首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robert L. Wilby 《水文研究》2005,19(16):3201-3219
Despite their acknowledged limitations, lumped conceptual models continue to be used widely for climate‐change impact assessments. Therefore, it is important to understand the relative magnitude of uncertainties in water resource projections arising from the choice of model calibration period, model structure, and non‐uniqueness of model parameter sets. In addition, external sources of uncertainty linked to choice of emission scenario, climate model ensemble member, downscaling technique(s), and so on, should be acknowledged. To this end, the CATCHMOD conceptual water balance model was used to project changes in daily flows for the River Thames at Kingston using parameter sets derived from different subsets of training data, including the full record. Monte Carlo sampling was also used to explore parameter stability and identifiability in the context of historic climate variability. Parameters reflecting rainfall acceptance at the soil surface in simpler model structures were found to be highly sensitive to the training period, implying that climatic variability does lead to variability in the hydrologic behaviour of the Thames basin. Non‐uniqueness of parameters for more complex model structures results in relatively small variations in projected annual mean flow quantiles for different training periods compared with the choice of emission scenario. However, this was not the case for subannual flow statistics, where uncertainty in flow changes due to equifinality was higher in winter than summer, and comparable in magnitude to the uncertainty of the emission scenario. Therefore, it is recommended that climate‐change impact assessments using conceptual water balance models should routinely undertake sensitivity analyses to quantify uncertainties due to parameter instability, identifiability and non‐uniqueness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The level of model complexity that can be effectively supported by available information has long been a subject of many studies in hydrologic modelling. In particular, distributed parameter models tend to be regarded as overparameterized because of numerous parameters used to describe spatially heterogeneous hydrologic processes. However, it is not clear how parameters and observations influence the degree of overparameterization, equifinality of parameter values, and uncertainty. This study investigated the impact of the numbers of observations and parameters on calibration quality including equifinality among calibrated parameter values, model performance, and output/parameter uncertainty using the Soil and Water Assessment Tool model. In the experiments, the number of observations was increased by expanding the calibration period or by including measurements made at inner points of a watershed. Similarly, additional calibration parameters were included in the order of their sensitivity. Then, unique sets of parameters were calibrated with the same objective function, optimization algorithm, and stopping criteria but different numbers of observations. The calibration quality was quantified with statistics calculated based on the ‘behavioural’ parameter sets, identified using 1% and 5% cut‐off thresholds in a generalized likelihood uncertainty estimation framework. The study demonstrated that equifinality, model performance, and output/parameter uncertainty were responsive to the numbers of observations and calibration parameters; however, the relationship between the numbers, equifinality, and uncertainty was not always conclusive. Model performance improved with increased numbers of calibration parameters and observations, and substantial equifinality did neither necessarily mean bad model performance nor large uncertainty in the model outputs and parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

One decade after the first publications on multi-objective calibration of hydrological models, we summarize the experience gained so far by underlining the key perspectives offered by such approaches to improve parameter identification. After reviewing the fundamentals of vector optimization theory and the algorithmic issues, we link the multi-criteria calibration approach with the concepts of uncertainty and equifinality. Specifically, the multi-criteria framework enables recognition and handling of errors and uncertainties, and detection of prominent behavioural solutions with acceptable trade-offs. Particularly in models of complex parameterization, a multi-objective approach becomes essential for improving the identifiability of parameters and augmenting the information contained in calibration by means of both multi-response measurements and empirical metrics (“soft” data), which account for the hydrological expertise. Based on the literature review, we also provide alternative techniques for dealing with conflicting and non-commeasurable criteria, and hybrid strategies to utilize the information gained towards identifying promising compromise solutions that ensure consistent and reliable calibrations.

