首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract

Characterization of the seasonal and inter-annual spatial and temporal variability of rainfall in a changing climate is vital to assess climate-induced changes and suggest adequate future water resources management strategies. Trends in annual, seasonal and maximum 30-day extreme rainfall over Ethiopia are investigated using 0.5° latitude?×?0.5° longitude gridded monthly precipitation data. The spatial coherence of annual rainfall among contiguous rainfall grid points is also assessed for possible spatial similarity across the country. The correlation between temporally coinciding North Atlantic Multidecadal Oscillation (AMO) index and annual rainfall variability is examined to understand the underlying coherence. In total 381 precipitation grid points covering the whole of Ethiopia with five decades (1951–2000) of precipitation data are analysed using the Mann-Kendall test and Moran spatial autocorrelation method. Summer (July–September) seasonal and annual rainfall data exhibit significant decreasing trends in northern, northwestern and western parts of the country, whereas a few grid points in eastern areas show increasing annual rainfall trends. Most other parts of the country exhibit statistically insignificant trends. Regions with high annual and seasonal rainfall distribution exhibit high temporal and spatial correlation indices. Finally, the country is sub-divided into four zones based on annual rainfall similarity. The association of the AMO index with annual rainfall is modestly good for northern and northeastern parts of the country; however, it is weak over the southern region.

Editor Z.W. Kundzewicz; Associate editor S. Uhlenbrook

Citation Wagesho, N., Goel, N.K., and Jain, M.K. 2013. Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58 (2), 354–373.  相似文献   

2.
Abstract

The study of precipitation trends is critically important for a country like India whose food security and economy are dependent on the timely availability of water. In this work, monthly, seasonal and annual trends of rainfall have been studied using monthly data series of 135 years (1871–2005) for 30 sub-divisions (sub-regions) in India. Half of the sub-divisions showed an increasing trend in annual rainfall, but for only three (Haryana, Punjab and Coastal Karnataka), this trend was statistically significant. Similarly, only one sub-division (Chattisgarh) indicated a significant decreasing trend out of the 15 sub-divisions showing decreasing trend in annual rainfall. In India, the monsoon months of June to September account for more than 80% of the annual rainfall. During June and July, the number of sub-divisions showing increasing rainfall is almost equal to those showing decreasing rainfall. In August, the number of sub-divisions showing an increasing trend exceeds those showing a decreasing trend, whereas in September, the situation is the opposite. The majority of sub-divisions showed very little change in rainfall in non-monsoon months. The five main regions of India showed no significant trend in annual, seasonal and monthly rainfall in most of the months. For the whole of India, no significant trend was detected for annual, seasonal, or monthly rainfall. Annual and monsoon rainfall decreased, while pre-monsoon, post-monsoon and winter rainfall increased at the national scale. Rainfall in June, July and September decreased, whereas in August it increased, at the national scale.

Citation Kumar, V., Jain, S. K. & Singh, Y. (2010) Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 55(4), 484–496.  相似文献   

3.
ABSTRACT

The temporal variation and trends of annual rainfall distribution in Benin were examined using data from 1940 to 2015 at six meteorological stations and three raingauges stationed throughout the country. The nonparametric modified Mann-Kendal (MK) and Levene tests were applied to detect trends and heteroscedasticity, respectively. For six of the time series, no significant trends were detected. A Bayesian multiple change points detection approach was applied to the rainfall time series, and most (six of nine) exhibited abrupt change points, corresponding to the alternation between wet (before 1968 and after 1990) and dry (1969–1990) periods. No significant trends or breakpoints and changes in the variance were observed for the spatial average rainfall time series. Seven modified MK trend tests were applied; the trends are affected by the selected MK method and rainfall statistics. Oceanic and/or atmospheric influences on the rainfall in Benin were examined by investigating the correlation between the precipitation time series and several indices. Negative seasonal correlations were determined for the North Atlantic Oscillation, Pacific Decadal Oscillation and Niño3, while positive seasonal correlations were observed for the Southern Oscillation, Antarctic Oscillation and Dipole Mode Index.  相似文献   

