首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This study evaluates an over-exploited aquifer (Balasor, India) and also explores the possibilities of sustainable management using several statistical approaches. First, bootstrap analysis indicates that groundwater pumping has resulted in the reduction of mean cultivated area as the average irrigation capacity per bore well dropped from 3.74 ha to 1.5 ha within a period of 10 years of operation. However, modelling the groundwater levels using the seasonal autoregressive integrated moving average (SARIMA) procedure showed no evidence of large-scale groundwater withdrawals. The derived models can be used for water table forecasting and also for infilling the missing observations. The empirical relationship among pumping test results indicated that well depth and aquifer thickness significantly influence the discharge from the aquifer. This discharge may have encouraged the resource-rich farmers to exploit the lower aquifer. Based on a contour plot, the zone of groundwater exploitation was estimated to vary from 25 to 60 m below the surface. Therefore, a uniform aquifer exploitation policy needs to be implemented to curb the vertical competition in exploiting the aquifer and to develop sustainable management of the groundwater.

Citation Panda, D. K. & Kumar, A. (2011) Evaluation of an over-used coastal aquifer (Orissa, India) using statistical approaches. Hydrol. Sci. J. 56(3), 486–497.  相似文献   

2.
Abstract

Submarine springs play an important role in submarine groundwater discharge (SGD). To investigate the effects of these springs on the propagation of tidal signals in coastal confined aquifers, this paper considers a general coastal aquifer system with a submarine spring on the seabed where the length of the aquifer's offshore extent is finite and its submarine outlet is covered by an impermeable outlet-capping. An approximate analytical solution is obtained for describing the tidal head fluctuations in the aquifer. Solution analyses indicate that the error of the approximate analytical solution is negligible when both distances from the spring hole to the coastline and to the submarine outlet-capping are much greater than the radius of the spring hole. Sensitivity tests are conducted to investigate the effects of hydraulic properties, tidal and spring geometric configuration parameters on the tidal signal propagation in the inland aquifer. For aquifers with infinite offshore length, or without submarine springs, existing solutions in the literature are obtained. The comparison of groundwater head fluctuations for the cases with and without a submarine spring demonstrate the enhancing effect of the submarine spring on tidal signal propagation in the inland aquifer. Three situations that fit our model assumptions are given for future potential applications. A hypothetical example is used to show the possibility of identifying a spring's location using the present analytical solution together with tidal signals observed from inland wells.

Editor D. Koutsoyiannis; Associate editor Y. Guttmann

Citation Xia, Y.Q., Li, H.L., Yang, Y., and Huang, W., 2012. Enhancing effect on tidal signals of a submarine spring related to a semi-infinite confined aquifer. Hydrological Sciences Journal, 57 (6), 1231–1248.  相似文献   

3.
Abstract

The Agua Amarga coastal aquifer has been the object of a succession of anthropogenic interventions over the last 90 years: (a) the operation of saltworks from 1925 to 1975; (b) the withdrawal, since 2003, of groundwater from the aquifer along the coast line; and (c) the programme of pouring seawater over the salt marsh, carried out since 2009, to recover the piezometric levels and the soil moisture conditions. For a better understanding of how these past and present human activities have affected the natural groundwater regime, and to validate certain hypotheses concerning the interpretation of experimental data on temperature depth profiles and piezometric and salinity changes, a numerical fluid flow and solute transport model was designed and applied to the period 1925–2010, using SEAWAT. This model reproduces, in a qualitative and quantitative way, the flow and transport processes that operated during this time, as well as the behaviour of the seawater wedge.

Citation Alhama Manteca, I., 2013. Simulation and consequences of successive anthropogenic activity in the Agua Amarga coastal aquifer (southeast Spain). Hydrological Sciences Journal, 58 (5), 1072–1087.

