首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general closed form expression for the Rth cumulant of the unsteady flow due to an upstream impulse input in a semi-infinite channel is derived by (a) reducing the recurrence relationship between successive cumulants to a recurrence relationship between the set of parameters γ(R, i) characterizing the ratio of successive terms in the series for the Rth cumulant and (b) deriving the closed form equivalent to this recurrence relationship in terms of either nested sums or factorials.  相似文献   

2.
An initially uniform longshore current on a plane erodible beach is considered and a linear stability analysis of the bed-flow system is performed in order to investigate the growth of alongshore periodic topographic features such as transverse or oblique bars. γ, numerical model based on the shallow water equations and a simple sediment transport formula is used. For a wide range of parameters instability is found, leading to the growth of large-scale topographic features (lengthscale of the order of the current width) downflow progressing. The growth rates and the dominant unstable mode depend mainly on R = cd/β parameter, where cd is the bottom friction coefficient and β is the beach slope. For a small R, say less than 0.1, instability is very weak, probably negligible. For R between 0.1 and 0.7 instability increases with R, leading typically to a quite simple transverse bars pattern. A further increase in R produces a far more complicated behaviour where complex patterns with downcurrent oriented oblique bars, bumps and holes can be dominant. In this region growth rates may either decrease or increase with R depending on the beach slope and the maximum Froude number of the basic flow, F. Usually, the most complex behaviour is found for gently sloping beaches. The physical mechanism of the instability is found to lie on the disturbances of potential vorticity caused by topographically induced differences in bottom friction. In this sense it is similar to the alternate bars growth in a river rather than the dunes or antidunes occurrence for 1D channel flow. The predictions of the model compare well with the available experimental data. The alongshore wavelength, γ, typically of the order of one to four times the width of the current, is close to four times for the most common values of R. The typical growth time is proportional to γ2 and for a wavelength of 100 m can be of the order of one day, depending on the sediment transport rate. The migrational speed is inversely proportional to γ, in accordance to earlier field data reported by Sonu (1969) Collective movement of sediment in littoral environment.  相似文献   

3.
This paper aims to develop an improved understanding of the critical response of structures to multicomponent seismic motion characterized by three uncorrelated components that are defined along its principal axes: two horizontal and the vertical component. An explicit formula, convenient for code applications, has been derived to calculate the critical value of structural response to the two principal horizontal components acting along any incident angle with respect to the structural axes, and the vertical component of ground motion. The critical response is defined as the largest value of response for all possible incident angles. The ratio rcr/rsrss between the critical value of response and the SRSS response—corresponding to the principal components of ground acceleration applied along the structure axes—is shown to depend on three dimensionless parameters: the spectrum intensity ratio γ between the two principal components of horizontal ground motion characterized by design spectra A(Tn) and γA(Tn); the correlation coefficient α of responses rx and ry due to design spectrum A(Tn) applied in the x‐ and y‐directions, respectively; and β = ry/rx. It is demonstrated that the ratio rcr/rsrss is bounded by 1 and . Thus the largest value of the ratio is , 1.26, 1.13 and 1.08 for γ = 0, 0.5, 0.75 and 0.85, respectively. This implies that the critical response never exceeds times the result of the SRSS analysis, and this ratio is about 1.13 for typical values of γ, say 0.75. The correlation coefficient α depends on the structural properties but is always bounded between −1 and 1. For a fixed value of γ, the ratio rcr/rsrss is largest if β = 1 and α = ±1. The parametric variations presented for one‐storey buildings indicate that this condition can be satisfied by axial forces in columns of symmetric‐plan buildings or can be approximated by lateral displacements in resisting elements of unsymmetrical‐plan buildings. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

The exact numerical and approximate analytical solutions of the simplest nonlinear integral equation with second order nonlinearity for the averaged Green function are presented. It is assumed that the turbulence is stationary, homogeneous, isotropic and incompressible. Numerous examples of turbulent spectra are considered (peak-like spectrum, spectra of Kolmogorov's type with different forms of “pumping” regions, stepwise spectra etc.). Special emphasis is given to investigating the case of so called “frozen” turbulence when the parameter ξ =u 0τ/R→∞ where uτ0,R 0 are characteristic velocity, lifetime and space scale of turbulent pulsations, respectively. It is shown that these solutions allow us to calculate the turbulent diffusivities accurately for arbitrary spectra with any values of the parameter ξ. The results take into account the possible helicity of turbulence concerned only with scalar passive fields (number density and temperature).  相似文献   