Citation Efstratiadis, A. & Koutsoyiannis, D. (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrol. Sci. J. 55(1), 58–78.  相似文献   

4.
5.
Implementation of sensitivity analysis (SA) procedures is helpful in calibration of models and also for their transposition to different watersheds. The reported studies on SA of Soil and Water Assessment Tool (SWAT) model were mostly focused on identifying parameters for pruning or modifying during the calibration process. This paper presents a sensitivity and identifiability analysis of model parameters that influence stream flow generation in SWAT. The analysis was focused on evaluating the sensitivity of the parameters in different climatic settings, temporal scales and flow regimes. The global sensitivity analysis (GSA) technique based on classical decomposition of variance, Sobol', was employed in this study. The results of the study indicate that modeled stream flow show varying sensitivity to parameters in different climatic settings. The results also suggest that the identifiability of a parameter for a given watershed is a major concern in calibrating the model for the specific watershed, as it might lead to equifinality of parameters. The SWAT model parameters show varying sensitivity in different years of simulation suggesting the requirement for dynamic updation of parameters during the simulation. The sensitivity of parameters during various flow regimes (low, medium and high flow) is also found to be uneven, which suggests the significance of a multi‐criteria approach for the calibration of models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
D.A. Hughes 《水文科学杂志》2015,60(7-8):1286-1298
Abstract

Temporal variability can result from shifts in climate, or from changes in the runoff response due to land- or water-use changes, and represents a potential source of uncertainty in calibrating hydrological models. Parameter values were determined using Monte Carlo parameter sampling methods for a monthly rainfall–runoff model (Pitman model) for different sub-periods on four catchments, with different types and degrees of temporal variability, in Australia and Africa. For some catchments, parameters were not dependent upon the sub-period used and fell within expected ranges given the relatively high degree of model equifinality. In other catchments, dependencies can be identified that are associated with signals contained within the sub-periods. While the Pitman model is relatively robust in the face of temporal variability, it is concluded that better simulations will always be obtained from calibration data that include signals representing the total variability in climate, land-use change and catchment responses.  相似文献   

7.
ABSTRACT

Reliable simulations of hydrological models require that model parameters are precisely identified. In constraining model parameters to small ranges, high parameter identifiability is achieved. In this study, it is investigated how precisely model parameters can be constrained in relation to a set of contrasting performance criteria. For this, model simulations with identical parameter samplings are carried out with a hydrological model (SWAT) applied to three contrasting catchments in Germany (lowland, mid-range mountains, alpine regions). Ten performance criteria including statistical metrics and signature measures are calculated for each model simulation. Based on the parameter identifiability that is computed separately for each performance criterion, model parameters are constrained to smaller ranges individually for each catchment. An iterative repetition of model simulations with successively constrained parameter ranges leads to more precise parameter identifiability and improves model performance. Based on these results, a more consistent handling of model parameters is achieved for model calibration.  相似文献   

8.
Regionalization of model parameters by developing appropriate functional relationship between the parameters and basin characteristics is one of the potential approaches to employ hydrological models in ungauged basins. While this is a widely accepted procedure, the uniqueness of the watersheds and the equifinality of parameters bring lot of uncertainty in the simulations in ungauged basins. This study proposes a method of regionalization based on the probability distribution function of model parameters, which accounts the variability in the catchment characteristics. It is envisaged that the probability distribution function represents the characteristics of the model parameter, and when regionalized the earlier concerns can be addressed appropriately. The method employs probability distribution of parameters, derived from gauged basins, to regionalize by regressing them against the catchment attributes. These regional functions are used to develop the parameter characteristics in ungauged basins based on the catchment attributes. The proposed method is illustrated using soil water assessment tool model for an ungauged basin prediction. For this numerical exercise, eight different watersheds spanning across different climatic settings in the USA are considered. While all the basins considered in this study were gauged, one of them was assumed to be ungauged (pseudo-ungauged) in order to evaluate the effectiveness of the proposed methodology in ungauged basin simulation. The process was repeated by considering representative basins from different climatic and landuse scenarios as pseudo-ungauged. The results of the study indicated that the ensemble simulations in the ungauged basins were closely matching with the observed streamflow. The simulation efficiency varied between 57 and 61 % in ungauged basins. The regional function was able to generate the parameter characteristics that were closely matching with the original probability distribution derived from observed streamflow data.  相似文献   

