首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In many places, magnitudes and frequencies of floods are expected to increase due to climate change. To understand these changes better, trend analyses of historical data are helpful. However, traditional trend analyses do not address issues related to shifts in the relative contributions of rainfall versus snowmelt floods, or in the frequency of a particular flood type. We present a novel approach for quantifying such trends in time series of floods using a fuzzy decision tree for event classification and applied it to maximal annual and seasonal floods in 27 alpine catchments for the period 1980–2014. Trends in flood types were studied with Sen’s slope and double mass curves. Our results reveal a decreasing number of rain-on-snow and an increasing number of short rainfall events in all catchments, with flash floods increasing in smaller catchments. Overall, the results demonstrate the value of incorporating a fuzzy flood-type classification into flood trend analyses.  相似文献   

2.
The flood seasonality of catchments in Switzerland is likely to change under climate change because of anticipated alterations of precipitation as well as snow accumulation and melt. Information on this change is crucial for flood protection policies, for example, or regional flood frequency analysis. We analysed projected changes in mean annual and maximum floods of a 22‐year period for 189 catchments in Switzerland and two scenario periods in the 21st century based on an ensemble of climate scenarios. The flood seasonality was analysed with directional statistics that allow assessing both changes in the mean date a flood occurs as well as changes in the strength of the seasonality. We found that the simulated change in flood seasonality is a function of the change in flow regime type. If snow accumulation and melt is important in a catchment during the control period, then the anticipated change in flood seasonality is most pronounced. Decreasing summer precipitation in the scenarios additionally affects the flood seasonality (mean date of flood occurrence) and leads to a decreasing strength of seasonality, that is a higher temporal variability in most cases. The magnitudes of mean annual floods and more clearly of maximum floods (in a 22‐year period) are expected to increase in the future because of changes in flood‐generating processes and scaled extreme precipitation. Southern alpine catchments show a different signal, though: the simulated mean annual floods decrease in the far future, that is at the end of the 21st century. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
High‐magnitude floods across Europe within the last decade have resulted in the widespread reassessment of flood risk; this coupled with the introduction of the Water Framework Directive (2000) has increased the need for a detailed understanding of seasonal variability in flood magnitude and frequency. Mean day of flood (MDF) and flood seasonality were calculated for Wales using 30 years of gauged river‐flow records (1973–2002). Noticeable regional variations in timing and length of flood season are evident, with flooding occurring earlier in small catchments draining higher elevations in north and mid‐west Wales. Low‐altitude regions in West Wales exposed to westerly winds experience flooding during October–January, while large eastern draining catchments experience later flooding (January–February). In the northeast and mid‐east regions December–January months experience the greatest number of floods, while the southeast has a slightly longer flood season (December–February), with a noticeable increase in January floods. Patterns obtained from MDF data demonstrate their effectiveness and use in analysing regional patterns in flood seasonality, but catchment‐specific determinants, e.g. catchment wetness, size and precipitation regime are important factors in flood seasonality. Relatively strong correlations between precipitation and flood activity are evident in Wales, with a poorer relationship between flooding and weather types and the North Atlantic Oscillation (NAO). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the controls of different indicators on the statistical moments (i.e. mean annual flood (MAF), coefficient of variation (CV) and skewness (CS)) of the maximum annual flood records of 459 Austrian catchments are analysed. The process controls are analysed in terms of the correlation of the flood moments within five hydrologically homogeneous regions to two different types of indicators. Indicators of the first type are static catchment attributes, which are associated with long‐term observations such as mean annual precipitation, the base flow index, and the percentage of catchment area covered by a geological unit or soil type. Indicators of the second type are dynamic catchment attributes that are associated with the event scale. Indicators of this type used in the study are event runoff coefficients and antecedent rainfall. The results indicate that MAF and CV are strongly correlated with indicators characterising the hydro‐climatic conditions of the catchments, such as mean annual precipitation, long‐term evaporation and the base flow index. For the catchments analysed, the flood moments are not significantly correlated with static catchment attributes representing runoff generation, such as geology, soil types, land use and the SCS curve number. Indicators of runoff generation that do have significant predictive power for flood moments are dynamic catchment attributes such as the mean event runoff coefficients and mean antecedent rainfall. The correlation analysis indicates that flood runoff is, on average, more strongly controlled by the catchment moisture state than by event rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Flood frequency analysis based on a set of systematic data and a set of historical floods is applied to several Mediterranean catchments. After identification and collection of data on historical floods, several hydraulic models were constructed to account for geomorphological changes. Recent and historical rating curves were constructed and applied to reconstruct flood discharge series, together with their uncertainty. This uncertainty stems from two types of error: (a) random errors related to the water-level readings; and (b) systematic errors related to over- or under-estimation of the rating curve. A Bayesian frequency analysis is performed to take both sources of uncertainty into account. It is shown that the uncertainty affecting discharges should be carefully evaluated and taken into account in the flood frequency analysis, as it can increase the quantiles confidence interval. The quantiles are found to be consistent with those obtained with empirical methods, for two out of four of the catchments.

