首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents an extension of the concept of “quasi-saturation” to a quasi-saturated layer, defined as the uppermost dynamic portion of the saturated zone subject to water table fluctuations. Entrapped air here may cause substantial reductions in the hydraulic conductivity (K) and fillable pore water. Air entrapment is caused by a rising water table, usually as a result of groundwater recharge. The most significant effects of entrapped air are recharge overestimation based on methods that use specific yield (Sy), such as the water table fluctuation method (WTF), and reductions in K values. These effects impact estimation of fluid flow velocities and contaminant migration rates in groundwater. In order to quantify actual groundwater recharge rates and the effects of entrapped air, numerical simulations with the FEFLOW (Version 7.0) groundwater flow model were carried out using a quasi-saturated layer for a pilot area in Rio Claro, Brazil. The calculated recharge rate represented 16% of the average precipitation over an 8-year period, approximately half of estimates using the WTF method. Air entrapment amounted to a fillable porosity of 0.07, significant lower that the value of 0.17 obtained experimentally for Sy. Numerical results showed that the entrapped air volume in the quasi-saturated layer can be very significant (0.58 of the air fraction) and hence can significantly affect estimates of groundwater recharge and groundwater flow rates near the water table.  相似文献   

2.
Abstract

The water table fluctuation (WTF) method is based on accepting that rises of a water table are due to recharge water reaching the groundwater. To apply the method, an estimate of the specific yield of the zone of fluctuation of the groundwater level is required. In this paper, a method for estimation of the specific yield (Sy) is proposed; it consists of a graphical procedure which relates rises in groundwater level to the precipitation from which they originated. The method presents more reliable Sy values as the number of events measured increases. Eighteen years of daily measurements were analysed to obtain a Sy value of 0.09, which was used to apply the WTF method. The obtained recharge values show consistency with values calculated by other authors for the same region.

Editor D. Koutsoyiannis

Citation Varni, M., Comas, R., Weinzettel, P., and Dietrich, S., 2013. Application of water table fluctuation method to characterize the groundwater recharge in the Pampa plain, Argentina. Hydrological Sciences Journal, 58 (7), 1445–1455.  相似文献   

3.
Shallow groundwater plays a key role in agro‐hydrological processes of arid areas. Groundwater often supplies a necessary part of the water requirement of crops and surrounding native vegetation, such as groundwater‐dependent ecosystems. However, the impact of water‐saving irrigation on cropland water balance, such as the contribution of shallow groundwater to field evapotranspiration, requires further investigation. Increased understanding of quantitative evaluation of field‐scale water productivity under different irrigation methods aids policy and decision‐making. In this study, high‐resolution water table depth and soil water content in field maize were monitored under conditions of flood irrigation (FI) and drip irrigation (DI), respectively. Groundwater evapotranspiration (ETg) was estimated by the combination of the water table fluctuation method and an empirical groundwater–soil–atmosphere continuum model. The results indicate that daily ETg at different growth stages varies under the two irrigation methods. Between two consecutive irrigation events of the FI site, daily ETg rate increases from zero to greater than that of the DI site. Maize under DI steadily consumes more groundwater than FI, accounting for 16.4% and 14.5% of ETa, respectively. Overall, FI recharges groundwater, whereas DI extracts water from shallow groundwater. The yield under DI increases compared with that under FI, with less ETa (526 mm) compared with FI (578 mm), and irrigation water productivity improves from 3.51 kg m?3 (FI) to 4.58 kg m?3 (DI) through reducing deep drainage and soil evaporation by DI. These results highlight the critical role of irrigation method and groundwater on crop water consumption and productivity. This study provides important information to aid the development of agricultural irrigation schemes in arid areas with shallow groundwater.  相似文献   