9.
10.
ABSTRACT

Traditionally, hydrological models are only calibrated to reproduce streamflow regime without considering other hydrological state variables, such as soil moisture and evapotranspiration. Limited studies have been performed on constraining the model parameters, despite the fact that the presence of a large number of parameters may provide large degree of freedom, resulting in equifinality and poor model performance. In this study, a multi-objective optimization approach is adopted, and both streamflow and soil moisture data are calibrated simultaneously for an experimental study basin in the Saskatchewan Prairies in western Canada. The results of this study show that the multi-objective calibration improves model fidelity compared to the single objective calibration. Moreover, the study demonstrates that single objective calibration performed against only streamflow can fairly mimic the streamflow hydrograph but does not yield realistic estimation of other fluxes such as evapotranspiration and soil moisture (especially in deeper soil layers).  相似文献   

11.
The declining costs of small Unmanned Aerial Systems (sUAS), in combination with Structure‐from‐Motion (SfM) photogrammetry have triggered renewed interest in image‐based topography reconstruction. However, the potential uptake of sUAS‐based topography is limited by the need for ground control acquired with expensive survey equipment. Direct georeferencing (DG) is a workflow that obviates ground control and uses only the camera positions to georeference the SfM results. However, the absence of ground control poses significant challenges in terms of the data quality of the final geospatial outputs. Notably, it is generally accepted that ground control is required to georeference, refine the camera calibration parameters, and remove any artefacts of optical distortion from the topographic model. Here, we present an examination of DG carried out with low‐cost consumer‐grade sUAS. We begin with a study of surface deformations resulting from systematic perturbations of the radial lens distortion parameters. We then test a number of flight patterns and develop a novel error quantification method to assess the outcomes. Our perturbation analysis shows that there exists families of predictable equifinal solutions of K1K2 which minimize doming in the output model. The equifinal solutions can be expressed as K2 = f (K1) and they have been observed for both the DJI Inspire 1 and Phantom 3 sUAS platforms. This equifinality relationship can be used as an external reliability check of the self‐calibration and allow a DG workflow to produce topography exempt of non‐affine deformations and with random errors of 0.1% of the flying height, linear offsets below 10 m and off‐vertical tilts below 1°. Whilst not yet of survey‐grade quality, these results demonstrate that low‐cost sUAS are capable of producing reliable topography products without recourse to expensive survey equipment and we argue that direct georeferencing and low‐cost sUAS could transform survey practices in both academic and commercial disciplines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Considerable uncertainty occurs in the parameter estimates of traditional rainfall–water level transfer function noise (TFN) models, especially with the models built using monthly time step datasets. This is due to the equal weights assigned for rainfall occurring during both water level rise and water level drop events while estimating the TFN model parameters using the least square technique. As an alternative to this approach, a threshold rainfall-based binary-weighted least square method was adopted to estimate the TFN model parameters. The efficacy of this binary-weighted approach in estimating the TFN model parameters was tested on 26 observation wells distributed across the Adyar River basin in Southern India. Model performance indices such as mean absolute error and coefficient of determination values showed that the proposed binary-weighted approach of fitting independent threshold-based TFN models for water level rise and water level drop scenarios considerably improves the model accuracy over other traditional TFN models.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Fiori  相似文献   

13.
The main objective of this study was to use an uncertainty version of a widely used monthly time step, semi-distributed model (the Pitman model) to explore the equifinalities in the way in which the main hydrological processes are simulated and any identifiable linkages with uncertainties in the available observational data. The study area is the Zambezi River basin and 17 gauged sub-basins have been included in the analyses. Unfortunately, it is not generally possible to quantify some of the observational uncertainties in such a data scarce area and mostly we are limited to identifying where these data are clearly deficient (i.e., erroneous or non-representative). The overall conclusion is that the equifinalities in the model are hugely dominant in terms of the uncertainties in the relative occurrence of different runoff generating processes, although water use uncertainties in the semi-arid parts of the basin can contribute to these uncertainties. The identification of landscape features that suggest the occurrence of saturation excess surface runoff provides some information to constrain the model. Improved independent estimates of groundwater recharge is also identified as a key source of observational data that would help a great deal in constraining the model parameter space and therefore reducing some of the model equifinality.  相似文献   