4.
Abstract

This paper describes a stochastic rainfall model which has been developed to generate synthetic sequences of hourly rainfalls at a point. The model has been calibrated using data from Farnborough in Hampshire, England. This rainfall data series was divided into wet and dry spells; analysis of the durations of these spells suggests that they may be represented by exponential and generalized Pareto distributions respectively. The total volume of rainfall in wet spells was adequately fitted by a conditional gamma distribution. Random sampling from a beta distribution, defining the average shape of all rainfall profiles, is used in the model to obtain the rainfall profile for a given wet spell. Results obtained from the model compare favourably with observed monthly and annual rainfall totals and with annual maximum frequency distributions of 1, 2, 6, 12, 24 and 48 hours duration at Farnborough. The model has a total of 22 parameters, some of which are specific to winter or summer seasons.  相似文献   

5.
Abstract

The spatio-temporal variability of daily precipitation series was investigated in a semiarid region of central Macedonia in northern Greece, Ten years of daily rainfall records for seven stations in the region constituted the data base. The spatial characteristics were examined by drawing composite correlation diagrams for the cool (October-March) season and the warm (April-September) season, and the results confirmed the regional homogeneity of the data sets. Furthermore, the temporal analysis indicated that the non-rainy days constituted the major portion of days throughout the year at all the stations. Similarly, light rainfall represented the majority of rainy days. Moreover, the annual rainfall variation showed high values in March, April and November with low values occurring in the summer and autumn. A sharp increase of rainfall between the 185th and the 195th day of the year must be taken into account when the harvest is scheduled. Harmonic and Power Spectrum analyses applied to the annual variation of rain depths using 5-day intervals revealed significant periodicities of 26, 122, 365 and 55 days. Finally the analysis of the annual variation of rain occurrences. revealed periodicities of 365 and 122 days.  相似文献   

6.
Martin Hanel  Petr Máca 《水文研究》2014,28(6):2929-2944
Rain event characteristics are assessed in a 10‐year (1991–2000) record for 122 stations in the Czech Republic. Individual rain events are identified using the minimum interevent time (mit) concept. For each station, the optimal mit value is estimated by examining the distribution of interevent times. In addition, various mit values are considered to account for the effect of mit on rain event characteristics and their interrelationships. The interdependence between rain event characteristics and altitude, average rainfall depth, and geographic location are explored using simple linear models. Most rain event characteristics can be to some extent explained by average total rainfall or altitude, although models including the former significantly outperformed models using the latter. Significant correlation was found among several pairs of monthly mean characteristics often including event rain rate (with event duration, depth, maximum intensity, and fraction of intraevent rainless periods). Moreover, strong correlation was revealed between number of events, interevent time, event depth, and duration. In general, correlation decreases in absolute value with mit. Strong spatial correlation was found for the mean monthly interevent time and number of events. Spatial correlation was considerably smaller for other characteristics. In general, spatial dependence was smaller for larger mit values. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

The first objective of this paper is to analyse the trends and change points in the hydroclimatic time series of five representative sub-catchments of the Macta basin, which lies in western Algeria. The second objective is to quantify the role of climate on the trends observed in annual flow time series. This is achieved using hydrological modelling at the multi-annual time step using the Schreiber formulation. The results showed no significant trends on annual rainfall in the 1975–2005 period, a significant increase of temperature and different flow responses to the latter, depending on the catchment considered. Two out of five catchments considered presented a significant flow decrease in the 1975–2005 period with a change point at the beginning of the 1990s. Modelling results suggest that the increase of air temperature is not the sole factor explaining the decrease of annual flow time series in these two catchments.  相似文献   

8.
Water resources and soil erosion are the most important environmental concerns in the Yangtze River basin, where soil erosion and sediment yield are closely related to rainfall erosivity. The present study explores the spatial and temporal changing patterns of the rainfall erosivity in the Yangtze River basin of China during 1960–2005 at annual, seasonal and monthly scales. The Mann–Kendall test is employed to detect the trends during 1960–2005, and the T test is applied to investigate possible changes between 1991–2005 and 1960–1990. Meanwhile the Rescaled Range Analysis is used for exploring future trend of rainfall erosivity. Moreover the continuous wavelet transform technique is using studying the periodicity of the rainfall erosivity. The results show that: (1) The Yangtze River basin is an area characterized by uneven spatial distribution of rainfall erosivity in China, with the annual average rainfall erosivity range from 131.21 to 16842 MJ mm ha?1 h?1. (2) Although the directions of trends in annual rainfall erosivity at most stations are upward, only 22 stations have significant trends at the 90 % confidence level, and these stations are mainly located in the Jinshajiang River basin and Boyang Lake basin. Winter and summer are the seasons showing strong upward trends. For the monthly series, significant increasing trends are mainly found during January, June and July. (3) Generally speaking, the results detected by the T test are quite consistent with those detected by the Mann–Kendall test. (4) The rainfall erosivity of Yangtze River basin during winter and summer will maintain a detected significant increasing trend in the near future, which may bring greater risks to soil erosion. (5) The annual and seasonal erosivity of Yangtze River basin all have one significant periodicity of 2–4 years.  相似文献   