4.
Peat specific yield (SY) is an important parameter involved in many peatland hydrological functions such as flood attenuation, baseflow contribution to rivers, and maintaining groundwater levels in surficial aquifers. However, general knowledge on peatland water storage capacity is still very limited, due in part to the technical difficulties related to in situ measurements. The objectives of this study were to quantify vertical SY variations of water tables in peatlands using the water table fluctuation (WTF) method and to better understand the factors controlling peatland water storage capacity. The method was tested in five ombrotrophic peatlands located in the St. Lawrence Lowlands (southern Québec, Canada). In each peatland, water table wells were installed at three locations (up‐gradient, mid‐gradient, and down‐gradient). Near each well, a 1‐m long peat core (8 cm × 8 cm) was sampled, and subsamples were used to determine SY with standard gravitational drainage method. A larger peat sample (25 cm × 60 cm × 40 cm) was also collected in one peatland to estimate SY using a laboratory drainage method. In all sites, the mean water table depth ranged from 9 to 49 cm below the peat surface, with annual fluctuations varying between 15 and 29 cm for all locations. The WTF method produced similar results to the gravitational drainage experiments, with values ranging between 0.13 and 0.99 for the WTF method and between 0.01 and 0.95 for the gravitational drainage experiments. SY was found to rapidly decrease with depth within 20 cm, independently of the within‐site location and the mean annual water table depth. Dominant factors explaining SY variations were identified using analysis of variance. The most important factor was peatland site, followed by peat depth and seasonality. Variations in storage capacity considering site and seasonality followed regional effective growing degree days and evapotranspiration patterns. This work provides new data on spatial variations of peatland water storage capacity using an easily implemented method that requires only water table measurements and precipitation data.  相似文献   

5.
Groundwater provides an important source of water for maize cultivation where the water table is shallow in the semi-arid Hailiutu River catchment of the Maowusu Desert on the Erdos Plateau in Northwest China. A HYDRUS-1D model of the unsaturated flow beneath a maize (Zea mays L.) field was calibrated and validated with measured soil water contents at various depths during the maize growing period from 30 April to 1 October 2011, and from 23 May to 27 September 2012, respectively. The model computed the actual maize evapotranspiration (ETa) as 580 mm during the whole growing period from 30 April to 1 October 2011. The groundwater contribution to ETa was calculated to be 220 mm, accounting for 38% of maize water use during the growing season in 2011. When the groundwater level drops below a depth of 157 cm, maize can no longer use groundwater for transpiration. The irrigation water requirement increases with the increase of groundwater table depth. These results are very important for managing crop irrigation in the area.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR L. Ruiz  相似文献   

6.
Abstract

The hydrological cycle in arid and semi-arid climates is highly controlled by evaporation. The correct quantification of this process is essential for improving the accuracy of water balance estimates, especially in closed basins. The objective of this paper is to characterize evaporation rates from shallow groundwater using the chamber approach in six closed basins in the Altiplano of northern Chile. Measurements were made at 49 locations with water-table depths ranging from 0.09 m to 3.3 m. Estimated daily evaporation rates appeared to be strongly related to groundwater depth and soil texture. In particular, the highest rates were recorded in areas with high groundwater tables and coarse-grained soils. Evaporation curves were derived by fitting exponential and power relationships as functions of the groundwater depths that we proposed to use in the study area. An application of these curves for the Salar de Pedernales basin produced an estimated evaporation flow of 530 L s-1, using the average curve.

Citation Johnson, E., Yáñez, J., Ortiz, C. & Muñoz, J. (2010) Evaporation from shallow groundwater in closed basins in the Chilean Altiplano. Hydrol. Sci. J. 55(4), 624–635.  相似文献   

