of water via evapotranspiration from the system. Results highlighted the importance of tightly vadose zone, or bound soil water, to subalpine forests, providing insights of future health under sustained years of drought and net loss in summer growing seasons. This work builds upon concepts from the “Two Water Worlds” hypothesis, showing that subalpine trees can draw from different water sources depending on season and availability. In our case, water use was largely driven by a tension gradient within the soil allowing trees to utilize vadose zone water and saturated zone water at differing points of the growing season.  相似文献   

13.
The effect of Pinus radiata (D. Don) plantations on water resources at different Chilean sites located between 33 and 40 south was determined. Incoming precipitation, canopy interception loss, evapotranspiration, net evapotranspiration (transpiration and evaporation from the soil), percolation and soil water content were measured in each site, where Pinus radiata plantations were 12 to 17 years old and between 700 and 830 trees ha?1 dense. The results were compared with those obtained from areas covered with perennial grasses and shrubs at the same sites. The pine canopies intercepted on average 36–40% of the annual rainfall at all sites where rainfall was less then 1200 mm, while only 15% of the mean rainfall was intercepted in the southernmost and rainy (2081 mm year?1) site. Annual net evapotranspiration increased from south to north from 32% of the incoming precipitation for the southernmost site to 55% for the one located at the lower latitude. In this northernmost site almost the entire incoming precipitation was evapotranspired. Annual percolation registered its minimum value in the northern site (5% of incoming precipitation) and its maxima in the southern one (53%). The values of net evapotranspiration and percolation were regulated by the pluviometric regime and the soil moisture retention capacity in each site. Compared with the shrub or grass covers, sites under Pinus radiata plantations registered higher water consumption by evapotranspiration and reduced percolation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

The Nema is a river in western Senegal where only a minority of inhabitants has access to drinking water. Rainfall has been decreasing in this region since the 1960s. It is crucial to understand how this change affects groundwater recharge. The objective of this research is to determine the current proportions of groundwater recharge, runoff, subsurface runoff and evapotranspiration using a simulation approach. The Nash criterion and water balance error were used to evaluate the quality of the simulations. The following results were obtained: the Nash criterion was 0.73 for calibration (0.73 for validation), and the water balance error was ?0.35% and 0.005%, respectively, for the hydrological years 1995/96 and 1997/98. Evapotranspiration and groundwater recharge are the main processes involved.
Editor Z.W. Kundzewicz; Associate editor D. Hughes  相似文献   

15.
An attempt is made to estimate the expected contribution of rainfall to soil moisture during the irrigation season. Effective rainfall and evapotranspiration are the parameters considered in the water balance carried out in the root zone. Rainfall occurrence is simulated by a Poisson process whereas evapotranspiration is described by a simple deterministic function of potential evapotranspiration and soil moisture in the root zone. Using the theory of shot noise models a closed form solution is derived from the expected soil moisture in the root zone at the end of the time interval (0,t]. For illustration purposes the proposed model is applied to a series of data from Mikra meteorological station in Greece.List of symbols x change in water storage in the root zone during the time interval t - X infiltrated rainfall of thei th storm event - ET actual evapotranspiration during thej th day - Poisson rate - number of storm events in (0,t] - t r duration of rainfall - t b interarrival time - h i rainfall depth of thei th storm event - i m mean rainfall intensity - i(t) instantaneous rainfall intensity - x(0),x(t) available soil moisture in the root zone at time 0 andt, respectively - PET potential evapotranspiration rate - x F available soil moisture in the root zone at field capacity - soil moisture depletion rate (=PET/x F ) - w impulse shape of filtered Poisson processes - E[·] mean value - S i time of thei th rainfall event - N(t) time of storm events in (0,t] - estimated standard deviation The following symbols were used in this paper  相似文献   

16.
Abstract

Acceleration of the global water cycle over recent decades remains uncertain because of the high inter-annual variability of its components. Observations of pan evaporation (Epan), a proxy of potential evapotranspiration (ETp), may help to identify trends in the water cycle over long periods. The complementary relationship (CR) states that ETp and actual evapotranspiration (ETa) depend on each other in a complementary manner, through land–atmosphere feedbacks in water-limited environments. Using a long-term series of Epan observations in Australia, we estimated monthly ETa by the CR and compared our estimates with ETa measured at eddy covariance Fluxnet stations. The results confirm that our approach, entirely data-driven, can reliably estimate ETa only in water-limited conditions. Furthermore, our analysis indicated that ETa did not show any significant trend in the last 30 years, while short-term analysis may indicate a rapid climate change that is not perceived in a long-term perspective.