14.
Eight one-dimensional steady-state models with different complexity, which describe the phosphate concentration as a function of the distance along a river, were examined with respect to accuracy and uncertainty of the model results and identifiability of the model parameters by means of combined calibration and sensitivity analysis using Monte Carlo simulations. In addition, the models were evaluated by the Akaike information criterion (AIC). All eight models were calibrated on the same data set from the Biebrza River, Poland. Although the accuracy increases with model complexity, the percentage of explained variance is not significantly improved in comparison with the model that describes the phosphate concentration by means of three parameters. This model also yields the minimum value of the AIC and the parameters could be well identified. Identification of the model parameters becomes poorer with increasing model complexity; in other words the parameters become increasingly correlated. This scarcely affects the uncertainty of the model results if correlation is taken into account. If correlation is not taken into account, the uncertainty of model results increases with model complexity. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Advances in remote sensing have enabled hydraulic models to run at fine scale resolutions, producing precise flood inundation predictions. However, running models at finer resolutions increase their computational expense, reducing the feasibility of running the multiple model realizations required to undertake uncertainty analysis. Furthermore, it is possible that precision gained by running fine scale models is smoothed out when treating models probabilistically. The aim of this paper is to determine the level of spatial complexity that is required when making probabilistic flood inundation predictions. The Imera basin, Sicily is used as a case study to assess how changing the spatial resolution of the hydraulic model LISFLOOD‐FP impacts on the skill of conditional probabilistic flood inundation maps given model parameter and boundary condition uncertainties. We find that model performance deteriorates at resolutions coarser than 50 m. This is predominantly caused by changes in flow pathways at coarser resolutions which lead to non‐stationarity in the optimum model parameters at different spatial resolutions. However, although it is still possible to produce probabilistic flood maps that contain a coherent outline of the flood extent at coarser resolutions, the reliability of these maps deteriorates at resolutions coarser than 100 m. Additionally, although the rejection of non‐behavioural models reduces the uncertainty in probabilistic flood maps the reliability of these maps is also reduced. Models with resolutions finer than 50 m offer little gain in performance yet are more than an order of magnitude computationally expensive which can become infeasible when undertaking probabilistic analysis. Furthermore, we show that using deterministic, high‐resolution flood maps can lead to a spurious precision that would be misleading and not representative of the overall uncertainties that are inherent in making inundation predictions. Copyright © 2015 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

16.
ABSTRACT

Evaluation of a recession-based “top-down” model for distributed hourly runoff simulation in macroscale mountainous catchments is rare in the literature. We evaluated such a model for a 3090 km2 boreal catchment and its internal sub-catchments. The main research question is how the model performs when parameters are either estimated from streamflow recession or obtained by calibration. The model reproduced observed streamflow hydrographs (Nash-Sutcliffe efficiency up to 0.83) and flow duration curves. Transferability of parameters to the sub-catchments validates the performance of the model, and indicates an opportunity for prediction in ungauged sites. However, the cases of parameter estimation and calibration excluding the effects of runoff routing underestimate peak flows. The lower end of the recession and the minimum length of recession segments included are the main sources of uncertainty for parameter estimation. Despite the small number of calibrated parameters, the model is susceptible to parameter uncertainty and identifiability problems.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR A. Carsteanu  相似文献   

17.
Abstract

The complexity of distributed hydrological models has led to improvements in calibration methodologies in recent years. There are various manual, automatic and hybrid methods of calibration. Most use a single objective function to calculate estimation errors. The use of multi-objective calibration improves results, since different aspects of the hydrograph may be considered simultaneously. However, the uncertainty of estimates from a hydrological model can only be taken into account by using a probabilistic approach. This paper presents a calibration method of probabilistic nature, based on the determination of probability functions that best characterize different parameters of the model. The method was applied to the Real-time Interactive Basin Simulator (RIBS) distributed hydrological model using the Manzanares River basin in Spain as a case study. The proposed method allows us to consider the uncertainty in the model estimates by obtaining the probability distributions of flows in the flood hydrograph.

