首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catchment hydrological responses to precipitation inputs, particularly during exceptionally large storms, are complex and variable, and our understanding of the associated runoff generation processes during those events is limited. Hydrological monitoring of climatically and hydrologically distinct catchments can help to improve this understanding by shedding light on the interplay between antecedent soil moisture conditions, hydrological connectivity, and rainfall event characteristics. This knowledge is urgently needed considering that both the frequency and magnitude of extreme precipitation events are increasing worldwide as a consequence of climate change. In autumn 2018, we installed water level sensors to monitor stream water and near-stream groundwater levels at two Mediterranean forest headwater catchments with contrasting hydrological regimes: Font del Regàs (sub-humid climate, perennial flow regime) and Fuirosos (semi-arid climate, intermittent flow regime). Both catchments are located in northeastern Spain, where the extratropical cyclone Gloria hit in January 2020 and left in ca. 65 h outstanding accumulated rainfalls of 424 mm in Font del Regàs and 230 mm in Fuirosos. During rainfall events of low mean intensity, hydrological responses to precipitation inputs at the semi-arid Fuirosos were more delayed and more variable than at the sub-humid Font del Regàs. We explain these divergences by differences in antecedent soil moisture conditions and associated differences in catchment hydrological connectivity between the two catchments, which in this case are likely driven by differences in local climate rather than by differences in local topography. In contrast, during events of moderate and high mean rainfall intensities, including the storm Gloria, precipitation inputs and hydrological responses correlated similarly in the two catchments. We explain this convergence by rapid development of hydrological connectivity independently of antecedent soil moisture conditions. The data set presented here is unique and contributes to our mechanistic understanding on how streams respond to rainfall events and exceptionally large storms in catchments with contrasting flow regimes.  相似文献   

2.
Abstract

Development of environmental flow standards at the regional scale has been proposed as a means to manage the influence of hydrological alterations on riverine ecosystems in view of the rapid pace of global water resources management. Flow regime classification forms a critical part in such environmental flow assessments. We present a national-scale classification of hydrological regimes for Iran based on a set of hydrological metrics. It describes ecologically relevant characteristics of the natural hydrological regime derived from 15- to 47-year-long records of daily mean discharge data for 539 streamgauges within a 47-year period. The classification was undertaken using a fuzzy partitional method within Bayesian mixture modelling. The analysis resulted in 12 classes of distinctive flow regime types that differ in various hydrological aspects. This classification is being used for further research in regional-scale environmental flow studies in Iran.
Editor D. Koutsoyiannis  相似文献   

3.
Abstract

A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions.

Editor D. Koutsoyiannis

Citation Tarnavsky, E., Mulligan, M. and Husak, G., 2012. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrological Sciences Journal, 57 (2), 248–264.  相似文献   

4.
Abstract

Abstract This paper aims to show the benefit of a regional approach for the estimation of rare daily rainfall. The studied region is Languedoc-Roussillon (south of France), where recent exceptional storms necessitate the revision of the statistical distributions, particularly their asymptotic tails over extreme values. The example of a large single-site time series of maximum daily rainfall at Marseille (1864–2002), very close to the studied region, shows a hyper-exponential behaviour for extreme events. At the regional scale, the homogenization process of daily maximum rainfall has been performed by considering that the coefficients of variation of the yearly maximum daily rainfall are stationary over the study zone. Two regional sample studies have been carried out on 15 and 23 gauges, randomly distributed in space, and a similar distribution could be fitted to both samples. As in the case of Marseille, the regional distribution shows a hyper-exponential asymptotic behaviour at the extreme values. The obtained regional distribution provides a systematic method for computation of rare daily rainfall that may be applied in every part of the studied region and, when compared with previous estimations, leads to a significant increase in the depth of rare rainfall.  相似文献   

5.
《水文科学杂志》2013,58(5):909-917
Abstract

The possibility of simulating flooding in the Huong River basin, Vietnam, was examined using quantitative precipitation forecasts at regional and global scales. Raingauge and satellite products were used for observed rainfall. To make maximum use of the spatial heterogeneity of the different types of rainfall data, a distributed hydrological model was set up to represent the hydrological processes. In this way, streamflow simulated using the rainfall data was compared with that observed in situ. The forecast on a global scale showed better performance during normal flow peak simulations than during extreme events. In contrast, it was found that during an extreme flood peak, the use of regional forecasts and satellite data gives results that are in close agreement with results using raingauge data. Using the simulated overflow volumes recorded at the control point downstream, inundation areas were then estimated using topographic characteristics. This study is the first step in developing a future efficient early warning system and evacuation strategy.  相似文献   