Editor D. Koutsoyiannis  相似文献   

4.
ABSTRACT

An analytical mathematical model, based on Jacobian elliptic functions, has been used to identify feasible wellfield locations and pumping rates for large-scale abstraction from an unconfined coastal aquifer. The choice of optimum feasible wellfield strategy has been made using a simple economic model which calculates the cost of the pipelines required to transport the abstracted groundwater to a large coastal city which forms the demand centre. Results indicate that the cheapest wellfield design would be a single large wellfield. However, because of the need to maintain at least a minimum supply in the city until a new surface water source is developed, a better solution may well be to develop two smaller wellfields pumping a greater total abstraction.  相似文献   

5.
Xun Zhou  Chao Song  Ting Li 《水文科学杂志》2013,58(13):2367-2375
ABSTRACT

The inland extending length of the freshwatersaltwater interface toe is useful in studies of seawater intrusion in coastal areas. The submarine fresh groundwater discharge in coastal zones is affected not only by hydraulic conductivity and hydraulic gradient of the aquifer, but also by the position of the interface. Two observation wells at different distances from the coast are required to calculate the fresh groundwater flow rate in coastal unconfined aquifers. By considering that the submarine groundwater discharge is equal to the groundwater flow rate, the length of the interface toe extending inland can be estimated when the groundwater flow is at a steady-flow state. Aquifers with horizontal and sloping confined beds and without/with unique surface vertical infiltration are considered. Examples used to illustrate the application of these methods indicate that the inland extending lengths of the interface toe in aquifers with vertical surface infiltration are much shorter than those in aquifers without vertical surface infiltration, and the length of the interface in aquifers with a horizontal confining lower bed are smaller than those in aquifers with a confining lower bed sloping towards the sea. The extent of the interface on the northwestern coast near the city of Beihai in southern Guangxi, China, on 18 January 2013 was estimated as 471478 m.
Editor M.C. Acreman Associate editor not assigned  相似文献   

6.
Abstract

Saltwater intrusion is a naturally occurring phenomenon that is exacerbated significantly by excessive groundwater exploitation in coastal aquifers. In order to determine the extent of saltwater intrusion in a karstified coastal aquifer in Crete, Greece, a three-dimensional, density-dependent groundwater flow and transport model was developed and compared to the more traditional sharp-interface approach. The karstified medium was modelled using a combination of the equivalent porous medium approach (for lower-order fractures) and a discrete fracture approach (for the main fractures/faults). The model takes into consideration the geomorphologic characteristics of the karstic system, such as the depth and orientation of the fault network, and the diffusion phenomena associated with the variable densities of freshwater and saltwater—parameters that create a complex system, inducing uncertainty in the model. The model results showed that the orientation of the fractures, the pumping activity and the fluid density effects drive the seawater intrusion front asymmetrically inland.

Editor Z.W. Kundzewicz

Citation Dokou, Z. and Karatzas, G.P., 2012. Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach. Hydrological Sciences Journal, 57 (5), 985–999.  相似文献   

7.
In recent years, environmental assessments of groundwater resources have resulted in the development of models that help identify the vulnerable zones. An aquifer is investigated using both GALDIT and DRASTIC indices. The GALDIT model is developed to determine the vulnerability of coastal aquifers in terms of saltwater intrusion whereas the DRASTIC model is generally applicable to all aquifers. Having compared the results of both the GALDIT and DRASTIC models with quality parameters, the salinity model proved to be more appropriate in identifying the vulnerability of coastal aquifers. The results show a Pearson correlation coefficient between TDS and the GALDIT vulnerability map of 0.58 while the corresponding value for the DRASTIC index is 0.48.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Fiori  相似文献   

8.
Abstract

We investigate the general methodology for an intensive development of coastal aquifers, described in a companion paper, through its application to the management of the Akrotiri aquifer, Cyprus. The Zakaki area of that aquifer, adjacent to Lemessos City, is managed such that it permits a fixed annual agricultural water demand to be met, as well as and a fraction of the water demand of Lemessos, which varies according to available surface water. Effluents of the Lemessos wastewater treatment plant are injected into the aquifer to counteract the seawater intrusion resulting from the increased pumping. The locations of pumping and injection wells are optimized based on least-cost, subject to meeting the demand. This strategy controls sea intrusion so effectively that desalting of only small volumes of slightly brackish groundwater is required over short times, while ~2.3 m3 of groundwater is produced for each 1 m3 of injected treated wastewater. The cost over the 20-year period 2000–2020 of operation is ~40 M€ and the unit production cost of potable water is under 0.2 €/m3. The comparison between the deterministic and stochastic analyses of the groundwater dynamics indicates the former as conservative, i.e. yielding higher groundwater salinity at the well. The Akrotiri case study shows that the proposed aquifer management scheme yields solutions that are preferable to the widely promoted seawater desalination, also considering the revenues from using the treated wastewater for irrigation.

