首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, fluid flow is examined for a mature strike‐slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc) and rock‐quality measurements (Q‐value) performed along a 50‐m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water‐injection test. The resulting fluid pressures and flow rates through the different fault‐zone compartments were then analyzed with a two‐phase fluid‐flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q‐value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro‐ and macrofractures that lower the fault‐zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties.  相似文献   

2.
This paper presents an analysis of Hagen-Poiseulle flow through plane random anisotropic networks of interconnected channels. Macroscopic permeability tensor of the network is expressed in terms of statistico-geometrical characteristics like the degree of anisotropy in channel orientations, average co-ordination number of the network and first two moments of channel length distribution. Analytical results are illustrated and verified using numerical analysis of flow in a simulated random network. The emphasis of the paper is on the effects of anisotropy on distributions of flow rates in channels. It is shown that, due to anisotropy the maximum flow rate generally occurs in channels that are not aligned along the direction of the macroscopic pressure gradient.  相似文献   

3.
This paper presents an analysis of Hagen-Poiseulle flow through plane random anisotropic networks of interconnected channels. Macroscopic permeability tensor of the network is expressed in terms of statistico-geometrical characteristics like the degree of anisotropy in channel orientations, average co-ordination number of the network and first two moments of channel length distribution. Analytical results are illustrated and verified using numerical analysis of flow in a simulated random network. The emphasis of the paper is on the effects of anisotropy on distributions of flow rates in channels. It is shown that, due to anisotropy the maximum flow rate generally occurs in channels that are not aligned along the direction of the macroscopic pressure gradient.  相似文献   

4.
Numerical experiments with steady-state ground water flow models show that spiraling flow lines occur in layered aquifers that have different anisotropic horizontal hydraulic conductivities in adjacent layers. Bundles of such flow lines turning in the same direction can be referred to as ground water whirls. An anisotropic layered block in a field of uniform horizontal flow results in one or more whirls with their axes in the uniform flow direction. The number of whirls depends on the number of interfaces between layers with different anisotropic properties. For flow to a well in an aquifer consisting of two anisotropic layers, with perpendicular major principal directions, whirls are found to occur in quadrants that are bounded by the principal directions of the hydraulic conductivity. The combined effect of flow to a well and a layered anisotropy implies that a single well in a system with a single anisotropic layer within an otherwise isotropic aquifer causes eight whirls. All adjacent whirls rotate in opposite directions.  相似文献   

5.
Permeability is a second rank tensor relating flow rate to pressure gradient in a porous medium. If the permeability is a constant times the identity tensor the permeable medium is isotropic; otherwise it is anisotropic. A formalism is presented for the simple calculation of the permeability tensor of a heterogeneous layered system composed of interleaved thin layers of several permeable constituent porous media in the static limit. Corresponding to any cumulative thickness H of a constituent is an element consisting of scalar H and a matrix which is H times a hybrid matrix function of permeability. The calculation of the properties of a medium equivalent to the combination of permeable constituents may then be accomplished by simple addition of the corresponding scalar/matrix elements. Subtraction of an element removes a permeable constituent, providing the means to decompose a permeable medium into many possible sets of permeable constituents, all of which have the same flow properties. A set of layers of a constituent medium in the heterogeneous layered system with permeability of the order of 1/h as h→ 0, where h is that constituent's concentration, acts as a set of infinitely thin channels and is a model for a set of parallel cracks or fractures. Conversely, a set of layers of a given constituent with permeability of the order of h as h→ 0 acts as a set of parallel flow barriers and models a set of parallel, relatively impermeable, interfaces, such as shale stringers or some faults. Both sets of channels and sets of barriers are defined explicitly by scalar/matrix elements for which the scalar and three of the four sub-matrices vanish. Further, non-parallel sets of channels or barriers can be ‘added’ and 'subtracted’ from a background homogeneous anisotropic medium commutatively and associatively, but not non-parallel sets of channels and barriers reflecting the physical reality that fractures that penetrate barriers will give a different flow behaviour from barriers that block channels. This analysis of layered media, and the representations of the phenomena that can occur as the thickness of a constituent is allowed to approach zero, are applicable directly to layered heat conductors, layered electrostatic conductors and layered dielectrics.  相似文献   