6.
Abstract

Different approaches used in hydrological modelling are compared in terms of the way each one takes the rainfall data into account. We examine the errors associated with accounting for rainfall variability, whether in hydrological modelling (distributed vs lumped models) or in computing catchment rainfall, as well as the impact of each approach on the representativeness of the parameters it uses. The database consists of 1859 rainfall events, distributed on 500 basins, located in the southeast of France with areas ranging from 6.2 to 2851 km2. The study uses as reference the hydrographs computed by a distributed hydrological model from radar rainfall. This allows us to compare and to test the effects of various simplifications to the process when taking rainfall information (complete rain field vs sampled rainfall) and rainfall–runoff modelling (lumped vs distributed) into account. The results appear to show that, in general, the sampling effect can lead to errors in discharge at the outlet that are as great as, or even greater than, those one would get with a fully lumped approach. We found that small catchments are more sensitive to the uncertainties in catchment rainfall input generated by sampling rainfall data as seen through a raingauge network. Conversely, the larger catchments are more sensitive to uncertainties generated when the spatial variability of rainfall events is not taken into account. These uncertainties can be compensated for relatively easily by recalibrating the parameters of the hydrological model, although such recalibrations cause the parameter in question to completely lose physical meaning.

Citation Arnaud, P., Lavabre, J., Fouchier, C., Diss, S. & Javelle, P. (2011) Sensitivity of hydrological models to uncertainty of rainfall input. Hydrol. Sci. J. 56(3), 397–410.  相似文献   

7.
《水文科学杂志》2013,58(4):613-625
Abstract

Estimates of rainfall elasticity of streamflow in 219 catchments across Australia are presented. The rainfall elasticity of streamflow is defined here as the proportional change in mean annual streamflow divided by the proportional change in mean annual rainfall. The elasticity is therefore a simple estimate of the sensitivity of long-term streamflow to changes in long-term rainfall, and is particularly useful as an initial estimate of climate change impact in land and water resources projects. The rainfall elasticity of streamflow is estimated here using a hydrological modelling approach and a nonparametric estimator. The results indicate that the rainfall elasticity of streamflow (? P ) in Australia is about 2.0–3.5 (observed in about 70% of the catchments), that is, a 1% change in mean annual rainfall results in a 2.0–3.5% change in mean annual streamflow. The rainfall elasticity of streamflow is strongly correlated to runoff coefficient and mean annual rainfall and streamflow, where streamflow is more sensitive to rainfall in drier catchments, and those with low runoff coefficients. There is a clear relation-ship between the ? P values estimated using the hydrological modelling approach and those estimated using the nonparametric estimator for the 219 catchments, although the values estimated by the hydrological modelling approach are, on average, slightly higher. The modelling approach is useful where a detailed study is required and where there are sufficient data to reliably develop and calibrate a hydrological model. The nonparametric estimator is useful where consistent estimates of the sensitivity of long-term streamflow to climate are required, because it is simple to use and estimates the elasticity directly from the historical data. The nonparametric method, being model independent, can also be easily applied in comparative studies to data sets from many catchments across large regions.  相似文献   

8.
Abstract

Heavy rainfall events often occur in southern French Mediterranean regions during the autumn, leading to catastrophic flood events. A non-stationary peaks-over-threshold (POT) model with climatic covariates for these heavy rainfall events is developed herein. A regional sample of events exceeding the threshold of 100 mm/d is built using daily precipitation data recorded at 44 stations over the period 1958–2008. The POT model combines a Poisson distribution for the occurrence and a generalized Pareto distribution for the magnitude of the heavy rainfall events. The selected covariates are the seasonal occurrence of southern circulation patterns for the Poisson distribution parameter, and monthly air temperature for the generalized Pareto distribution scale parameter. According to the deviance test, the non-stationary model provides a better fit to the data than a classical stationary model. Such a model incorporating climatic covariates instead of time allows one to re-evaluate the risk of extreme precipitation on a monthly and seasonal basis, and can also be used with climate model outputs to produce future scenarios. Existing scenarios of the future changes projected for the covariates included in the model are tested to evaluate the possible future changes on extreme precipitation quantiles in the study area.