Citation Koussis, A. D., Georgopoulou, E., Kotronarou, A., Mazi, K., Restrepo, P., Destouni, G., Prieto, C., Rodriguez, J. J., Rodriguez-Mirasol, J., Cordero, T., Ioannou, C., Georgiou, A., Schwartz, J. & Zacharias, I. (2010) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrol. Sci. J. 55(7), 1234–1245.  相似文献   

9.
ABSTRACT

Integrated two-dimensional electrical resistivity imaging (ERI) and hydrochemical surveys were used to investigate the groundwater alluvial aquifer in Kuala Langat, Malaysia. The study in the Langat basin considered the thickness of the aquifer, the depth of the bedrock, the regions influenced by seawater intrusion, and the monitoring of water levels. The resistivity imaging results show that the upper layer consists of clay, while the second layer is an aquifer whose thickness varies mostly in the range of 10–30 m, and in some cases extends to 40 m. The bedrock depth varies from 30 to 65 m. The chemical analyses were carried out on groundwater samples from nine boreholes collected between 2008 and 2012. The analyses indicate that the total dissolved solids (TDS) exceed 1000 mg L-1 near the coastal area and are often less than 500 mg L-1 further inland. The ERI and hydrochemical analyses reveal that groundwater in the study area, especially towards the coast, is a mixture of brackish and fresh waters.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

10.
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major‐ions, the chemical composition is classified as Na‐Ca‐Cl‐SO4, Na‐Cl, or Na‐Ca‐Cl type water. δ2H and δ18O values range from ?47.7‰ to ?12.8‰ and from ?7.0‰ to ?1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher‐elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest‐to‐southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.  相似文献   

11.
《水文科学杂志》2013,58(3):441-454
Abstract

In wells tapping coastal aquifers, piezometric fluctuations can be observed in response to the ocean tide. Simultaneous recordings of the ocean tide and of the piezometric variations may provide a basis for characterizing the hydrodynamics of the aquifer. This approach was attempted to characterize the Dridrate aquifer, located on the Atlantic coast of Morocco. This aquifer accounts for most of the regional drinking water resources. However, its hydrodynamic characteristics are very poorly known. The study compares observed and simulated piezometric fluctuations, under various assumptions (confined, semi-confined aquifer). The model, which best explains the hydrodynamic behaviour of this aquifer is a semi-confined and strongly heterogeneous aquifer model (calculated hydraulic diffusivity values vary over several orders of magnitude). This result is new and rather surprising, since to date this aquifer was considered confined in view of its geological setting. Consequently, new questions are raised regarding the protection and management of the groundwater resources of this aquifer.  相似文献   

12.
A detailed study using environmental tracers such as chloride (Cl?) and tritium (3H), deuterium (2H) and oxygen (18O) isotopes was performed in an alluvial coastal aquifer in two contrasting environments (urban and agricultural). These environmental tracers combined with a high‐resolution multi‐level sampling approach were used to estimate groundwater residence time and recharge patterns and to validate the hydrogeochemical conceptual model already proposed in previous studies. δ18O and δ2H combined with Cl? data proved that the hypersaline groundwater present in the deepest part of the aquifer was sourced from the underlying hypersaline aquitard via an upward flux. Both chemical and isotopic data were employed to calibrate a density‐dependent numerical model based on SEAWAT 4.0, where 3H and Cl? were helped quantifying solutes transport within the modelled aquifer. Model results highlighted the differences on estimated recharge in the two contrasting environments, with the urban one exhibiting concentrated recharge because of preferential infiltration associated to the storm water drains network, while scarce local recharge characterized the agriculture setting. In the urban field site, is still possible to recognize at 9 m b.g.l. the input of the atmospheric anthropogenic 3H generated by testing of thermonuclear weapons, while in the agricultural field site, the 3H peak has been washed out at 6 m b.g.l. because the groundwater circulation is restricted only to the upper fresh part of the aquifer, drained by the reclamation system. The presented approach that combined high‐resolution field monitoring, environmental tracers and numerical modelling, resulted effective in validating the conceptual model of the aquifer salinization. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Exposure from groundwater contamination to aquatic receptors residing in receiving surface water is dependent upon the rate of contaminated groundwater discharge. Characterization of groundwater fluxes is challenging, especially in coastal environments where tidal fluctuations result in transient groundwater flows towards these receptors. This can also be further complicated by the high spatial heterogeneity of subsurface deposits enhanced by anthropogenic influences such as the mixing of natural sediments and backfill materials, the presence of subsurface built structures such as sheet pile walls or even occurrence of other sources of contaminant discharge. In this study, the finite volume point dilution method (FVPDM) was successfully used to characterize highly transient groundwater flows and contaminant mass fluxes within a coastal groundwater flow system influenced by marked tides. FVPDM tests were undertaken continuously for more than 48 h at six groundwater monitoring wells, in order to evaluate groundwater flow dynamics during several tide cycles. Contaminant concentrations were measured simultaneously which allowed calculating contaminant mass fluxes. The study highlighted the importance of the aquifer heterogeneity, with groundwater fluxes ranging from 10−7 to 10−3 m/s. Groundwater flux monitoring enabled a significant refinement of the conceptual site model, including the fact that inversion of groundwater fluxes was not observed at high tide. Results indicated that contaminant mass fluxes were particularly higher at a specific monitoring well, by more than three orders of magnitude, than at other wells of the investigated aquifer. This study provided crucial information for optimizing further field investigations and risk mitigation measures.  相似文献   