6.
This is the first of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory (also known as Dupuit or Boussinesq theory). Here, we examine the effect of lateral flow on the downward fluxes of water and solutes through perched groundwater at steady state. We derive analytical expressions describing the decline in the downward flux rate with depth. Using these, we obtain analytical expressions for water age in a number of cases. The results show that when the permeability field is homogeneous, the spatial structure of water age depends qualitatively on a single dimensionless number, Hi. This number captures the relative contributions to the lateral hydraulic potential gradient of the relief of the lower‐most impermeable boundary (which may be below the weathering front within permeable or incipiently weathered bedrock) and the water table. A “scaled lateral symmetry” exists when Hi is low: age varies primarily in the vertical dimension, and variations in the horizontal dimension x almost disappear when the vertical dimension z is expressed as a fraction z/H(x) of the laterally flowing system thickness H(x). Taking advantage of this symmetry, we show how the lateral dimension of the advection–diffusion‐reaction equation can be collapsed, yielding a 1‐D vertical equation in which the advective flux downward declines with depth. The equation holds even when the permeability field is not homogeneous, as long as the variations in permeability have the same scaled lateral symmetry structure. This new 1‐D approximation is used in the accompanying paper to extend chemical weathering models derived for 1‐D columns to hillslope domains.  相似文献   

7.
An apparatus has been developed for investigation of hydraulic conductivity of frozen soils. The test procedure is isothermal and involves the passage of water from one reservoir into the frozen sample and out of the frozen sample into a second reservoir. The water in the reservoirs remains unfrozen because it contains dissolved lactose. The concentration of lactose is such that, initially, the water in the reservoirs is in thermodynamic equilibrium with the water in the soil. On application of pressure to one reservoir a known hydraulic gradient is established and flow takes place. Flow is shown to vary linearly with hydraulic gradient. The hydraulic conductivity coefficient depends on soil type and temperature and is related to the unfrozen water content. At temperatures within a few tenths of 0°C the coefficient apparently ranges from 10?5 to 10?9 cm sec?1, and decreases only slowly below about ?0·5°C. Soils known to be susceptible to frost heave are shown to have significant hydraulic conductivities well below 0°C.  相似文献   

8.
旋转椭球面上的应变与转动张量表达   总被引:6,自引:1,他引:5       下载免费PDF全文
以旋转椭球体面上某点为原点建立一个大地坐标单位活动坐标架. 通过平移, 使活动坐标架的原点与以椭球中心为原点的笛卡尔单位标架的原点相重合. 然后再通过两次标架旋转, 使活动坐标架与笛卡尔单位标架完全重合. 本文给出了使两个单位标架相重合的转换关系式, 以及该点位移在两个单位标架中的坐标转换式; 在此基础上, 考虑该点的位移及活动坐标架皆为该点大地坐标的函数, 经复杂推导, 分别给出了该点位移向量的微分在大地坐标系中的分量以及该点分别沿坐标曲线的弧微分表达式, 继而导出了该点的位移梯度矩阵; 最后推导出了椭球坐标系的应变张量与转动张量表达式, 并对转动张量的几何含义进行了较详细的解释, 且采用曲面理论对球面与椭球面的应变张量间的内在关系进行了讨论.   相似文献   

9.
In glacial outwash deposits, the movement of ground water Is determined by small scale irregularities in the pattern of hydraulic conductivity. Permeability determinations on split spoon samples obtained from coring the site are not sufficient to predict the patchiness of flow since it cannot define continuity of the strata. The lattice work pattern can be determined by vertical profiling with direct ground water flow measurement. The rate and direction of flow is combined with head gradient changes to compute hydraulic conductivity changes across the site.
The results of the tests can be plotted on triangular graphs depicting the fundamental Darcy equation. The local conditions reflect a mathematical "patchiness" of hydraulic conductivity unique to outwash deposits.
The procedure was employed to determine flow characteristics and define the zone of contribution to porous bottom kettle lakes. The zone of contribution was defined by projecting backward from the vertical profiling and shallow measurements and taking into account the daily rain water recharge rate across the site.
For the unconfined aquifer north of the pond, shallow ground water flow measurements were necessary to define the recharge portion of the shoreline. Vertical profiling was required to define the recharge volume since the rate of flow was not even with depth. A simple differential equation for determining the recharge area is presented along with the calculations.  相似文献   