Editor Z.W. Kundzewicz; Associate editor K. Hamed

Citation Tramblay, Y., Neppel, L., Carreau, J., and Najib, K., 2013. Non-stationary frequency analysis of heavy rainfall events in southern France. Hydrological Sciences Journal, 58 (2), 280–294.  相似文献   

9.
ABSTRACT

Downscaling of climate projections is the most adapted method to assess the impacts of climate change at regional and local scales. This study utilized both spatial and temporal downscaling approaches to develop intensity–duration–frequency (IDF) relations for sub-daily rainfall extremes in the Perth airport area. A multiple regression-based statistical downscaling model tool was used for spatial downscaling of daily rainfall using general circulation models (GCMs) (Hadley Centre’s GCM and Canadian Global Climate Model) climate variables. A simple scaling regime was identified for 30 minutes to 24 hours duration of observed annual maximum (AM) rainfall. Then, statistical properties of sub-daily AM rainfall were estimated by scaling an invariant model based on the generalized extreme value distribution. RMSE, Nash-Sutcliffe efficiency coefficient and percentage bias values were estimated to check the accuracy of downscaled sub-daily rainfall. This proved the capability of the proposed approach in developing a linkage between large-scale GCM daily variables and extreme sub-daily rainfall events at a given location. Finally IDF curves were developed for future periods, which show similar extreme rainfall decreasing trends for the 2020s, 2050s and 2080s for both GCMs.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   

10.
Abstract

West African rainfall is characterized by a strong variability, both at decadal and interannual scales. In order to quantify the hydrological impacts of such a variability, analysis of rainfall patterns at fine scales is highly essential. This diagnostic study aims to characterize the Sudanese rainfall regime at hydrological scales, using a raingauge data set collected on the upper Oueme River catchment (Benin) between 1950 and 2002. A long-term drought is observed during the 1970s and 1980s, as in the Sahel. However, the interannual variability remains significant in the Sudanese region. The study of the seasonal cycle, based on the distinction between the oceanic and continental monsoon regimes, shows that the majority of rainfall changes occur in the continental regime. On the one hand, the rainfall peak associated with this regime that has been observed for the last 50 years has occurred increasingly earlier in the season. On the other hand, the annual rainfall deficit is mainly linked to the decrease in the number of large events during the continental part of the season.  相似文献   

11.
ABSTRACT

Evapotranspiration (ET) is one of the most important components in the hydrological cycle, and a key variable in hydrological modelling and water resources management. However, understanding the impacts of spatial variability in ET and the appropriate scale at which ET data should be incorporated into hydrological models, particularly at the regional scale, is often overlooked. This is in contrast to dealing with the spatial variability in rainfall data where existing guidance is widely available. This paper assesses the impacts of scale on the estimation of reference ET (ETo) by comparing data from individual weather stations against values derived from three national datasets, at varying resolutions. These include the UK Climate Impacts Programme 50 km climatology (UKCP50), the UK Met Office 5 km climatology (UKMO5) and the regional values published in the Agricultural Climate of England and Wales (ACEW). The national datasets were compared against the individual weather station data and the UKMO5 was shown to provide the best estimate of ETo at a given site. The potential impacts on catchment modelling were then considered by mapping variance in ETo to show how geographical location and catchment size can have a major impact, with small lowland catchments having much higher variance than those with much larger areas or in the uplands. Some important implications for catchment hydrological modelling are highlighted.
Editor D. Koutsoyiannis; Associate editor L. Ruiz  相似文献   

12.
Abstract

Abstract The Gumbel distribution has been the prevailing model for quantifying risk associated with extreme rainfall. Several arguments including theoretical reasoning and empirical evidence are supposed to support the appropriateness of the Gumbel distribution. These arguments are examined thoroughly in this work and are put into question. Specifically, theoretical analyses show that the Gumbel distribution is quite unlikely to apply to hydrological extremes and its application may misjudge the risk, as it underestimates seriously the largest extreme rainfall amounts. Besides, it is shown that hydrological records of typical length (some decades) may display a distorted picture of the actual distribution, suggesting that the Gumbel distribution is an appropriate model for rainfall extremes while it is not. In addition, it is shown that the extreme value distribution of type II (EV2) is a more consistent alternative. Based on the theoretical analysis, in the second part of this study an extensive empirical investigation is performed using a collection of 169 of the longest available rainfall records worldwide, each having 100–154 years of data. This verifies the inappropriateness of the Gumbel distribution and the appropriateness of EV2 distribution for rainfall extremes.  相似文献   