7.
Measurements of water vapour flux from semi‐arid perennial woodland (mallee) were made for 3 years using eddy covariance instrumentation. There have been no previous long‐term, detailed measures of water use in this ecosystem. Latent energy flux (LE) on a half hourly basis was the measure of the combined soil and plant evaporation, ‘evapotranspiration’ (ELE) of the site. Aggregation over 3 years of the site measured rain (1136 mm) and the estimated evaporation (794 mm) suggests that 342 mm or 30% of rain had moved into or past the root zone of the vegetation. Above average rainfall during 2011 and the first quarter of 2012 (633 mm, 15 months) would likely have been the period during which significant groundwater recharge occurred. At times immediately after rainfall, ELE rates were the same or exceeded estimates of potential E calculated from a suitably parameterized Penman–Monteith (EPMo) equation. Apparent free water E from plant interception and soil evaporation was about 2.3 mm and lasted for 1.3 days following rainfall in summer, while in autumn, E was 5.1 mm that lasted over 5.4 days. The leaf area index (LAI) needed to adjust a wind function calibrated Penman equation (EPMe) to match the ELE values could be back calculated to generate seasonal change in LAI from 0.12 to 0.46 and compared well with normalized difference vegetation index; r = 0.38 and p = 0.0213* and LAI calculated from digital cover photography. The apparently conservative response of perennial vegetation evaporation to available water in these semi‐arid environments reinforces the conclusion that these ecosystems use this mechanism to survive the reasonably common dry periods. Plant response to soil water availability is primarily through gradual changes in leaf area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Major ions and stable isotopes in groundwaters of the Plio-Quaternary shallow aquifer of the Djerid oases, southern Tunisia, were investigated to elucidate the origin of groundwater recharge and the mineralization processes. It has been demonstrated that the groundwater composition is mainly controlled by the water–rock interaction, the encroachment of brines from the Chotts and the return flow of irrigation waters. The isotopically depleted groundwater samples suggest that the recharge waters derive from an old palaeoclimatic origin. However, the enriched groundwater samples reflect the presence of evaporated recharge water. Furthermore, the large negative deuterium-excess values indicate the effect of secondary evaporation processes, probably related to the return flow of irrigation waters pumped from the underlying aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Tarki, M., Dassi, L. and Jedoui, Y., 2012. Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: implications of return flow. Hydrological Sciences Journal, 57 (4), 790–804.  相似文献   

9.
Abstract

The exact numerical and approximate analytical solutions of the simplest nonlinear integral equation with second order nonlinearity for the averaged Green function are presented. It is assumed that the turbulence is stationary, homogeneous, isotropic and incompressible. Numerous examples of turbulent spectra are considered (peak-like spectrum, spectra of Kolmogorov's type with different forms of “pumping” regions, stepwise spectra etc.). Special emphasis is given to investigating the case of so called “frozen” turbulence when the parameter ξ =u 0τ/R→∞ where uτ0,R 0 are characteristic velocity, lifetime and space scale of turbulent pulsations, respectively. It is shown that these solutions allow us to calculate the turbulent diffusivities accurately for arbitrary spectra with any values of the parameter ξ. The results take into account the possible helicity of turbulence concerned only with scalar passive fields (number density and temperature).  相似文献   

10.
The impacts of long-term pumping on groundwater chemistry remain unclear in the Manas River Basin, Northwest China. In this study, major ions within five surface water and 105 groundwater samples were analyzed to identify hydrogeochemical processes affecting groundwater composition and evolution along the regional-scale groundwater flow paths using the multivariate techniques of hierarchical cluster analysis (HCA) and principal components analysis (PCA) and traditional graphical methods for analyzing groundwater geochemistry. HCA classified the groundwater samples into four clusters (C1 to C4). PCA reduced the dimensionality of geochemical data into three PCs, which explained 86% of the total variance. The results of HCA and PCA were used to identify three zones: “recharge,” “transition,” and “discharge.” In the recharge zone the groundwater type is Ca-HCO3-SO4 and is primarily impacted by the dissolution of calcite and silicate weathering. In the transition zone the groundwater type is Ca-HCO3-SO4-Cl and is impacted by rock dissolution and reverse ion exchange. In the discharge zone the groundwater type is Na-Cl and is impacted by evaporation and reverse ion exchange. In addition, anthropogenic activities impact the groundwater chemistry in the study area. The groundwater type generally changes from Ca-HCO3-SO4 in the recharge area to Na-Cl in the discharge area along the regional-scale groundwater flow paths. This study provides a process-based knowledge for understanding the interaction of groundwater flow patterns and geochemical evolution within the Manas River Basin.  相似文献   