Editor Z.W. Kundzewicz; Associate editor D. Gerten

Citation Lugato, E., Alberti, G., Gioli. B., Kaplan, J.O., Peressotti, A., and Miglietta, F., 2013. Long-term pan evaporation observations as a resource to understand the water cycle trend: case studies from Australia. Hydrological Sciences Journal, 58 (6), 1287–1296.  相似文献   

17.
Abstract

The study area is located on the Harat plain, in the central region of Iran. Four local-soil filled, free-drainage lysimeters were installed in wheat and barley farms operating under traditional farm management practices. The volume, electrical conductivity (EC), nitrate and major ions of the applied irrigation water and irrigation return flow (IRF) were measured during the growing season. The total dissolved solids (TDS) of IRF increased three to five times compared to that of the applied water. This enhancement was the same as for the chloride ion ratio, indicating the major impact of evapotranspiration in IRF salinity enhancement. Geochemical modelling using PHREEQCI confirmed the significant role of evapotranspiration and the minor effects of processes such as calcite precipitation, gypsum dissolution, fertilizer nitrification and ion exchange on the values of the IRF TDS. Time variations of EC were functions of the type of flow (preferential or matrix), lithology and soil type. The controlling parameters of the nitrate time series were the frequent applications of N fertilizer and the nitrification process. The annual N loads (NO3-N) of IRF varied from 22 to 195 kg ha-1. These variations were due to the different N loads in the applied water, the amount of fertilizer, soil texture, N uptake and volume of IRF. The annual salt loads of IRF were mainly controlled by the volume of IRF.

Editor Z.W. Kundzewicz

Citation Jafari, H., Raeisi, E., Hoehn, E. and Zare, M., 2012. Hydrochemical characteristics of irrigation return flow in semi-arid regions of Iran. Hydrological Sciences Journal, 57 (1), 173–185.  相似文献   

18.
Abstract

Alternative approaches to estimating monthly and annual potential evapotranspiration (PE) are explored in cases where daily climate data are not routinely recorded. A database consisting of data from 222 weather stations, representing a wide variety of climatic conditions, is used to draw general conclusions. In addition, two PE formulae with different data requirements are used: the standard FAO-56 Penman-Monteith equation, and a simple temperature-based equation. First, we tested the degree of bias introduced by using climate data averaged over long time periods instead of daily data. Second, we explored the sensitivity of PE estimation with respect to variations in sampling frequency of climate variables. The results show that using mean weather data has only a limited effect on monthly and annual PE estimates. Conversely, imperfect sampling of weather data may bias monthly and to a lesser extent annual PE estimates if the sampling period exceeds 5 and 10 days, respectively. Finally, we tested the impact of erroneous weather data on the simulations of annual actual evapotranspiration obtained with the Budyko model. The impact on the Budyko model outputs depends more on the dryness index of a given location than on annual PE; for regions under water stress, the errors in estimation of actual evapotranspiration are very limited, compared to humid regions where available energy is the dominating factor and the propagation of PE errors is important.

Citation Oudin, L., Moulin, L., Bendjoudi, H. & Ribstein, P. (2010) Estimating potential evapotranspiration without continuous daily data: possible errors and impact on water balance simulations. Hydrol. Sci. J. 55(2), 209–222.  相似文献   

19.
ABSTRACT

Hydrological processes in hilly watersheds are significantly affected by variations in elevation; however, the hydrological functions of different vertical vegetation belts, have rarely been reported. The distributed hydrological model WEP-L (Water and Energy transfer Process in Large river basins) was applied to analyse vertical variations in the hydrological processes of Qingshui River basin (QRB), Wutai Mountain (altitude: 3058 m a.s.l.), China. The results show that the highest ratio of evapotranspiration to precipitation occurs at 1800 m a.s.l. Below 1800 m, evapotranspiration is mainly controlled by precipitation, and in regions above1800 m it is controlled by energy. The runoff coefficients for different vertical vegetation belts may be ranked as follows: farmland > grassland > subalpine meadow > evergreen coniferous shrub forest > deciduous broad-leaved forest. Grassland is the largest runoff production area, contributing approximately 39.10% to the annual water yield of the QRB. The runoff from forested land decreased to a greater extent than the grassland runoff. Increasing forest cover may increase evapotranspiration and reduce runoff. These results are important, not only for further understanding of the hydrological mechanisms in this basin, but also for implementing the sustainable management of water resources and ecosystems in other mountainous regions.  相似文献   

20.
Abstract

This article addresses the critical need for a better quantitative understanding of how water resources from the Hérault River catchment in France have been influenced by climate variability and the increasing pressure of human activity over the last 50 years. A method is proposed for assessing the relative impacts of climate and growing water demand on the decrease in discharge observed at various gauging stations in the periods 1961–1980 and 1981–2010. An annual water balance at the basin scale was calculated first, taking into account precipitation, actual evapotranspiration, water withdrawals and water discharge. Next, the evolution of the seasonal variability in hydroclimatic conditions and water withdrawals was studied. The catchment was then divided into zones according to the main geographical characteristics to investigate the heterogeneity of the climatic and human dynamics. This delimitation took into account the distribution of climate, topography, lithology, land cover and water uses, as well as the availability of discharge series. At the area scale, annual water balances were calculated to understand the internal changes that occurred in the catchment between both past periods. The decrease in runoff can be explained by the decrease in winter precipitation in the upstream areas and by the increase during summer in both water withdrawals and evapotranspiration in the downstream areas, mainly due to the increase in temperature. Thus, water stress increased in summer by 35%. This work is the first step of a larger research project to assess possible future changes in the capacity to satisfy water demand in the Hérault River catchment, using a model that combines hydrological processes and water demand.
Editor Z.W. Kundzewicz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号