Citation Neppel, L., Renard, B., Lang, M., Ayral, P.-A., Coeur, D., Gaume, E., Jacob, N., Payrastre, O., Pobanz, K. & Vinet, F. (2010) Flood frequency analysis using historical data: accounting for random and systematic errors. Hydrol. Sci. J. 55(2), 192–208.  相似文献   

6.
Flood events play a substantial role in the circulation of catchment phosphate (PO43?). The purpose of the research was to analyze the factors determining PO43? hysteresis patterns (direction and width) during four types of floods: short and long rainfall floods and snowmelt floods on frozen and thawed soil. The research took place in small catchments (forested, agricultural, mixed‐use) in the Carpathian Foothills in Poland. Anticlockwise hysteresis was identified in the forested catchment during short and long rainfall floods. Under the same conditions, the clockwise direction was observed in the agricultural catchment. In the mixed‐use catchment, the direction of PO43? hysteresis loops was various, driven by the share of water flowing from each part of the catchment. For snowmelt floods, the PO43? hysteresis pattern was similar in all the streams studied (usually clockwise). The direction of PO43? hysteresis loops depends on water circulation patterns, which are determined by the different influx times of particular runoff components. The stream recharge mechanism during a flood event is affected both by the factor initiating the event (precipitation, snowmelt) as well as by land use in the given catchment. Hysteresis loop width was determined by the pool of PO43? in a given catchment during the time period immediately preceding a flood event as well as by the quantity of PO43? flushed out of the soil. The greater a catchment's pool of PO43? and the greater its ability to flush PO43? out of the soil and into surface flow, the wider the hysteresis loops. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Atmospheric Rivers (ARs) have been linked to many of the largest recorded UK winter floods. These large-scale features can be 500–800 km in width but produce markedly different flood responses in adjacent catchments. Here we combine meteorological and hydrological data to examine why two impermeable catchments on the west coast of Britain respond differently to landfalling ARs. This is important to help better understand flood generation associated with ARs and improve flood forecasting and climate-change impact assessment. Analysis of 32 years of a newly available ERA5 high-resolution atmospheric reanalysis and corresponding 15-min river flow data show that the most impactful ARs arise through a combination of the orientation and magnitude of their water vapour flux. At the Dyfi catchment, AR orientations of between 238–258° result in the strongest hydrological responses, whereas at the Teifi the range is 224–243°. We believe this differential flood response is the result of catchment orientation and topography enhancing or suppressing orographic rainfall totals, even in relatively low-relief coastal catchments. Further to the AR orientation, ARs must have an average water vapour flux of 400–450 kg m−1 s−1 across their lifetime. Understanding the preferential properties of impactful ARs at catchments allows for the linking of large-scale synoptic features, such as ARs, directly to winter flood impacts. These results using two test catchments suggest a novel approach to flood forecasts through the inclusion of AR activity.  相似文献   