Citation Mediero, L., Garrote, L. & Martín-Carrasco, F. J. (2011) Probabilistic calibration of a distributed hydrological model for flood forecasting. Hydrol. Sci. J. 56(7), 1129–1149.  相似文献   

18.
Long‐term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, such as Central America, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information—to locally observed discharge—can be used to constrain model parameter uncertainty for ungauged catchments. Given the strong influence that climatic large‐scale processes exert on streamflow variability in the Central American region, we explored the use of climate variability knowledge as process constraints to constrain the simulated discharge uncertainty for a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty, we first rejected parameter relationships that disagreed with our understanding of the system. Then, based on this reduced parameter space, we applied the climate‐based process constraints at long‐term, inter‐annual, and intra‐annual timescales. In the first step, we reduced the initial number of parameters by 52%, and then, we further reduced the number of parameters by 3% with the climate constraints. Finally, we compared the climate‐based constraints with a constraint based on global maps of low‐flow statistics. This latter constraint proved to be more restrictive than those based on climate variability (further reducing the number of parameters by 66% compared with 3%). Even so, the climate‐based constraints rejected inconsistent model simulations that were not rejected by the low‐flow statistics constraint. When taken all together, the constraints produced constrained simulation uncertainty bands, and the median simulated discharge followed the observed time series to a similar level as an optimized model. All the constraints were found useful in constraining model uncertainty for an—assumed to be—ungauged basin. This shows that our method is promising for modelling long‐term flow data for ungauged catchments on the Pacific side of Central America and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.  相似文献   

19.
《水文科学杂志》2013,58(4):685-695
Abstract

Employing 1-, 2-, 4-, 6-, 12- and 24-hourly data sets for two catchments (10.6 and 298 km2) in Wales, the calibrated parameters of a unit hydrograph-based model are shown to change substantially over that range of data time steps. For the smaller basin, each model parameter reaches, or approaches, a stable value as the data time step decreases, providing a straightforward method of estimating time-step independent model parameter values. For the larger basin, the model parameters also reach, or approach, stable values using hourly data, but, for reasons given in the paper, interpretation of the results is more difficult. Model parameter sensitivity analyses are presented that give insights into the relative precision on the parameters for both catchments. The paper discusses the importance of accounting for model parameter data time-step dependency in pursuit of a reduction in the uncertainty associated with estimates of flow in ungauged basins, and suggests that further work along these lines be undertaken using different catchments and models.  相似文献   

20.
Abstract

A major goal in hydrological modelling is to identify and quantify different sources of uncertainty in the modelling process. This paper analyses the structural uncertainty in a streamflow modelling system by investigating a set of models with increasing model structure complexity. The models are applied to two basins: Kielstau in Germany and XitaoXi in China. The results show that the model structure is an important factor affecting model performance. For the Kielstau basin, influences from drainage and wetland are critical for the local runoff generation, while for the XitaoXi basin accurate distributions of precipitation and evapotranspiration are two of the determining factors for the success of the river flow simulations. The derived model uncertainty bounds exhibit appropriate coverage of observations. Both case studies indicate that simulation uncertainty for the low-flow period contributes more to the overall uncertainty than that for the peak-flow period, although the main hydrological features in these two basins differ greatly.

Citation Zhang, X. Y., Hörmann, G., Gao, J. F. & Fohrer, N. (2011) Structural uncertainty assessment in a discharge simulation model. Hydrol. Sci. J. 56(5), 854–869.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号