11.
Coastal wetlands are characterized by strong, dynamic interactions between surface water and groundwater. This paper presents a coupled model that simulates interacting surface water and groundwater flow and solute transport processes in these wetlands. The coupled model is based on two existing (sub) models for surface water and groundwater, respectively: ELCIRC (a three‐dimensional (3‐D) finite‐volume/finite‐difference model for simulating shallow water flow and solute transport in rivers, estuaries and coastal seas) and SUTRA (a 3‐D finite‐element/finite‐difference model for simulating variably saturated, variable‐density fluid flow and solute transport in porous media). Both submodels, using compatible unstructured meshes, are coupled spatially at the common interface between the surface water and groundwater bodies. The surface water level and solute concentrations computed by the ELCIRC model are used to determine the boundary conditions of the SUTRA‐based groundwater model at the interface. In turn, the groundwater model provides water and solute fluxes as inputs for the continuity equations of surface water flow and solute transport to account for the mass exchange across the interface. Additionally, flux from the seepage face was routed instantaneously to the nearest surface water cell according to the local sediment surface slope. With an external coupling approach, these two submodels run in parallel using time steps of different sizes. The time step (Δtg) for the groundwater model is set to be larger than that (Δts) used by the surface water model for computational efficiency: Δtg = M × Δts where M is an integer greater than 1. Data exchange takes place between the two submodels through a common database at synchronized times (e.g. end of each Δtg). The coupled model was validated against two previously reported experiments on surface water and groundwater interactions in coastal lagoons. The results suggest that the model represents well the interacting surface water and groundwater flow and solute transport processes in the lagoons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

Using a statistical approach, Scheihing attempts to demonstrate the direct influence of recharge events in the Precordillera and the Andean Piedmont on water table variations in downstream alluvial fans. The author “unquestionably” discards the existence of ephemeral recharge processes in alluvial fans although they are frequently impacted by major floods. However, the author does not consider previous publications about recharge processes in arid alluvial fans, the hydraulic setting of the Pampa del Tamarugal Aquifer (PTA) and anthropogenic pressure changes in the PTA. Because the sustainable management of groundwater resources in drylands depends on a good understanding of hydrogeological processes, we propose a thorough reinterpretation of the short- and long-term PTA water table variations addressed by the author. In this comment, we illustrate the limits of the sole use of a statistical approach for characterizing both recharge processes and factors controlling the water table variations in the Atacama Desert.  相似文献   

13.
Sustainable water management in semi-arid agriculture practices requires quantitative knowledge of water fluxes within the soil-vegetation-atmosphere system. Therefore, we used stable-isotope approaches to evaluate evaporation (Ea), transpiration (Ta), and groundwater recharge (R) at sites in Senegal's Groundnut basin and Ferlo Valley pasture region during the pre-monsoon, monsoon, and post-monsoon seasons of 2021. The approaches were based upon (i) the isothermal evaporation model (for quantifying Ea); (ii) water and isotope mass balances (to partition Ea and Ta for groundnut and pasture); and (iii) the piston displacement method (for estimating R). Ea losses derived from the isothermal evaporation model corresponded primarily to Stage II evaporation, and ranged from 0.02 to 0.09 mm d−1 in the Groundnut basin, versus 0.02–0.11 mm d−1 in Ferlo. At the groundnut site, Ea rates ranged from 0.01 to 0.69 mm d−1; Ta was in the range 0.55–2.29 mm d−1; and the Ta/ETa ratio was 74%–90%. At the pasture site, the ranges were 0.02–0.39 mm d−1 for Ea; 0.9–1.69 mm d−1 for Ta; and 62–90% for Ta/ETa. The ETa value derived for the groundnut site via the isotope approach was similar to those from eddy covariance measurements, and also to the results from the previous validated HYDRUS-1D model. However, the HYDRUS-1D model gave a lower Ta/ETa ratio (23.2%). The computed groundwater recharge for the groundnut site amounted to less than 2% of the local annual precipitation. Recommendations are made regarding protocols for preventing changes to isotopic compositions of water in samples that are collected in remote arid regions, but must be analysed days later. The article ends with suggestions for studies to follow up on evidence that local aquifers are being recharged via preferential pathways.  相似文献   

