首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Satellite observations were used to test the validity of previously identified favourable conditions for the formation of freshwater lenses, identify additional potential occurrences, and model modern potential recharge in the Raudhatain Watershed (3696) in northern Kuwait. Favourable conditions include infrequent yet intensive precipitation events, drainage depressions to collect the limited runoff, and presence of conditions (e.g. high infiltration capacity) that promote groundwater recharge and preservation (e.g. underlying saline aquifer) of infiltrating groundwater as freshwater lenses floating over saline aquifer water due to differences in density. Specifically, the following field and satellite‐based observations were noted for the Raudhatain Watershed: (1) Over ~30 precipitation events were identified from the Tropical Rainfall Measuring Mission precipitation data (1998–2009); (2) slope is gentle (2 m/km), and the surface is largely (80%) covered by alluvial deposits with high infiltration capacities (up to 9 m/day); (3) no flows and long‐term ponding were reported at the watershed outlet or detected from Landsat thematic mapper images; (4) infiltration is high based on increases in soil moisture content (from an advanced microwave scanning radiometer) and vegetation index following large precipitation events; and (5) freshwater lenses that overlie highly saline [total dissolved solids (TDS): >35 000] unconfined aquifers underlying the watershed are absent in the southern regions, where infiltrating fresh water mixes with the less saline groundwater (TDS: <10 000). Twenty potential locations (size: 1 to 75 km2) for freshwater lens development were identified in northern Kuwait, and continuous rainfall–runoff models (Soil Water and Assessment Tool) were applied to provide a first‐order estimation of the average annual recharge in the watershed (127 × 106 m3) and freshwater lenses (8.17 × 106 m3). Results demonstrate the settings for enhanced opportunities for groundwater recharge, outline the amounts of and preservation conditions for the groundwater feeding the freshwater lenses, and highlight potential applications and locations of freshwater lenses in similar settings elsewhere in the Arabian Peninsula and beyond. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In order to maintain the scenic and eco-environmental values of a lake, we need to characterize its water interactions. Shahu Lake was used as a case study to show the interactions among replenishment water, lake water and groundwater in an arid region. Shahu Lake is located in the Ningxia Hui Autonomous Region of northwest China and has an area of 13.96 km2 and an average depth of 2.2 m. The groundwater modelling software MODFLOW was used. The analysis results show that hydraulic connectivity among replenishment water, lake water and groundwater is the crucial driving factor that affects the water level in Shahu Lake. The lake water level is highly sensitive to the volume of replenishment water. The groundwater is of great importance in balancing the water level in the lake and preventing it from drying up. It was determined that 13.8 × 106 m3/yr is the optimal volume of replenishment water for Shahu Lake in order to maintain the lake level at its normal state and also to make the best use of available water resources on a long-term basis. Understanding of the water interactions can promote effective management of water resources in Shahu Lake.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR D. Hughes  相似文献   

3.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

4.
Abstract

The resolution of the freshwater and saline water aquifers in a coastal terrain (Mahanadi Basin, India) is updated. We analysed electrical borehole log data at four sites and compared the water resistivity regime of the freshwater and saline water zones obtained from electrical borehole logging, with the resistivity regime obtained by interpreting vertical electrical sounding (VES) data. The multilayer VES data interpretation is modified to a simple model, containing only the freshwater zone and the saline water zone. The composite geophysical parameters of the freshwater and saline water zones, in particular the resistivity and longitudinal unit conductance regime, are identified. The resolution obtained from the composite geophysical data analyses is very clear and convincing. The composite longitudinal unit conductance regime of the saline water zones is very high compared to that of the freshwater zones. This makes the identification of the two aquifers easy and increases its reliability. A technique which enables analysis of composite geophysical data of freshwater and saline water zones at VES sites in the vicinity of the borehole log sites is proposed. The significance of longitudinal unit conductance in resolving the freshwater and saline water aquifers is illustrated graphically. The proposed technique is validated by correlating the longitudinal unit conductance and resistivity with the total dissolved solids. The efficiency of the technique is validated by carrying out discriminant function analysis.

Citation Hodlur, G. K., Dhakate, R., Sirisha, T. & Panaskar, D. B. (2010) Resolution of freshwater and saline water aquifers by composite geophysical data analysis methods. Hydrol. Sci. J. 55(3), 414–434.  相似文献   

5.
Abstract

The Samborombón Bay area (Argentina) is a coastal plain environment that contains groundwater resources with high salinity. In addition, there are local freshwater lenses associated with shell ridges and sand sheets in the region. In this work, the groundwater travel time in these freshwater lenses is estimated based on their geological conditions, which include hydraulic conductivity, recharge, morphology and discharge to surface freshwater or to saline groundwater. Groundwater travel times in the freshwater lenses were calculated from the equations developed by Chesnaux and Allen. The travel times estimated for the different scenarios were relatively short. The results indicate that the groundwater flow tends to be strongly dependent on the recharge conditions, with an excess of water in the water balance. The results can be applied to help design sustainable management methods to exploit this water resource system and also to assess the impact of contaminant plumes on this groundwater resource.