5.
Abstract

In a previous paper, Bassom et al. (Proc. R. Soc. Lond. A, 455, 1443–1481, 1999) (BKS) investigated finite amplitude αΩ-dynamo wave trains in a thin turbulent, differentially rotating convective stellar shell; nonlinearity arose from α-quenching. There asymptotic solutions were developed based upon the small aspect ratio ε of the shell. Specifically, as a consequence of a prescribed latitudinally dependent α-effect and zonal shear flow, the wave trains have smooth amplitude modulation but are terminated abruptly across a front at some high latitude θF. Generally, the linear WKB-solution ahead of the front is characterised by the vanishing of the complex group velocity at a nearby point θf; this is essentially the Dee–Langer criterion, which determines both the wave frequency and front location.

Recently, Griffiths et al. (Geophys. Astrophys. Fluid Dynam. 94, 85–133, 2001) (GBSK) obtained solutions to the α2Ω-extension of the model by application of the Dee—Langer criterion. Its justification depends on the linear solution in a narrow layer ahead of the front on the short O(θf—θF) length scale; here conventional WKB-theory, used to describe the solution elsewhere, is inadequate because of mode coalescence. This becomes a highly sensitive issue, when considering the transition from the linear solution, which occurs when the dynamo number D takes its critical value D c corresponding to the onset of kinematic dynamo action, to the fully nonlinear solutions, for which the Dee—Langer criterion pertains.

In this paper we investigate the nature of the narrow layer for α2Ω-dynamos in the limit of relatively small but finite α-effect Reynolds numbers R α, explicitly ε½ ? R 2 α ? 1. Though there is a multiplicity of solutions, our results show that the space occupied by the corresponding wave train is generally maximised by a solution with θf—θF small; such solutions are preferred as evinced by numerical simulations. This feature justifies the application by GBSK of the Dee—Langer criterion for all D down to the minimum D min that the condition admits. Significantly, the frontal solutions are subcritical in the sense that |D min| ≤ |D c|; equality occurs as the α-effect Reynolds number tends to zero. We demonstrate that the critical linear solution is not connected by any parameter track to the preferred nonlinear solution associated with D min. By implication, a complicated bifurcation sequence is required to make the connection between the linear and nonlinear states. This feature is in stark contrast to the corresponding results for αΩ-dynamos obtained by BKS valid in the limit R 2 α ? ε½, which, though exhibiting a weak subcriticality, showed that the connection follows a clearly identifiable nonbifurcating track.  相似文献   

6.
《水文科学杂志》2013,58(4):626-641
Abstract

An analytical solution of planar flow in a sloping soil layer described by the linearized extended Boussinesq equation is presented. The solution consists of the sum of steady-state and transient-series solutions, the latter in a separation-of-variables form, and can satisfy an arbitrary initial condition via collocation; this feature reduces the number of series terms, making the solution efficient. Key parameter is the dimensionless linearization depth η o (R), R being the dimensionless recharge. The variable η o (R), not the slope, characterizes the flow as kinematic or diffusive, and R ≈ 0.2 demarcates the two regimes. The transient series converges rapidly for large η o (large R, near-diffusive flow) and slowly as η o → 0 (kinematic flow). The quasi-steady (QS) state method of Verhoest & Troch is also analysed and it is shown that the QS depth profiles approximate the transient ones well, only if Δt exceeds a system-dependent transition time between flow states (possibly >>1 day). In an application example for a 30-day recharge series, the QS solution differs from the transient one by as much as 20% (RMSE = 15%), does not track recharge changes as well and fails to conserve mass.  相似文献   

7.
Abstract

This paper demonstrates the appearance of tangential discontinuities in deformed force-free fields by direct integration of the field equation ? x B = αB. To keep the mathematics tractable the initial field is chosen to be a layer of linear force-free field Bx = + B 0cosqz, By = — B 0sinqz, Bz = 0, anchored at the distant cylindrical surface ? = (x 2 + y 2)1/2 = R and deformed by application of a local pressure maximum of scale l centered on the origin x = y = 0. In the limit of large R/l the deformed field remains linear, with α = q[1 + O(l 2/R 2)]. The field equations can be integrated over ? = R showing a discontinuity extending along the lines of force crossing the pessure maximum. On the other hand, examination of the continuous solutions to the field equations shows that specification of the normal component on the enclosing boundary ? = R completely determines the connectivity throughout the region, in a form unlike the straight across connections of the initial field. The field can escape this restriction only by developing internal discontinuities.