8.
Abstract

There has been a trend in recent years towards the development and popularity of physically-based deterministic models. However, the application of such models is not without difficulties. This paper investigates the usefulness of a conceptual single-event model for simulating floods from catchments covering a wide variety of climatic and physiographic areas. The model has been calibrated on a group of catchments and the calibrated parameter values related to physical catchment indices. The resulting quantitative relationships are assessed with respect to their value for estimating the parameter values of the model when calibration is not possible. The results indicate that the technique is likely to provide flood estimations for medium sized catchments (5–150 km2) that are more reliable than several flood estimation methods currently in use in South Africa.  相似文献   

9.
Abstract

Data-based mechanistic (DBM) models can offer a parsimonious representation of catchment dynamics. They have been shown to provide reliable accurate flood forecasts in many hydrological situations. In this work, the DBM methodology is applied to forecast flash floods in a small Alpine catchment. Compared to previous DBM modelling studies, the catchment response is rapid. The use of novel radar-derived ensemble quantitative precipitation forecasts based on analogues to drive the DBM model allows the forecast horizon to be increased to a level useful for emergency response. The characterization of the predictive uncertainty in the resulting hydrological forecasts is discussed and a framework for its representation illustrated.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore  相似文献   

10.
Rainfall and flood data are relatively sparse in semi‐arid areas; hence there have been relatively few investigations into the relationships between rainfall inputs and flood generation in these environments. Previous work has shown that flood properties are influenced by a combination of precipitation characteristics including amount, intensity, duration and spatial distribution. Therefore floods may be produced by high intensity, short duration storms, or longer duration, low intensity rainfall. Most of this research has been undertaken in small catchments in either hyper‐arid or relatively high rainfall Mediterranean climates. This paper presents results from a 6 year data record in south‐east Spain from research conducted in two basins, the Rambla Nogalte (171 km2) and the Rambla de Torrealvilla (200 km2). Data cover an area of approximately 500 km2 and an annual average rainfall of 300 mm. At coarse temporal resolutions gauges spread over large areas record similar patterns of rainfall, although spells of rain show much more complexity; pulses of rain within storms can vary considerably in total rainfall, intensity and duration over the same area. The analysis for south‐east Spain shows that most storms occur over a period of less than 24 h, but that the number of rainfall events declines as the duration exceeds 8 h. This is at odds with data on floods for the study area suggesting that they are produced by storms lasting longer than 18 h. However, one flood event was produced by a very short (15 min) storm with high intensity rainfall. Most floods tended to occur in May/June or September, which coincides with wetter months of the year (September, October, December and May). Floods are also more highly related to the total rainfall occurring in a spell of rain, than to intensity. The complexity of storm rainfall increases with the storm total, which makes it difficult to generalize on the importance of rainfall intensity for flood generation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Book reviews     
Abstract

Statistical and deterministic modelling estimates of flood magnitudes and frequencies that can affect flood-plain ecology in the upper Ahuriri River catchment, a mountainous high country catchment in the New Zealand Southern Alps, were evaluated. Statistical analysis of 46 years of historical data showed that floods are best modelled by the generalized extreme value and lognormal distributions. We evaluated application of the HEC-HMS model to this environment by modelling flood events of various frequencies. Model results were validated and compared with the statistical estimates. The SCS curve number method was used for losses and runoff generation, and the model was very sensitive to curve number. The HEC-HMS flood estimates matched the statistical estimates reasonably well, and, over all return periods, were on average approximately 1% greater. However, the model generally underestimated flood peaks up to the 25-year event and overestimated magnitudes above this. The results compared well with other regional estimates, including studies based on L-moments, and showed that this catchment has smaller floods than other similarly-sized catchments in the Southern Alps.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Caruso, B.S., Rademaker, M., Balme, A., and Cochrane, T.A., 2013. Flood modelling in a high country mountain catchment, New Zealand: comparing statistical and deterministic model estimates for ecological flows. Hydrological Sciences Journal, 58 (2), 328–341.  相似文献   