14.
《Advances in water resources》2005,28(10):1040-1047
The prediction of watertable fluctuations in a coastal aquifer is important for coastal management. However, most previous approaches have based on the one-dimensional Boussinesq equation, neglecting variations in the coastline and beach slope. In this paper, a closed-form analytical solution for a two-dimensional unconfined coastal aquifer bounded by a rhythmic coastline is derived. In the new model, the effect of beach slope is also included, a feature that has not been considered in previous two-dimensional approximations. Three small parameters, the shallow water parameter (ε), the amplitude parameter (α) and coastline parameter (β) are used in the perturbation approximation. The numerical results demonstrate the significant influence of both the coastline shape and beach slopes on tide-driven coastal groundwater fluctuations.  相似文献   

15.
Abstract

The increasing water demand is a concern affecting many regions in the Mediterranean Basin. To overcome this situation rim countries resorted during the last decades to a massive mobilization of their water resources, often resulting in excessive water exploitation. In such a context, understanding the effects of present recharge and aquifer salinization is crucial for correct water management. Understanding the present hydrogeological situation of coastal plains requires the knowledge of both their past morphologic conditions and their recent geological evolution. Within this framework, this paper presents a review of water related problems in the Mediterranean Basin. It suggests a conceptual model for groundwater resources in Mediterranean coastal plains, deriving from the present and past recharge processes. Special attention is paid to providing a better understanding of climate change impacts on water quantity and quality, and conservation of ecological diversity.

Citation Re, V. & Zuppi, G. M. (2011) Influence of precipitation and deep saline groundwater on the hydrological systems of Mediterranean coastal plains: a general overview. Hydrol. Sci. J. 56(6), 966–980.  相似文献   

16.
Abstract

Groundwater, possibly of fossil origin, is used for water supply in some arid regions where the replenishment of groundwater by precipitation is low. Numerical modelling is a helpful tool in the assessment of groundwater resources and analysis of future exploitation scenarios. To quantify the groundwater resources of the East Owienat area in the southwest of the Western Desert, Egypt, the present study assesses the groundwater resources management of the Nubian aquifer. Groundwater withdrawals have increased in this area, resulting in a disturbance of the aquifer’s natural equilibrium, and the large-scale and ongoing depletion of this critical water reserve. Negative impacts, such as a decline in water levels and increase in salinity, have been experienced. The methodology includes application of numerical groundwater modelling in steady and transient states under different measured and abstraction scenarios. The numerical simulation model developed was applied to assess the responses of the Nubian aquifer water level under different pumping scenarios during the next 30 years. Groundwater management scenarios are evaluated to find an optimal management solution to satisfy future needs. Based on analysis of three different development schemes that were formulated to predict the future response of the aquifer under long-term water stress, a gradual increase in groundwater pumping to 150% of present levels should be adopted for protection and better management of the aquifer. Similar techniques could be used to improve groundwater management in other parts of the country, as well as other similar arid regions.
Editor D. Koutsoyiannis; Associate editor X. Chen  相似文献   

17.
Abstract

The Wadi Al Ayn plain is a coastal system on the eastern coast of Cap Bon in northeastern Tunisia. The area is known for its intensive agriculture, which is based mainly on groundwater exploitation. The aim of this study is to identify the sources of groundwater salinization in the Wadi Al Ayn aquifer system and deduce the processes that drive the mineralization. Surface water and groundwater samples were taken and analysed for major ions and stable isotopes. The geochemical data were used to characterize and classify the water samples based on a variety of ion plots and diagrams. Stable isotopes are useful tools to help us understand recharge processes and to differentiate between salinity origins. The oilfield brines infiltrated from the sandy bed of Wadi Al Ayn comprise the main source of groundwater salinization in the central part of the plain, while seawater intrusion is mainly responsible for the increased salinity in the groundwater of the coastal part of the plain (at Daroufa).