Casting the field equation in a form that the connectivity can be specified explicitly, reduces the field equation to the eikonal equation, describing the optical analogy, treated in papers II and III of this series. This demonstrates the ubiquitous nature of the tangential discontinuity in a force-free field subject to any local deformation.  相似文献   

8.
The LMTO method is used to calculate the electronic band structure of iron in the ϵ-phase (hcp) and in the γ-phase (fcc) for seven compressions from 4 to 980 GPa. The electronic specific heat cυe(T) is calculated for each phase by numerical integration from the resultant density of states. Previous work is thus supported for γ-iron and extended to ϵ-iron, the most likely inner core component. A simple parameterization of cυe is given for use in making geophysical estimates. Other thermodynamic parameters which are calculated are the electronic free energy, the thermal electronic pressure, and an electronic Gruneisen parameter, γe.Recent studies of liquid iron and iron alloys indicate that the density of states at the Fermi level does not differ much from that calculated for pure crystalline iron. We cautiously apply our results to the outer core and find that cυe = 1.7 ± 0.7R and γe = 1.3 ± 0.4. This indicates that the total heat capacity of the core is one-quarter that of the entire Earth.  相似文献   

9.
Abstract

An index (Fs) for sediment transfer function is introduced, based on the sediment budget at the channel scale. The purpose of this study is two-fold: to gain a deeper insight into how Fs is influenced by natural and human factors, and to provide some new knowledge for decision making in the management of the Upper Yellow River, China. Since 1960, the Fs of the Lanzhou to Toudaoguai reach of the Upper Yellow River shows a decreasing trend. At the drainage basin level, the decreased Fs can be explained by changes in precipitation and air temperature, as well as by a number of variables describing human activity, such as reservoir regulation, water diversion, and soil and water conservation. The higher temperature reduces the transfer function, while the larger runoff coefficient increases it. At the channel level, the decreased Fs can be explained by a number of variables of flow and sediment input. Three countermeasures for restoration of the Fs are suggested.
Editor Z.W. Kundzewicz  相似文献   

10.
Abstract

We investigate the influence of differential rotation on magnetic instabilities for an electrically conducting fluid in the presence of a toroidal basic state of magnetic field B 0 = BMB0(r, θ)1 φ and flow U0 = UMU0 (r, θ)1φ, [(r, θ, φ) are spherical polar coordinates]. The fluid is confined in a rapidly rotating, electrically insulating, rigid spherical container. In the first instance the influence of differential rotation on established magnetic instabilities is studied. These can belong to either the ideal or the resistive class, both of which have been the subject of extensive research in parts I and II of this series. It was found there, that in the absence of differential rotation, ideal modes (driven by gradients of B 0) become unstable for Ac ? 200 whereas resistive instabilities (generated by magnetic reconnection processes near critical levels, i.e. zeros of B0) require Ac ? 50. Here, Λ is the Elsasser number, a measure of the magnetic field strength and Λc is its critical value at marginal stability. Both types of instability can be stabilised by adding differential rotation into the system. For the resistive modes the exact form of the differential rotation is not important whereas for the ideal modes only a rotation rate which increases outward from the rotation axis has a stabilising effect. We found that in all cases which we investigated Λc increased rapidly and the modes disappeared when Rm ≈ O(ΛC), where the magnetic Reynolds number Rm is a measure of the strength of differential rotation. The main emphasis, however, is on instabilities which are driven by unstable gradients of the differential rotation itself, i.e. an otherwise stable fluid system is destabilised by a suitable differential rotation once the magnetic Reynolds number exceeds a certain critical value (Rm )c. Earlier work in the cylindrical geometry has shown that the differential rotation can generate an instability if Rm ) ?O(Λ). Those results, obtained for a fixed value of Λ = 100 are extended in two ways: to a spherical geometry and to an analysis of the effect of the magnetic field strength Λ on these modes of instability. Calculations confirm that modes driven by unstable gradients of the differential rotation can exist in a sphere and they are in good agreement with the local analysis and the predictions inferred from the cylindrical geometry. For Λ = O(100), the critical value of the magnetic Reynolds number (Rm )c Λ 100, depending on the choice of flow U0 . Modes corresponding to azimuthal wavenumber m = 1 are the most unstable ones. Although the magnetic field B 0 is itself a stable one, the field strength plays an important role for this instability. For all modes investigated, both for cylindrical and spherical geometries, (Rm )c reaches a minimum value for 50 ≈ Λ ≈ 100. If Λ is increased, (Rm )c ∝ Λ, whereas a decrease of Λ leads to a rapid increase of (Rm )c, i.e. a stabilisation of the system. No instability was found for Λ ≈ 10 — 30. Optimum conditions for instability driven by unstable gradients of the differential rotation are therefore achieved for ≈ Λ 50 — 100, Rm ? 100. These values lead to the conclusion that the instabilities can play an important role in the dynamics of the Earth's core.  相似文献   