Citation Carol, E., Kruse, E. & Roig, A. (2010) Groundwater travel time in the freshwater lenses of Samborombón Bay, Argentina. Hydrol. Sci. J. 55(5), 754–762.  相似文献   

6.
Abstract

On the basis of the degree of mineralization, the groundwater of Apan-Tochac sub-basin may be considered as fresh (TDS < 500 ppm). However, chlorination is necessary to make it fit for human consumption. Major ion analyses of over 235 water samples reveal a striking relationship between hydrochemical evolution and the groundwater flow system. A high content of total dissolved solids, and low values of the Ca:Mg ratio are present in wells located on the plain (discharge zone), whereas opposite conditions are associated with wells located in higher regions (recharge zone). Statistical data analysis using the method of principal components allowed to differentiation of two hydrochemical families: (a) low mineralization corresponding to the recharge zone, and (b) high mineralization corresponding to the discharge zone. Waters of the Ca + Mg + HCO3, and Na + Mg + HCO3 hydrochemical fades are present and the former is dominant. The water is slightly alkaline, having slight problems of salinity during the year owing mainly to Ca2+HCO3 ? and Na+Cl? salts. The hydrochemistry of the groundwater reflects the pattern of local groundwater flow for this sub-basin.  相似文献   

7.
The environment of Bosten Lake in the Mid-Eastern Yanqi Basin (MEYB), an arid inland area in northwest China, has deteriorated greatly due to increasing groundwater exploitation and changes in the interactions between groundwater and surface water. This study intended to simulate the spatio-temporal variability of groundwater and surface water across the entire MEYB over the period 2000–2013. The applicable groundwater flow model and mass balance calculation method for river water were constructed to evaluate the change in groundwater recharged by and discharged to different segments of the Kaidu River. Simulation results show that the entire river seepage in the MEYB increased from 1.05 to 6.17 × 108 m3/year between 2000 and 2013. The increasing river seepage, induced by increasing groundwater exploitation, plays the most important role in the water level decline in the downstream reaches of the Kaidu River and in Bosten Lake. This implies that the current utilization of groundwater resources in the MEYB is unsustainable.  相似文献   

8.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Egypt is currently seeking additional freshwater resources to support national reclamation projects based mainly on the Nubian aquifer groundwater resources. In this study, temporal (April 2002 to June 2016) Gravity Recovery and Climate Experiment (GRACE)-derived terrestrial water storage (TWSGRACE) along with other relevant datasets was used to monitor and quantify modern recharge and depletion rates of the Nubian aquifer in Egypt (NAE) and investigate the interaction of the NAE with artificial lakes. Results indicate: (1) the NAE is receiving a total recharge of 20.27 ± 1.95 km3 during 4/2002?2/2006 and 4/2008–6/2016 periods, (2) recharge events occur only under excessive precipitation conditions over the Nubian recharge domains and/or under a significant rise in Lake Nasser levels, (3) the NAE is witnessing a groundwater depletion of ? 13.45 ± 0.82 km3/year during 3/2006–3/2008 period, (4) the observed groundwater depletion is largely related to exceptional drought conditions and/or normal baseflow recession, and (5) a conjunctive surface water and groundwater management plan needs to be adapted to develop sustainable water resources management in the NAE. Findings demonstrate the use of global monthly TWSGRACE solutions as a practical, informative, and cost-effective approach for monitoring aquifer systems across the globe.  相似文献   

10.
Abstract

In the southern part of the Great Hungarian Plain there are two different groundwater flow systems located in the study area. Between these two systems there is a narrow groundwater divide where groundwater flow cannot be detected. In the western part, groundwater of greater hardness moves from the northwest, west and southwest. In the eastern part, groundwater flow is from southeast to northwest. The directions of groundwater flow have been established on the basis of dissolved mono- and di-valent cation concentrations. The major direction of groundwater flow detected by a statistical evaluation of water chemical data agrees with previous geological investigations.  相似文献   

11.
Abstract

Electromagnetic induction measurements (EM) were taken in a saline gypsiferous soil of the Saharan-climate Fatnassa oasis (Tunisia) to predict the electrical conductivity of saturated soil extract (ECe) and shallow groundwater properties (depth, Dgw, and electrical conductivity, ECgw) using various models. The soil profile was sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The best input to predict the log-transformed soil salinity (lnECe) in surface (0–0.2 m) soil was the EMh/EMv ratio. For the 0–0.6 m soil depth interval, the performance of multiple linear regression (MLR) models to predict lnECe was weaker using data collected over various seasons and years (R a 2 = 0.66 and MSE = 0.083 dS m-1) as compared to those collected during the same period (R a 2 = 0.97, MSE = 0.007 dS m-1). For similar seasonal conditions, for the DgwEMv relationship, R 2 was 0.88 and the MSE was 0.02 m for Dgw prediction. For a validation subset, the R 2 was 0.85 and the MSE was 0.03 m. Soil salinity was predicted more accurately when groundwater properties were used instead of soil moisture with EM variables as input in the MLR.