14.
Abstract

A pedological study of the reservoir bed of Al-Khoud Dam, Oman, revealed an unusual sedimentation pattern which evolved into an intricate composition of silt blocks surrounded by vertical cracks and horizontal layers filled with a “proppant” sand. The discovered soil morphology reflects the complex topology of water motion (infiltration–seepage–evaporation) through the sand-filled cracks/layers and blocks during both the rare flood events and ensuing periods of ponding, and the long, intervening dry periods. These naturally formed soils demonstrate an ability to preserve a large quantity of water inside the silty blocks at depths of 0.5 to 1.5 m, despite the high temperature and dryness of the topsoil. The hydrological optimality and “smartness” of these soils is attributed to the unique block-crack system. Natural, lush vegetation was found in adjacent zones of the reservoir bed, and acted as a footprint of the shallow “fractured perched aquifer”. Planted “ivy” (Convolvulaceae) in the vertical face of one pedon showed intensive growth without irrigation. Soil moisture content data confirmed the hydrological immobility of water in the blocks if not depleted by transpiration. The novel phenomena reported unveil the possible alteration of soil heterogeneity for optimization of the soil–water system in arid zone soils.
Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Al-Ismaily, S.S., Al-Maktoumi, A.K., Kacimov, A.R., Al-Saqri, S.M., Al-Busaidi, H.A., and Al-Haddabi, M.H., 2013. Morphed block-crack preferential sedimentation in a reservoir bed: a smart design and evolution in nature. Hydrological Sciences Journal, 58 (8), 1779–1788.  相似文献   

15.
Abstract

Hydrological processes of the wetland complex in the Prairie Pothole Region (PPR) are difficult to model, partly due to a lack of wetland morphology data. We used Light Detection And Ranging (LiDAR) data sets to derive wetland features; we then modelled rainfall, snowfall, snowmelt, runoff, evaporation, the “fill-and-spill” mechanism, shallow groundwater loss, and the effect of wet and dry conditions. For large wetlands with a volume greater than thousands of cubic metres (e.g. about 3000 m3), the modelled water volume agreed fairly well with observations; however, it did not succeed for small wetlands (e.g. volume less than 450 m3). Despite the failure for small wetlands, the modelled water area of the wetland complex coincided well with interpretation of aerial photographs, showing a linear regression with R2 of around 0.80 and a mean average error of around 0.55 km2. The next step is to improve the water budget modelling for small wetlands.

Editor Z.W. Kundzewicz; Associate editor X. Chen

Citation Huang, S.L., Young, C., Abdul-Aziz, O.I., Dahal, D., Feng, M., and Liu, S.G., 2013. Simulating the water budget of a Prairie Potholes complex from LiDAR and hydrological models in North Dakota, USA. Hydrological Sciences Journal, 58 (7), 1434–1444.  相似文献   

16.
《水文科学杂志》2012,57(2):169-182
ABSTRACT

A combination of geospatial, geophysical and statistical models using satellite data, the weighted index overlay (WIO) method and two-dimensional electrical resistivity tomography (2D-ERT) is applied to generate the highest potential groundwater area and to further explore the groundwater in Dehradun, India. The results show that of 19.7 km2 total basin area, 0.26% falls under the “poor” category as a prospect zone for groundwater, 4.3% is “moderate”, 10.10% “moderately good”, 4.9% “good” and 0.17% “very good”. In addition, the demonstration of the geophysical survey is presented, in which Purkal Youth Society Division (PYSD) site is categorized as a shallow aquifer zone and the Guru Nanak Fifth Centenary School (GNFCS) site is a deeper aquifer zone. Our study emphasizes remote sensing and geographic information system integrated with a geophysical survey to support prospecting the most probable area and confirm the existence of groundwater.  相似文献   

17.
Riparian vegetation is important for stream functioning and as a major landscape feature. For many riparian plants, shallow groundwater is an important source of water, particularly in areas where rainfall is low, either annually or seasonally, and when extended dry conditions prevail for all or part of the year. The nature of tree water relationships is highly complex. Therefore, we used multiple lines of evidence to determine the water sources used by the dominant tree species Eucalyptus camaldulensis (river red gum), growing in riparian and floodplain areas with varying depth to groundwater and stream perenniality. Dendrometer bands were used to measure diel, seasonal, and annual patterns of tree water use and growth. Water stable isotopes (δ2H and δ18O) in plant xylem, soil water, and groundwater were measured to determine spatial and temporal patterns in plant water source use. Our results indicated riparian trees located on relatively shallow groundwater had greater growth rates, larger diel responses in stem diameter, and were less reactive to extended dry periods, than trees in areas of deep groundwater. These results were supported by isotope analysis that suggested all trees used groundwater when soil water stores were depleted at the end of the dry season, and this was most pronounced for trees with shallow groundwater. Trees may experience more frequent periods of water deficit stress and undergo reduced productivity in scenarios where water table accessibility is reduced, such as drawdown from groundwater pumping activities or periods of reduced rainfall recharge. The ability of trees to adapt to changing groundwater conditions may depend on the speed of change, the local hydrologic and soil conditions as well as the species involved. Our results suggest that Ecamaldulesis growing at our study site is capable of utilizing groundwater even to depths >10 m, and stream perenniality is likely to be a useful indicator of riparian tree use of groundwater.  相似文献   