11.
Kinematic pile–soil interaction is investigated analytically through a Beam-on-Dynamic-Winkler-Foundation model. A cylindrical vertical pile in a homogeneous stratum, excited by vertically-propagating harmonic shear waves, is examined in the realm of linear viscoelastic material behaviour. New closed-form solutions for bending, displacements and rotations atop the pile, are derived for different boundary conditions at the head (free, fixed) and tip (free, hinged, fixed). Contrary to classical elastodynamic theory where pile response is governed by six dimensionless ratios, in the realm of the proposed Winkler analysis three dimensionless parameters suffice for describing pile–soil interaction: (1) a mechanical slenderness accounting for geometry and pile–soil stiffness contrast, (2) a dimensionless frequency (which is different from the classical elastodynamic parameter a0=ω d/Vs), and (3) soil material damping. With reference to kinematic pile bending, insight into the physics of the problem is gained through a rigorous superposition scheme involving an infinitely-long pile excited kinematically, and a pile of finite length excited by a concentrated force and a moment at the tip. It is shown that for long piles kinematic response is governed by a single dimensionless frequency parameter, leading to a unique master curve pertaining to all pile lengths and pile–soil stiffness ratios.  相似文献   

12.
The Loop Current of the Gulf of Mexico is simulated in the laboratory. A circular tank is filled with water and is placed off-center on a rotating table and the flow field is generated by injecting and withdrawing water at two openings on the wall. The free surface becomes parabolic due to balance of gravitational and centrifugal forces, simulating the latitudinal change of the Coriolis parameter (-effect) in the ocean. The flow characteristics depend on the influx and the rate of rotation and can be classified according to non-dimensional parameters (Rossby, Ekman and Froude numbers denoted byR 0,E andF, respectively). When the influx is small and the rotation rate is large (smallR 0,E andF) the flow will be almost linear, and the fluid flows along the side-wall boundary layer under constraint of the -effect. For a very large influx (largeR 0 andE) inertial forces become very large compared to the Coriolis force and the flow behaves like a potential flow. The flow studied had characteristics between these two extreme cases and hasR 0 andF similar to the Gulf circulation, though similarity inE is ambiguous. Photographs of the flow indicate that the inflow penetrates further into the interior when the rotation rate is increased while the influx is kept constant. The numerical analysis of the non-linear vorticity equation confirms this for the parameters corresponding to the experiment. In addition, the photographs reveal eddies embedded on both sides of the main stream, particularly near the inflow region. These eddies are intensified and become uniform in size as the influx increases. It is pointed out that such eddies were actually observed near the Loop Current north of the Yucatan Straits.  相似文献   