9.
Abstract

Monthly spatial rainfall distribution features and their effects on spatial correlation patterns are significant in any regional study. In this paper, first a number of statistical terms and properties are explained with reference to the spatial correlation functions (SCFs). This is followed by the analysis of a theoretical spatial correlation model and its parameter estimation. Monthly empirical SCFs are examined in relation to spatial rainfall characteristics. In order to obtain a definite pattern, the SCF values are averaged in successive equal-distance groups. This average spatial correlation function shows a decreasing pattern with distance. Some interpretations of these spatial correlation functions are given for Turkey with discussion of the results obtained.  相似文献   

10.
In this study, monthly and annual Upper Blue Nile Basin rainfall data were analyzed to learn the rainfall statistics and its temporal and spatial distribution. Frequency analysis and spatial characterization of rainfall in the Upper Blue Nile Basin are presented. Frequency analysis was performed on monthly basin rainfall. Monthly basin average rainfall data were computed from a network of 32 gauges with varying lengths of records. Monthly rainfall probability distribution varies from month to month fitting Gamma‐2, Normal, Weibull and Log‐Normal distributions. The January, July, October and November basin rainfall fit the Gamma‐2 probability distribution. The February, June and December ones fit Weibull distribution. The March, April, May and August rainfall fit Normal distribution. The September rainfall fits Log‐Normal distribution. Upper Blue Nile Basin is relatively wet with a mean annual rainfall of 1423 mm (1960–2002) with a standard deviation of 125 mm. The annual rainfall has a Normal probability distribution. The 100‐year‐drought basin annual rainfall is 1132 mm and the 100‐year‐wet basin annual rainfall is 1745 mm. The dry season is from November through April. The wet season runs from June through September with 74% of the annual rainfall. October and May are transition months. Monthly and annual rainfalls for return periods 2‐, 5‐, 10‐, 25‐, 50‐ and 100‐year dry and wet patterns are presented. Spatial distribution of annual rainfall over the basin is mapped and shows high variation with the southern tip receiving as high as 2049 mm and the northeastern tip as low as 794 mm annual average rainfall. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

This study assesses the performance of Fourier series in representing seasonal variations of the tropical rainfall process in Malaysia. Fourier series are incorporated into a spatial-temporal stochastic model in an attempt to make the model parsimonious and, at the same time, capture the annual variation of rainfall distribution. In view of Malaysia’s main rainfall regime, the model is individually fitted for two regions with distinctive rainfall profiles: one being an urban area receiving rainfall from convective activities whilst the other receives rainfall from monsoonal activities. Since both regions are susceptible to floods, the study focuses on the rainfall process at fine resolution. Fourier series equations are developed to represent the model’s parameters to describe their annual periodicity. The number of significant harmonics for each parameter is determined by inspecting the cumulative fraction of total variance explained by the significant harmonics. Results reveal that the number of significant harmonics assigned for the parameters is slightly higher in the region with monsoonal rains. The overall simulation results show that the proposed model is capable of generating tropical rainfall series from convective and monsoonal activities.
Editor D. Koutsoyiannis Associate editor K. Hamed  相似文献   

12.
In an attempt to estimate the spatial and temporal behaviour of rainfall over the mountainous areas of the Peruvian Andes, a new in situ monthly rainfall dataset has been collected (1998–2007) and compared with Tropical Rainfall Measuring Mission (TRMM) 3B43 monthly precipitation data for regions located above 3000 m. The reliability of the TRMM 3B43 data varies depending on the root mean squared error ratio (%RMSE) and correlation coefficient. Because of the discrepancy between the two datasets, the use of additive and multiplicative correction models is proposed for the TRMM 3B43 data. In the Peruvian mountain ranges, these correction models better approximate TRMM rainfall monthly values, as already verified for annual values. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions.