Editor D. Koutsoyiannis; Associate editor K. Heal

Citation Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R., 2012. Electromagnetic induction predictions of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrological Sciences Journal, 57 (7), 1473–1486.  相似文献   

12.
ABSTRACT

The aim of this paper is to estimate the effect that climate change will have on groundwater recharge at the Yucatan Peninsula, Mexico. The groundwater recharge is calculated from a monthly water balance model considering eight methods of potential and actual evapotranspiration. Historical data from 1961–2000 and climate model outputs from five downscaled general circulation models in the near horizon (2015–2039), with representative concentration pathway (RCP) 4.5 and 8.5 are used. The results estimate a recharge of 118 ± 33 mm·year–1 (around 10% of precipitation) in the historical period. Considering the uncertainty from GCMs under different RCP and evapotranspiration scenarios, our monthly water balance model estimates a groundwater recharge of 92 ± 40 mm·year–1 (RCP4.5) and 94 ± 38 mm·year–1 (RCP8.5) which represent a reduction of 23% and 20%, respectively, a result that threatens the socio-ecological balance of the region.  相似文献   

13.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

In order to evaluate groundwater quality and geochemical reactions arising from mixing between seawater and dilute groundwater, we performed a hydrochemical investigation of alluvial groundwater in a limestone-rich coastal area of eastern South Korea. Two sites were chosen for comparison: an upstream site and a downstream site. Data of major ion chemistry and ratios of oxygen–hydrogen isotopes (δ18O, δD) revealed different major sources of groundwater salinity: recharge by sea-spray-affected precipitation in the upstream site, and seawater intrusion and diffusion zone fluctuation in the downstream site. The results of geochemical modelling showed that Ca2+ enrichment in the downstream area is caused by calcite dissolution enhanced by the ionic strength increase, as a result of seawater–groundwater mixing under open system conditions with a constant PCO2 value (about 10?1.5 atm). The results show that, for coastal alluvial groundwater residing on limestone, significant hydrochemical change (especially increased hardness) due to calcite dissolution enhanced by seawater mixing should be taken into account for better groundwater management. This process can be effectively evaluated using geochemical modelling.

Editor D. Koutsoyiannis; Associate editor Y. Guttman

Citation Chae, G.-T., Yun, S.-T., Yun, S.-M., Kim, K.-H., and So, C.-S., 2012. Seawater–freshwater mixing and resulting calcite dissolution: an example from a coastal alluvial aquifer in eastern South Korea. Hydrological Sciences Journal, 57 (8),1–12.  相似文献   

15.
A combination of stable isotopes (18O and 2H) and hydrochemistry has been applied to investigate storage processes in relation to aquifer storage and recovery (ASR) of the shallow alluvial Quaternary aquifer in Damascus basin. The stored water, entirely taken from the Figeh springs during flood periods, was injected in a single well having a brackish groundwater. Water samples were collected from four observation wells drilled in the Damascus University Campus (DUC) site during a 3‐year period (2006–2008). The injectant water, which deviates in its chemical and isotopic signatures from that of the ambient groundwater, shows that the stored water plume remains within close proximity to the injection well (IW) (<≈ 100 m). Thus, only two wells (W13 and W14) located at a distance less than 80 m from the injection point were affected by this injection. The observation wells located at longer distances from the IW (≈145 m and ≈ 600 m for wells W15 and WHz, respectively) were completely unaffected by the injection. Although most of the chemical and isotopic parameters usefully reflected the mixing process that occurs between the injectant water and ambient groundwater, the stable isotope (18O) and chloride (Cl) were the most sensitive parameters that quickly reflect this signature. Using a simple mass balance, the calculated proportion of injectant water reaching the well W13 was in the range of 50–90%. This proportion was even lower (30–55%) in the case of well W14. Although the drought event prevailing during this study did not much help to inject further amounts of water, higher than the injected volume (0·2416 M m3) and also not favourable to better evaluate the fate and subsurface hydrological processes, these findings offer encouragement to continue the ASR activities, as an alternative way for better management of water resources in this basin facing intensive problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Accurate estimation of groundwater recharge is essential for the proper management of aquifers. A study of water isotope (δ2H, δ18O) depth profiles was carried out to estimate groundwater recharge in the Densu River basin in Ghana, at three chosen observation sites that differ in their altitude, geology, climate and vegetation. Water isotopes and water contents were analysed with depth to determine water flow in the unsaturated zone. The measured data showed isotope enrichment in the pore water near the soil surface due to evaporation. Seasonal variations in the isotope signal of the pore water were also observed to a depth of 2.75 m. Below that depth, the seasonal variation of the isotope signal was attenuated due to diffusion/dispersion and low water flow velocities. Groundwater recharge rates were determined by numerical modelling of the unsaturated water flow and water isotope transport. Different groundwater recharge rates were computed at the three observation sites and were found to vary between 94 and 182 mm/year (± max. 7%). Further, the approximate peak-shift method was applied to give information about groundwater recharge rates. Although this simple method neglects variations in flow conditions and only considers advective transport, it yielded mean groundwater recharge rates of 110–250 mm/year (± max. 30%), which were in the same order of magnitude as computed numerical modelling values. Integrating these site-specific groundwater recharge rates to the whole catchment indicates that more water is potentially renewed than consumed nowadays. With increases in population and irrigation, more clean water is required, and knowledge about groundwater recharge rates – essential for improving the groundwater management in the Densu River basin – can be easily obtained by measuring water isotope depth profiles and applying a simple peak-shift approach.