12.
Better understanding of which processes generate floods in a catchment can improve flood frequency analysis and potentially climate change impacts assessment. However, current flood classification methods are either not transferable across locations or do not provide event-based information. We therefore developed a location-independent, event-based flood classification methodology that is applicable in different climates and returns a classification of all flood events, including extreme ones. We use precipitation time series and very simply modelled soil moisture and snowmelt as inputs for a decision tree. A total of 113,635 events in 4155 catchments worldwide were classified into one of five hydro-climatological flood generating processes: short rain, long rain, excess rainfall, snowmelt and a combination of rain and snow. The new classification was tested for its robustness and evaluated with available information; these two tests are often lacking in current flood classification approaches. According to the evaluation, the classification is mostly successful and indicates excess rainfall as the most common dominant process. However, the dominant process is not very informative in most catchments, as there is a high at-site variability in flood generating processes. This is particularly relevant for the estimation of extreme floods which diverge from their usual flood generation pattern, especially in the United Kingdom, Northern France, Southeastern United States, and India.  相似文献   

13.
ABSTRACT

The city of São Carlos, state of São Paulo, Brazil, has a historical coexistence between society and floods. Unplanned urbanization in this area is a representative feature of how Brazilian cities have developed, undermining the impact of natural hazards. The Gregório Creek catchment is an enigma of complex dynamics concerning the relationship between humans and water in Brazilian cities. Our hypothesis is that social memory of floods can improve future resilience. In this paper we analyse flood risk dynamics in a small urban catchment, identify the impacts of social memory on building resilience and propose measures to reduce the risk of floods. We applied a socio-hydrological model using data collected from newspapers from 1940 to 2018. The model was able to elucidate human–water processes in the catchment and the historical source data proved to be a useful tool to fill gaps in the data in small urban basins.  相似文献   

14.
《水文科学杂志》2013,58(1):86-87
  相似文献   

15.
Water draining from a large agricultural catchment of 1 110 km2 in southwest France was sampled over an 18‐month period to determine the temporal variability in suspended sediment (SS) and dissolved (DOC) and particulate organic carbon (POC) transport during flood events, with quantification of fluxes and controlling factors, and to analyze the relationships between discharge and SS, DOC and POC. A total of 15 flood events were analyzed, providing extensive data on SS, POC and DOC during floods. There was high variability in SS, POC and DOC transport during different seasonal floods, with SS varying by event from 513 to 41 750 t; POC from 12 to 748 t and DOC from 9 to 218 t. Overall, 76 and 62% of total fluxes of POC and DOC occurred within 22% of the study period. POC and DOC export from the Save catchment amounted to 3090 t and 1240 t, equivalent to 1·8 t km?2 y?1 and 0·7 t km?2 y?1, respectively. Statistical analyses showed that total precipitation, flood discharge and total water yield were the major factors controlling SS, POC and DOC transport from the catchment. The relationships between SS, POC and DOC and discharge over temporal flood events resulted in different hysteresis patterns, which were used to deduce dissolved and particulate origins. In both clockwise and anticlockwise hysteresis, POC mainly followed the same patterns as discharge and SS. The DOC‐discharge relationship was mainly characterized by alternating clockwise and anticlockwise hysteresis due to dilution effects of water originating from different sources in the whole catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The management of the riparian zone has been suggested as a technique for controlling the amounts of phosphorus (P) entering watercourses draining pasture catchments. A study was therefore made of P entering a stream from various sources (rainfall, surface and subsurface derived runoff, direct fallout from aerial topdressing), with the object of providing a rational basis for the design of effective riparian management schemes. P entrained in surface runoff could account for virtually all of the P entering the stream during storms. Approximately 20 per cent of the annual P export from the catchment could be accounted for by direct aerial input of P to the stream during autumn fertilizer topdressing. More than 85 per cent of the P was exported from the catchment as particulate P. Stream sediment had higher P sorption capacities, and were enriched with P relative to the soils from which they were derived. There was a pronounced seasonal variation in sediment enrichment which could be predicted (r2 = 0.92) by the logarithm of the rainfall since fertilizer topdressing (LNFERT) and flood intensity. The amount of P lost in streamflow during any flood event was predicted (r2 = 0.94) by peak flow, seven day antecedent peak flow and LNFERT. Approximately 40 per cent of the 1.3 kg P ha?1 exported during 1981 occurred in four storms with recurrence intervals of more than three months. From a P budget compiled from nine events it was hypothesized that the stream acted as a net sink for P at baseflow and low-medium intensity floods but was a source of P at higher flood intensities. It was concluded that P losses from hill pasture catchments could be reduced by avoidance of direct application of P fertilizer to the stream channel, and by fencing out stock from seasonally saturated areas during periods of saturation. The ultimate success of the latter technique would depend on whether buffer vegetation could retain accumulated P during extreme storm events.  相似文献   