18.
Summary

The urgent need for planning information on the effect of changes in land use on water resources in East Africa has necessitated the use of intensive methods of experimental catchment area research in order to produce data on the water balance of different vegetation covers in a matter of years rather than decades.

Quantitative water balance studies require an intensive network of raingauges to estimate the volumetric water input with an accuracy comparable with the measurement of outflow. Observations of the soil moisture status and energy balance, in addition to those of rainfall and streamflow are necessary to provide independent checks for “leaks” from the catchments. The successful application of these methods is illustrated from the results of three catchment area experiments in Kenya and Tanzania. The water use of each vegetational complex is characterized by the ratio of the transpiration, E t, to the evaporative demand from an open water surface, E o. This ratio is shown to vary little from year to year despite considerable variation in E t and E o.

An intensive method of analysis of stormflow response, based on the construction of a prediction equation relating stormflow to rainfall quantity and intensity and to antecedent surface soil moistrue condition, is described. Results from the application of the method in one of the catchments are presented in detail.  相似文献   

19.
Abstract

The behaviour of various formulas for evapotranspiration of grass in Nonrestricted soil water conditions is considered. These are the expressions based on the Penman formula, i.e. “old” Penman, Penman-Monteith, Thorn-Oliver and the version recommended more recently by the FAO. Moreover, the Priestley-Taylor and the Makkink formulas are considered, which are radiation-based. Comparisons are made between daily mean values estimated with these formulas and direct measurements. The latter were collected over grass in the period 1979–1982 in the catchment area of the Hupselse Beek (The Netherlands). It was found that if all required input data were measured, the Priestley-Taylor and the “old” Penman formula yielded the best results. The assumption that soil heat flux can be neglected introduces a systematic and a random error of roughly 5%. The empirical estimates for net radiation from sunshine duration, temperature and humidity appear to perform rather poorly. These estimates improved significantly if solar radiation was measured directly. The empirical expression proposed by Slob (unpublished) that requires incoming solar radiation only as input, provided better results than the other more complicated expressions. Moreover, this study reveals that evaporation of unstressed grass is primarily determined by the available energy, i.e. good evaporation estimates can be obtained by using simply λE = 0.86(Rn ? G). The Makkink method appears to be attractive for practical applications. These findings support the use of Makkink's formula for routine calculations of crop-reference evapotranspiration as has been done by the Royal Netherlands Meteorological Institute since 1987.  相似文献   

20.
Soil containing calcic nodules is widely present on the northern Loess Plateau of China owing to soil genesis under local climate conditions. In most studies, little attention is payed to the effect of calcic nodules on soil evaporation and ecoenvironment, resulting in inaccurate evaporation estimation in this kind of soil and further improper field water management measures and irrigation effects. In this paper, soil column experiments were conducted in order to investigate evaporation process in soil containing calcic nodules and the effect of calcic nodules on soil evaporation was determined. The results indicated that evaporation reduction was positively related to calcic nodule content (CNC = mass of calcic nodules/total mass), and could be estimated by the experiential equation: Esoil = E0 (1 – 0.4 CNC) (Esoil = actual evaporation, E0 = theory evaporation in soil without calcic nodules). When CNC was below 0.2, the impact could be neglected. While, as CNC exceeded 0.2, the impact needed to be considered during soil evaporation estimation. As CNC reached 0.5, soil evaporation could be reduced by 7.5 mm, accounting for around 10% of the total soil water. Water balance calculation in soil columns showed that water absorbed by calcic nodules was partially available to evaporation. Water available to evaporation was positively related to CNC, and this water could not exceed 63% of the water absorbed by calcic nodules. Generally, evaporation behavior was dominated by calcic nodule quantity and its water absorption. These results provide new ideas for irrigation measures in arid areas of the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号