10.
利用叠前地震数据预测裂缝储层的应用研究   总被引:7,自引:6,他引:1       下载免费PDF全文
叠前地震资料储层预测技术是在Zoeppritz方程基础上发展起来的,通过处理地震数据随着不同入射角地震反射属性,得到地震属性随着入射角变化而改变,研究分析得到反映岩性变化的纵波速度、横波速度、泊松比和截距与梯度剖面,预测裂缝储层的发育及分布.同时根据不同方位角地震资料属性,计算得到不同方位角目的层的属性差异,使用各向异性椭圆公式作拟合,求出背景趋势A和各向异性因子B,利用最大振幅包络方位和对应θ,求出裂缝发育优势方向,及B/A各向异性因子,实现对裂缝储层预测.  相似文献   

11.
Seepage rate and direction measured with a seepage metre modified for use in flowing water were greatly variable along a 300‐m reach of a shallow, gravel‐bed river and depended primarily on the local‐scale bed topography. The median value of seepage measured at 24 locations was 24 cm/day, but seepage measured at specific sites ranged from ?340 to +237 cm/day. Seepage also varied substantially over periods of hours to days and occasionally reversed direction in response to evolution of the sediment bed. Vertical hydraulic conductivity was related to seepage direction and was larger during upward seepage than during downward seepage; with differences ranging from 4 to 40% in areas of active sediment transport to more than an order of magnitude in areas where current was too slow to mobilize bed sediment. Seepage was poorly related to hydraulic gradient measured over vertical distances of 0·3 m and appeared to be opposite the hydraulic gradient at 18% of the locations where both parameters were measured. Results demonstrate the scale dependence of these measurements in coarse‐grained hyporheic settings and indicate that hydraulic gradients should be determined over a much shorter vertical increment if used to indicate exchange across the sediment–water interface. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

12.
Patterns and Age Distribution of Ground-Water Flow to Streams   总被引:2,自引:0,他引:2  
Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the down gradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Base flow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.  相似文献   

13.
The cosmic ray geomagnetic cutoff rigidities are obtained by analytical calculations within an axisymmetric model of bounded magnetosphere, the magnetic field of which is created by the dipole field of the Earth and by two spheres located beyond the Earth with the currents that flow along the parallels and have a value proportional to the cosine of latitude. The inner sphere models the ring current flowing in the westerly direction; the outer sphere simulates the currents over the magnetopause, which flow in the easterly direction. The analytical results of calculations of variations in the geomagnetic cutoff rigidity for different levels of geomagnetic disturbances are given. The results are compared with the results of analytical calculations within the model of unbounded magnetosphere (when the outer sphere is absent).  相似文献   

14.
 Many heterogeneous media and environmental processes are statistically anisotropic. In this paper we focus on range anisotropy, that is, stochastic processes with variograms that have direction dependent correlation lengths and direction independent sill. We distinguish between two classes of anisotropic covariance models: Class (A) models are reducible to isotropic after rotation and rescaling operations. Class (B) models can be separated into a product of one-dimensional functions oriented along the principal axes. We propose a new Class (A) model with multiscale properties that has applications in subsurface hydrology. We also present a family of Class (B) models based on non-Euclidean distance metrics that are generated by superellipsoidal functions. Next, we propose a new method for determining the orientation of the principal axes and the degree of anisotropy, i.e., the ratio(s) of the correlation lengths. This information reduces the degrees of freedom of anisotropic variograms and thus simplifies the estimation procedure. In particular, Class (A) models are reduced to isotropic and Class (B) models to one-dimensional functions. Our method is based on an explicit relation between the second-rank slope tensor (SRST), which can be estimated from the data, and the covariance tensor. The procedure is conceptually simple and numerically efficient. It is more accurate for regular (on-grid) data distributions, but it can also be used for sparse (off-grid) spatial distributions. In the case of non-differentiable random fields the method can be extended using generalized derivatives. We illustrate its implementation with numerical simulations.  相似文献   

15.
Summary For precise geodetic computations over larger distances the reference surface of an ellipsoid of rotation should be used. However it is often replaced by a sphere of an adequate radius. The formulae are derived from figures which usually represent the conditions in a cross-section of the ellipsoid and the reference sphere through the normal plane. Equation (9) is given for the differences s of the length of the ellipse arc of the normal section and the corresponding arc of the circle with radius R. Also Eq. (19) is given for the distance d between the ellipse of the normal section and the circle (at the end point). Both equations are applied for various radii of the reference sphere. Table 1 shows the values s, Tab. 2 and Fig. 2 give the d-values for chosen lengths. It was found that especially the distance between the ellipsoid and the sphere need not always be negligible.  相似文献   