13.
We examine the equilibrium form, properties, stability and nonlinear evolution of steadily-rotating simply-connected vortex patches in the single-layer quasi-geostrophic model of geophysical fluid dynamics. This model, valid for rotating shallow-water flow in the limit of small Rossby and Froude numbers, has an intrinsic length scale L D called the “Rossby deformation length” relating the strength of the stratification to that of the background rotation. Here, we generate steadily-rotating vortex equilibria for a wide range of γ?=?L/L D , where L is the typical horizontal length scale of the vortex. We vary both γ (over the range 0.02?≤?γ?≤?10) and the vortex aspect ratio λ (over the range 0?<?λ?<?1). We find two modes of instability arising at sufficiently small aspect ratio λ?<?λ c (γ): an asymmetric (dominantly wave 3) mode at small γ (or large L D ) and a symmetric (dominantly wave 4) mode at large γ (or small L D ). At marginal stability, the asymmetric mode dominates for γ???3, while the symmetric mode dominates for γ???3. The nonlinear evolution of weakly-perturbed unstable equilibria results in major structural changes, in most cases producing two dominant vortex patches and thin, quasi-passive filaments. Overall, the nonlinear evolution can be classified into three principal types: (1) vacillations for a limited range of aspect ratios λ when 5?≤?γ?≤?6, (2) filamentation and a single-dominant vortex for γ???1, and (3) vortex splitting – asymmetric for 1???γ???4 and symmetric for γ???4.  相似文献   

14.
The approach of two water drops in the absence of air flow around them is theoretically investigated. By assuming deformation criteria it is possible to solve the equation of motion of the drops under the influence of a variety of forces. These forces include the viscous force exerted by the air between the two deformed surfaces, the London-Van Der Waals forces and the force of gravity. It is found that the viscous forces dominate over the whole distance of the interaction. The equations have analytical solutions when a head-on approach is considered and when the deformation of the drops is assumed constant during the interaction. The equations were solved numerically for other deformation criteria and for non head-on approaches.The results of the present model are used in the following paper to compute the coalescence efficiencies of water drops. The model is primarily applicable to situations in which the large drop is stationary and the small one approaches it from below. However, it could also be used for interaction between freely falling drops as long as their relative velocities exceed about 13 cm/sec.Appendix: List of symbols C constant of the motion - D distance between the deformed surfaces of the drops - D o initial value ofD - D m the value at which the viscous force is maximum - D N normalized distance - D s the distance at which the velocity of approach vanishes - F c centrifugal force - F g force due to gravity - F N normalized viscous force - F LV force due to London-Van der Waals effect - F R radial component of the force - F V viscous force - F t tangential component of the force - g acceleration due to gravity - M L mass of large drop - m s mass of small drop - p ratio of radii of interacting drops - R radius of an arbitrary drop - r distance between the centers of mass of the two drops - R D radius of deformation - R L radius of larger drop - R s radius of smaller drop - t time - u defined in equation 20 — has the meaning of kinetic energy - v relative velocity of the deformed surfaces - v 0 initial value ofv - V 0 initial relative velocity of the centers of the drops - V c critical impact velocity - V i impact velocity - V N ,v n normalized velocity - V t tangential component of the velocity - W i velocity of the small drop at infinity for it to reach the pointD 0 at velocityV 0 - x instantaneous impact distance -  average critical impact distance for coalescence - x 0 initial value of the impact distance - x c critical impact distance for coalescence - coefficient of deformation - i impact angle according toWhelpdale andList (1971) - coefficient of deformation - viscosity - surface tension - F s sum of forces acting on the small drop - F L sum of forces acting on the large drop - time constant - R Rayleigh's oscillation period On sabbatical leave (1976–77) from the Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv, Israel.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
湖北道观河水库细鳞鲴的个体生殖力   总被引:6,自引:0,他引:6  
研究了道观河水库细鳞鲴的个体生殖力。细鳞鲴样本由2~ -5~ 龄鱼组成,其个体绝对生殖力与体长、体重和年龄分别呈直线、对数函数和幂函数相关,体长相对生殖力与体长、体重和年龄分别呈双曲线、对数函数和幂函数相关,体重相对生殖力与它们相关不显著。多元逐步回归分析其绝对生殖力和体长相对生殖力均与体重和成熟系数密切相关,而体重相对生殖力仅与成熟系数相关。  相似文献   

16.
High-pressure stability relations in cobalt and nickel silicates have been studied over the pressure range 130–330 kbar employing a double-staged split-sphere-type high-pressure apparatus.γ-Co2SiO4 and γ-Ni2SiO4 decompose directly into their constituent oxide mixtures (rocksalt plus stishovite) 175 kbar and 280 kbar, respectively. The result that γ-Ni2SiO4 has a wider stability field in pressure than γ-Co2SiO4, is consistent with simple crystal-field theory.The experimental precision is high enough to show that the decomposition boundary of γ-Co2SiO4 has a positive slope (dP/dT > 0) and a preliminary determination of the boundary curve is P(kbar) = 0.065 T (°C) + 110.No positive evidence for the existence of high-pressure forms of CoSiO3 and NiSiO3 has been obtained in these quenching experiments, and they finally decompose into constituent oxide mixtures as in the cases of orthosilicates.  相似文献   