17.
Son Nguyen 《水文科学杂志》2013,58(11):1351-1369
ABSTRACT

Event-based models are often used for flood prediction because they require fewer data than more complex models and account for a small number of parameters. We present the performance of such a model in simulating Mediterranean floods, with a focus on the initialization and on the impact of the rainfall uncertainties on the calibration of the model. The distributed event-based parsimonious Soil Conservation Service Lag-and-Route (SCS-LR) model was applied in the Real Collobrier catchment, France, which has a very high density of raingauges. The initial condition of the model was highly correlated with predictors, such as baseflow or soil water content. A reduction in the raingauge density can markedly change the calibration of the model. As the density of raingauges is generally low in most catchments, the uncertainties associated with rainfall measurement are thus expected either to mask the actual accuracy of the model, or to alter the model parameters.  相似文献   

18.
《水文科学杂志》2013,58(4):511-524
Abstract

The design and operation of flood management systems require computation of flood hydrographs for both design floods and flood forecasting purposes, since observed data are usually inadequate for these tasks. This is particularly relevant for most developing countries, i.e. mainly for tropical catchments. One possible way of obtaining information about flood hydrographs is through the use of rainfall—runoff models. Two such models, namely the Bochum model and the Nash Cascade—Diskin Infiltration model, which are semi-distributed and lumped models, respectively, were used in the present study. These models were applied to two catchments in Kenya with drainage areas of 6.71 km2 and 26.03 km2. A set of 13 selected rainfall—runoff events was used to calibrate and validate the models. The physical parameters required by the models were derived from catchment characteristics using GIS and remote sensing data while the conceptual parameters were obtained by optimization. The flood hydrographs simulated using the parameters so derived indicated that it is possible to use the two models in this tropical environment.  相似文献   

19.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   

20.
《国际泥沙研究》2022,37(6):715-728
Rainfall-induced floods may trigger intense sediment transport on erodible catchments, especially on the Loess Plateau in China, which in turn modifies the floods. However, the role of sediment transport in modifying floods has to date remained poorly understood. Concurrently, traditional hydrodynamic models for rainfall-induced floods typically ignore sediment transport, which may lead to inaccurate results for highly erodible catchments. Here, a two-dimensional (2D) coupled shallow water hydro-sediment-morphodynamic (SHSM) model, based on the Finite Volume Method on unstructured meshes and parallel computing, is proposed and applied to simulate rainfall-induced floods in the Zhidan catchment on the Loess Plateau, Shaanxi Province, China. For six historical floods of return periods up to 2 years, the numerical results compare well with observations of discharge hydrographs at the catchment outlet. The computed runoff-sediment yield relation is quantitatively reasonable as compared with other catchments under similar geographical conditions. It is revealed that neglecting sediment transport leads to underestimation of peak discharge of the flood by 14%–45%, whilst its effect on the timing of the peak discharge varies for different flood events. For 18 design floods with return periods of 10–500 years, sediment transport may lead to higher peak discharge by around 9%–15%. The temporal pattern of concentrated rainfall in a short period may lead to a larger exponent value of the power function for the runoff-sediment yield relation. The current finding leads us to propose that incorporating sediment transport in rainfall-induced flood modeling is warranted. The SHSM model is applicable to flood and sediment modeling at the catchment scale in support of risk management and water and soil management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号