Citation Adomako, D., Maloszewski, P., Stumpp, C., Osae, S. & Akiti, T. T. (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 55(8), 1405–1416.  相似文献   

17.
Abstract

The Quaternary and Tertiary deposits on the south coast of Portugal are distinguished by their excellent aquifer characteristics. The transmissivity of the Pleistocene-Pliocene formations reaches a maximum of 1 550 m2 d?1. In comparison the Miocene deposits are fairly good aquifers with a transmissivity of about 270 m2 d?1. Among the Holocene deposits the barrier dunes show reasonably good water-bearing qualities. The good hydraulic conductivities (19–22 m d?l) result in a flat shape of the groundwater table and fresh water flows towards the ocean. Excessive groundwater withdrawal has caused sea-water intrusion. The locations of the sea-water intrusions correspond with those centres where a spectacular growth of the tourist industry has taken place since 1968, and also with those areas where new developments in the irrigation techniques for the citrus industry have been applied. On the ocean front where sea water intrusion occurs, the thickness of the freshwater-lens has been reduced to 27–32 m.  相似文献   

18.
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major‐ions, the chemical composition is classified as Na‐Ca‐Cl‐SO4, Na‐Cl, or Na‐Ca‐Cl type water. δ2H and δ18O values range from ?47.7‰ to ?12.8‰ and from ?7.0‰ to ?1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher‐elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest‐to‐southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.  相似文献   

19.
ABSTRACT

Integrated two-dimensional electrical resistivity imaging (ERI) and hydrochemical surveys were used to investigate the groundwater alluvial aquifer in Kuala Langat, Malaysia. The study in the Langat basin considered the thickness of the aquifer, the depth of the bedrock, the regions influenced by seawater intrusion, and the monitoring of water levels. The resistivity imaging results show that the upper layer consists of clay, while the second layer is an aquifer whose thickness varies mostly in the range of 10–30 m, and in some cases extends to 40 m. The bedrock depth varies from 30 to 65 m. The chemical analyses were carried out on groundwater samples from nine boreholes collected between 2008 and 2012. The analyses indicate that the total dissolved solids (TDS) exceed 1000 mg L-1 near the coastal area and are often less than 500 mg L-1 further inland. The ERI and hydrochemical analyses reveal that groundwater in the study area, especially towards the coast, is a mixture of brackish and fresh waters.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

20.
Abstract

The Hai River Basin (HRB) is a heavily irrigated region encompassing the North China Plain (NCP) in northeast China. In the last decades, continuous lowering of groundwater levels had been reported in the NCP. This study used data from the Gravity Recovery and Climate Experiment (GRACE) and in situ measurements to quantify recent changes in groundwater storage from 2003 to 2012. The signal from GRACE observations highlight a sharp decline in the deep subsurface water stores (deep unsaturated zone and groundwater systems) up to a rate of 17.0 ± 4.3 mm year-1 between 2003 and 2012 over the HRB, equal to a volumetric loss of 5.5 ± 1.4 km3 year-1. This result shows good consistency with in situ observations of groundwater hydraulic heads compiled from monitoring bores, and emphasizes GRACE’s ability to monitor large-scale groundwater storage variations. Results from GRACE also provide an independent assessment of the effectiveness of water saving programmes that have been implemented by the government so far. Our study indicates that groundwater overdrawal is still prevalent and the dominant factor for the persistent loss in groundwater storage over the HRB/NCP; the current groundwater consumption pattern is far beyond the natural recharge ability in groundwater system.
Editor D. Koutsoyiannis; Associate editor T. Wagener  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号