17.
Sand flux and wind profiles in the saltation layer above a rounded dune top   总被引:2,自引:0,他引:2  
The near-bed airflow and the movement of sand dune sediments by wind are fundamental dune geomorphological processes.This research measured the wind profiles and sand mass flux on the rounded top of a transverse dune at the southern edge of the Tengger Desert to examine how to best predict the vertical profile of sand flux.This work also tested the accuracy of previously developed models in predicting the apparent roughness length during saltation.Results show that mass flux vertical distribution over the dune top is underestimated by an exponential function,overestimated by a power function,but closely matches the predictions made using the LgstcDoseRsp function.Given suitable values ofα,βandγaccording to the grain size composition,S?rensen equation with the peaked shape of the mass transport curve will well predict the dimensionless mass flux qg/ρu*3against dimensionless shear velocity u*/u*t.The modified Charnock model works best of the previously published models tested,with an R2of 0.783 in predicting the enhanced roughness over the moving sand surface,as opposed to an R2of0.758 for the Owen model and an R2of 0.547 for the Raupach model.For the rounded dune top in this study,C m=0.446±0.016.  相似文献   

18.
This paper presents a response spectrum analysis procedure for the calculation of the maximum structural response to three translational seismic components that may act at any inclination relative to the reference axes of the structure. The formula GCQC3, a generalization of the known CQC3‐rule, incorporates the correlation between the seismic components along the axes of the structure and the intensity disparities between them. Contrary to the CQC3‐rule where a principal seismic component must be vertical, in the GCQC3‐rule all components can have any direction. Besides, the GCQC3‐rule is applicable if we impose restrictions to the maximum inclination and/or intensity of a principal seismic component; in this case two components may be quasi‐horizontal and the third may be quasi‐vertical. This paper demonstrates that the critical responses of the structure, defined as the maximum and minimum responses considering all possible directions of incidence of one seismic component, are given by the square root of the maximum and minimum eigenvalues of the response matrix R , of order 3×3, defined in this paper; the elements of R are established on the basis of the modal responses used in the well‐known CQC‐rule. The critical responses to the three principal seismic components with arbitrary directions in space are easily calculated by combining the eigenvalues of R and the intensities of those components. The ratio rmax/rSRSS between the maximum response and the SRSS response, the latter being the most unfavourable response to the principal seismic components acting along the axes of the structure, is bounded between 1 and √(3γa2/(γa2 + γb2 + γc2)), where γa?γb?γc are the relative intensities of the three seismic components with identical spectral shape. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Following a brief overview of the history and the development of the Surface Wave Method—with a focus on techniques for processing and inverting field data—a Simplified Inversion Method (SIM) is described, which constitutes an improvement of the Satoh et al. (1991) [1] method. The SIM is a direct inversion method of surface wave dispersion data, making use of a penetration depth coefficient, aR, whose value is a function of Poisson's ratio and the overall shape of the dispersion curve. In the present study the coefficient aR has been evaluated using data from (a) an extensive database compiled from the technical literature and containing results of inverted surface wave measurements and nearby cross-hole/down-hole measurements, (b) results of side by side surface wave and cross-hole measurements, performed at five sites in the course of this study, (c) finite element analyses simulating the performance of surface wave measurements and thus providing “virtual” data, and (d) applying a current advanced inversion code, available on the Web. Based on all the above data, optimum values of aR (and of the corresponding uncertainty of the derived Vso vs. depth profile) have been estimated. These values were found to be independent of depth from ground surface. The results of all analyses and comparisons indicate that for the majority of realistic soil profiles (including cases of normal and inverse dispersion conditions) the proposed SIM provides very reliable Vso vs. depth profiles when a value of aR=0.63–0.67 is used in the inversion process. It is concluded that the SIM can be used with confidence as a direct inversion method of surface wave dispersion data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号