16.
This paper presents the analytical properties of the solutions of the sensitivity equations for steady-state, two-dimensional shallow water flow. These analytical properties are used to provide guidelines for model calibration and validation. The sensitivity of the water depth/level and that of the longitudinal unit discharge are shown to contain redundant information. Under subcritical conditions, the sensitivities of the flow variables are shown to obey an anisotropic elliptic equation. The main directions of the contour lines for water depth and the longitudinal unit discharge sensitivity are parallel and perpendicular to the flow, while they are diagonal to the flow for the transverse unit discharge sensitivity. Moreover, the sensitivity for all three variables extends farther in the transverse direction than in the longitudinal direction, the anisotropy ratio being a function of the sole Froude number. For supercritical flow, the sensitivity obeys an anisotropic hyperbolic equation. These findings are confirmed by application examples on idealized and real-world simulations. The sensitivities to the geometry, friction coefficient or model boundary conditions are shown to behave in different ways, thus providing different types of information for model calibration and validation.  相似文献   

17.
Helicopter electromagnetic (HEM) systems are commonly used for conductivity mapping and the data are often interpreted using an isotropic horizontally layered earth model. However, in regions with distinct dipping stratification, it is useful to extend the model to a layered earth with general anisotropy by assigning each layer a symmetrical 3 × 3 resistivity tensor. The electromagnetic (EM) field is represented by two scalar potentials, which describe the poloidal and toroidal parts of the magnetic field. Via a 2D Fourier transform, we obtain two coupled ordinary differential equations in the vertical coordinate. To stabilize the numerical calculation, the wavenumber domain is divided into two parts associated with small and large wavenumbers. The EM field for small wavenumbers is continued from layer to layer with the continuity conditions. For large wavenumbers, the EM field behaves like a DC field and therefore cannot be sensed by airborne EM systems. Thus, the contribution from the large wavenumbers is simply ignored. The magnetic fields are calculated for the vertical coaxial (VCX), horizontal coplanar (HCP) and vertical coplanar (VCP) coil configurations for a helicopter EM system. The apparent resistivities defined from the VCX, VCP and HCP coil responses, when plotted in polar coordinates, clearly identify the principal anisotropic axes of an anisotropic earth. The field example from the Edwards Aquifer recharge area in Texas confirms that the polar plots of the apparent resistivities identify the principal anisotropic axes that coincide well with the direction of the underground structures.  相似文献   

18.
Zhang F  Zhou Z  Huang Y  Chen Z 《Ground water》2004,42(4):509-515
A typical fractured rock mass is intersected by several sets of discontinuities, which provide the main flowpath for ground water. Due to the limitations of data obtained by conventional field measurements, it is often difficult to estimate the anisotropic permeability tensor associated with the joints existing in the rock mass. For that reason, determining permeability tensors for fractured rocks is an important topic in rock mass hydraulics. Based on field surveys, joint parameters can be analyzed by using probabilistic and statistical tools, and three-dimensional mapping of the jointed rock mass. Through analysis of a single joint's hydraulic characteristics, the principal value of the permeability tensor for the jointed rock mass can be determined by using Monte Carlo methods and the searching percolation trace method, which is developed in this paper. The study reports on practical examples demonstrating that results from the methods discussed in this paper are in agreement with those from field hydrogeological surveys and measurements.  相似文献   

19.
Influenceofgeostaticstresesonpermeabili┐tyofjointedrockmasesCUANG-BBINGZHOU(周创兵)andWEN-LINXIONG(熊文林)WuhanUniuersityofHydraul...  相似文献   

20.
本文对弥勒井2004~2016年井水位同震响应形态及地震前后井水位潮汐参数变化关系特征进行分析。结果表明,在弥勒井水流运动方向总体是以垂向流为主、径向流为辅的前提下,天然因素(地震)和人工因素(洗井、装置改造)均可改变含水层水流运动方向。当震前潮汐因子和相位差反向变化时,能量较大的地震可以改变其水流运动方向,使震后潮汐因子和相位差呈同向变化,水流运动方向由以垂向为主变为以径向为主;能量较小的地震只是改变其含水层渗透系数,没有改变其水流运动方向,震后仍以垂向流为主。当震前潮汐因子和相位差呈同向变化时,能量较大的地震发生可以使径向含水层渗透系数增大,水流运动方向不变,震后仍以径向为主。通过分析潮汐参数变化,可以进一步得知井-含水层径、垂向流渗透系数的变化,为进一步精确计算含水层参数提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号