13.
ABSTRACT

Assessment of forecast precipitation is required before it can be used as input to hydrological models. Using radar observations in southeastern Australia, forecast rainfall from the Australian Community Climate Earth-System Simulator (ACCESS) was evaluated for 2010 and 2011. Radar rain intensities were first calibrated to gauge rainfall data from four research rainfall stations at hourly time steps. It is shown that the Australian ACCESS model (ACCESS-A) overestimated rainfall in low precipitation areas and underestimated elevated accumulations in high rainfall areas. The forecast errors were found to be dependent on the rainfall magnitude. Since the cumulative rainfall observations varied across the area and through the year, the relative error (RE) in the forecasts varied considerably with space and time, such that there was no consistent bias across the study area. Moreover, further analysis indicated that both location and magnitude errors were the main sources of forecast uncertainties on hourly accumulations, while magnitude was the dominant error on the daily time scale. Consequently, the precipitation output from ACCESS-A may not be useful for direct application in hydrological modelling, and pre-processing approaches such as bias correction or exceedance probability correction will likely be necessary for application of the numerical weather prediction (NWP) outputs.
EDITOR M.C. Acreman ASSOCIATE EDITOR A. Viglione  相似文献   

14.
Abstract

Transfer function models of the rainfall–runoff relationship with various complexities are developed to investigate the hydrological behaviour of a tropical peat catchment that has undergone continuous drainage for a long time. The study reveals that a linear transfer function model of order one and noise term of ARIMA (1,0,0) best represents the monthly rainfall–runoff relationship of a drained peat catchment. The best-fitted transfer function model is capable of illustrating the cumulative hydrological effects of the catchment when subjected to drainage. Transfer function models of daily rainfall–runoff relationships for each year of the period 1983–1993 are also developed to decipher the changes in hydrological behaviour of the catchment due to drainage. The results show that the amount of rain water temporarily stored in the peat soil decreased and the catchment has become more responsive to rainfall over the study period.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Katimon, A., Shahid, S., Abd Wahab, A.K., and Shabri, A., 2013. Hydrological behaviour of a drained agricultural peat catchment in the tropics. 2: Time series transfer function modelling approach. Hydrological Sciences Journal, 58 (6), 1310–1325.  相似文献   

15.
Abstract

Given that radar-based rainfall has been broadly applied in hydrological studies, quantitative modelling of its uncertainty is critically important, as the error of input rainfall is the main source of error in hydrological modelling. Using an ensemble of rainfall estimates is an elegant solution to characterize the uncertainty of radar-based rainfall and its spatial and temporal variability. This paper has fully formulated an ensemble generator for radar precipitation estimation based on the copula method. Each ensemble member is a probable realization that represents the unknown true rainfall field based on the distribution of radar rainfall (RR) error and its spatial error structure. An uncertainty model consisting of a deterministic component and a random error factor is presented based on the distribution of gauge rainfall conditioned on the radar rainfall (GR|RR). Two kinds of copulas (elliptical and Archimedean copulas) are introduced to generate random errors, which are imposed by the deterministic component. The elliptical copulas (e.g. Gaussian and t-copula) generate the random errors based on the multivariate distribution, typically of decomposition of the error correlation matrix using the LU decomposition algorithm. The Archimedean copulas (e.g. Clayton and Gumbel) utilize the conditional dependence between different radar pixels to obtain random errors. Based on those, a case application is carried out in the Brue catchment located in southwest England. The results show that the simulated uncertainty bands of rainfall encompass most of the reference raingauge measurements with good agreement between the simulated and observed spatial dependences. This indicates that the proposed scheme is a statistically reliable method in ensemble radar rainfall generation and is a useful tool for describing radar rainfall uncertainty.
Editor D. Koutsoyiannis; Associate editor S. Grimaldi  相似文献   