Citation Chekirbane, A., Tsujimura, M., Kawachi, A., Isoda, H., Tarhouni, J., and Benalaya, A., 2013. Hydrogeochemistry and groundwater salinization in an ephemeral coastal flood plain: Cap Bon, Tunisia. Hydrological Sciences Journal, 58 (5), 1097–1110.  相似文献   

18.
Abstract

A new structured approach is presented to derive groundwater baseline conditions, in this case for a dolomitic limestone aquifer suffering from salinization and other anthropogenic impacts. It builds on the HydroChemical System Analysis (HCSA) to map different groundwater bodies (hydrosomes) and hydrochemical zones within them, each of which show significant differences in baseline conditions. It also comprises a rigorous elimination scheme for samples affected by bias or pollution. The method is applied to the Damour coastal aquifer system, south of Beirut (Lebanon). Concentrations of Cl, Cl/Br, 2H, 18O and Ca/Sr were used to discern five hydrosomes and to determine mixing ratios. The dominant hydrochemical facies was (sub)oxic, calcareous and salinized, indicating a very low reduction capacity of the aquifer system, strong dissolution of dolomitic limestone and clear traces of seawater encroachment. The method proposed was capable of filtering out baseline conditions for 16 main constituents, 64 trace elements and two isotopes.  相似文献   

19.
Abstract

Despite the Sahelian drought of the 1970s–1990s, the unconfined aquifer in southwest Niger exhibits a multidecadal increase in groundwater reserves. Recent changes in land surface conditions have enhanced runoff and thus indirect groundwater recharge below endorheic ponds. This paper presents a model-based investigation of surface runoff and groundwater recharge at mesoscale (~5000 km2). A new lumped-conceptual runoff model applicable to the large number of ungauged endorheic catchments is specially developed, derived from an existing fine-scale, physically-based hydrologic model. Runoff simulated for sites identified as groundwater recharge sources are used to derive recharge forcing for a Modflow-based model of the aquifer. The rising water table trend and its spatial distribution over the period 1992–2003 are generally well simulated, albeit smoothed year-to-year dynamics. Comparison with alternative methods of recharge estimation suggests, however, that there may presently exist more recharging sites and/or contributing surfaces than those considered so far.

Citation Massuel, S., Cappelaere, B., Favreau, G., Leduc, C., Lebel, T. & Vischel, T. (2011) Integrated surface water–groundwater modelling in the context of increasing water reserves of a regional Sahelian aquifer. Hydrol. Sci. J. 56(7), 1242–1264.  相似文献   

20.
Abstract

The western reservoirs represent the principal groundwater system in Morocco. Demographic, industrial and agricultural developments during the last decade have markedly altered groundwater quality. The Mamora coastal aquifer system is among the Atlantic systems which are most heavily threatened by pollution. Agricultural and industrial activities, and rapid urban growth contribute to the pollution of the groundwater. Contamination transport is facilitated by a high permeability of the aquifer formations. In order to assess the actual groundwater quality of the Mamora aquifer and to understand the influence of the factors generating the pollution, an extensive multidisciplinary research programme is in progress, with hydrochemistry and microbiology playing essential roles. The present paper concerns the spatial distribution of physico-chemical parameters in the groundwater, subjected to domestic, industrial and agricultural pollution. Fifty-seven samples were analysed for several parameters (Ca2+, Mg2+, Na+, K+, Cl?, SO4 2?, HCO3 ?, NO3 ?, pH, electrical conductivity and temperature). The microbiological analysis of 143 samples reveals the presence of four kinds of indicator bacteria in the groundwater resources: faecal Streptococci, faecal coliform, Escherichia coli and Clostridium. The physico-chemical results and bacteriological monitoring show that the nitrate and bacteria concentrations exceed the maximum admissible levels, notably around pumping stations in the sectors of Sidi Taibi, Sidi Ahmed Taleb and Aïn Sbaâ. Contamination is generated by uncontrolled anthropogenic activities and accentuated by the high intrinsic vulnerability of the aquifer system. Several parameters appeared to exceed admissibility standards. Measures are recommended to prevent groundwater pollution in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号