16.
《水文科学杂志》2012,57(1):138-151
ABSTRACT

Most catchments in tropical regions are ungauged and data deficient, complicating the simulation of water quantity and quality. Yet, developing and testing hydrological models in data-poor regions is vital to support water management. Here, we used the Soil and Water Assessment Tool (SWAT) to predict stream runoff in Halda Basin in Bangladesh. While the calibrated model’s performance was satisfactory (R2 = 0.80, NSE = 0.71), the model was unable to track the extreme low flow peaks due to the temporal and spatial variability of rainfall which may not be fully captured by using data from one rainfall gauging station. Groundwater delay time, baseflow alpha factor and curve number were the most sensitive parameters influencing model performance. This study improves understanding of the key processes of a catchment in a data-poor, monsoon driven, small river basin and could serve as a baseline for scenario modelling for future water management and policy framework.  相似文献   

17.
ABSTRACT

Rainfall events largely control hydrological processes occurring on and in the ground, but the performance of climate models in reproducing rainfall events has not been investigated enough to guide selection among the models when making hydrological projections. We proposed to compare the durations, intensities, and pause periods, as well as depths of rainfall events when assessing the accuracy of general circulation models (GCMs) in reproducing the hydrological characteristics of observed rainfall. We also compared the sizes of design storm events and the frequency and severity of drought to demonstrate the consequences of GCM selection. The results show that rainfall and extreme hydrological event projections could significantly vary depending on climate model selection and weather stations, suggesting the need for a careful and comprehensive evaluation of GCM in the hydrological analysis of climate change. The proposed methods are expected to help to improve the accuracy of future hydrological projections for water resources planning.  相似文献   

18.
From the origins of hydrology, the time of concentration, tc, has conventionally been tackled as a constant quantity. However, theoretical proof and empirical evidence imply that tc exhibits significant variability against rainfall, making its definition and estimation a hydrological paradox. Adopting the assumptions of the Rational method and the kinematic approach, an effective procedure in a GIS environment for estimating the travel time across a catchment’s longest flow path is provided. By application in 30 Mediterranean basins, it is illustrated that tc is a negative power function of excess rainfall intensity. Regional formulas are established to infer its multiplier (unit time of concentration) and exponent from abstract geomorphological information, which are validated against observed data and theoretical literature outcomes. Besides offering a fast and easy solution to the paradox, we highlight the necessity of implementing the varying tc concept within hydrological modelling, signalling a major shift from current engineering practices.  相似文献   

19.
Abstract

The objective of this study is to find the appropriate number and location of raingauges for a river basin for flow simulation by using statistical analyses and hydrological modelling. First, a statistical method is used to identify the appropriate number of raingauges. Herein the effect of the number of raingauges on the cross-correlation coefficient between areally averaged rainfall and discharge is investigated. Second, a lumped HBV model is used to investigate the effect of the number of raingauges on hydrological modelling performance. The Qingjiang River basin with 26 raingauges in China is used for a case study. The results show that both cross-correlation coefficient and modelling performance increase hyperbolically, and level off after five raingauges (therefore identified to be the appropriate number of rain-gauges) for this basin. The geographical locations of raingauges which give the best and worst hydrological modelling performance are identified, which shows that there is a strong dependence on the local geographical and climatic patterns.  相似文献   

20.
Abstract

This study investigates the terrestrial hydrological processes during a dry climate period in Southwest China by analysing the frequency-dependent runoff and soil moisture responses to precipitation variability. Two headwater sub-basins, the Nanpan and Guihe basins of the West River (Xijiang), are studied to compare and contrast the terrestrial responses. The variable infiltration capacity (VIC) model is used to simulate the hydrological processes. Using wavelets, the relationships between observed precipitation and simulated runoff/soil moisture are expressed quantitatively. The results indicate that: (a) the Guihe basin shows a greater degree of high-frequency runoff variability in response to regional precipitation; and (b) the Nanpan basin exhibits less capability in accommodating/smoothing extreme precipitation deficits, reflected in terms of both higher scale-averaged (for 3–6 months) and time-averaged (for the year 1963) wavelet power of soil moisture.

Editor Z.W. Kundzewicz; Associate editor C.-Y. Xu

Citation Niu, J. and Chen, J., 2013. Terrestrial hydrological responses to precipitation variability in Southwest China with emphasis on drought. Hydrological Sciences Journal, 59 (2), 325–335.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号