Editor D. Koutsoyiannis

Citation Tarnavsky, E., Mulligan, M. and Husak, G., 2012. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrological Sciences Journal, 57 (2), 248–264.  相似文献   

14.
Abstract

An integrated model, combining a surface energy balance system, an LAI-based interception model and a distributed monthly water balance model, was developed to predict hydrological impacts of land-use/land-cover change (LUCC) in the East River basin, China, with the aid of GIS/RS. The integrated model is a distributed model that not only accounts for spatial variations in basin terrain, rainfall and soil moisture, but also considers spatial and temporal variation of vegetation cover and evapotranspiration (ET), in particular, thus providing a powerful tool for investigating the hydrological impact of LUCC. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time series of precipitation from 170 stations in the basin. The model was calibrated and validated based on river discharge data from three stations in the basin for 21 years. The calibration and validation results suggested that the model is suitable for application in the basin. The results show that ET has a positive relationship with LAI (leaf area index), while runoff has a negative relationship with LAI in the same climatic zone that can be described by the surface energy balance and water balance equation. It was found that deforestation would cause an increase in annual runoff and a decrease in annual ET in southern China. Monthly runoff for different land-cover types was found to be inversely related to ET. Also, for most of the scenarios, and particularly for grassland and cropland, the most significant changes occurred in the rainy season, indicating that deforestation would cause a significant increase in monthly runoff in that season in the East River basin. These results are important for water resources management and environmental change monitoring.
Editor Z.W. Kundzewicz  相似文献   

15.
Abstract

Rainfall is the most important input parameter for water resource planning and hydrological studies because flood risk assessment, rainfall harvesting and runoff estimation depend on the rainfall distribution within a region. Due to practical and economic factors, it is not possible to site rainfall stations everywhere, so representative rainfall stations are sited at specific locations. Rainfall distribution is then estimated from such stations. In this study, rainfall distribution in the southwestern region of Saudi Arabia was estimated using kriging, co-kriging and inverse distance weighted (IDW) methods. Historical records of rainfall from 47 stations for the period 1965–2010 and the altitude of these stations were used. The study shows that co-kriging is a better interpolator than the kriging and IDW methods, with a better correlation between actual and estimated monthly average rainfall for the region.  相似文献   

16.
The identification of homogeneous precipitation regions has value in many water resources engineering applications (infrastructure planning, design, operations; climate forecasting, modelling). The objective of this paper is to assess the sensitivity of precipitation regions to the temporal resolution (monthly, seasonal, annual and the annual maximum series) of the data. The presented method uses the fuzzy c-means clustering algorithm to partition climate sites into statistically homogeneous precipitation regions. The regions are validated using an approach based on L-moment statistics. The method is conducted in two climatically different study areas in western and eastern Canada. There does not appear to be a relationship between the spatial distributions of the regions formed using different temporal resolutions of the precipitation data. It is recommended to delineate precipitation regions that are specific to the task at hand, and to select a temporal resolution that is consistent with the final application of the regional precipitation dataset.
EDITOR A. Castellarin; ASSOCIATE EDITOR T. Kjeldsen  相似文献   

17.
Space–time variability of precipitation plays a key role as driver of many environmental processes. The objective of this study is to evaluate a spatiotemporal (STG) Neyman–Scott Rectangular Pulses (NSRP) generator over orographically complex terrain for statistical downscaling of climate models. Data from 145 rain gauges over a 5760-km2 area of Cyprus for 1980–2010 were used for this study. The STG was evaluated for its capacity to reproduce basic rainfall statistical properties, spatial intermittency, and extremes. The results were compared with a multi-single site NRSP generator (MSG). The STG performed well in terms of average annual rainfall (+1.5 % in comparison with the 1980–2010 observations), but does not capture spatial intermittency over the study area and extremes well. Daily events above 50 mm were underestimated by 61 %. The MSG produced a similar error (+1.1 %) in terms of average annual rainfall, while the daily extremes (>50-mm) were underestimated by 11 %. A gridding scheme based on scaling coefficients was used to interpolate the MSG data. Projections of three Regional Climate Models, downscaled by MSG, indicate a 1.5–12 % decrease in the mean annual rainfall over Cyprus for 2020–2050. Furthermore, the number of extremes (>50-mm) for the 145 stations is projected to change between ?24 and +2 % for the three models. The MSG modelling approach maintained the daily rainfall statistics at all grid cells, but cannot create spatially consistent daily precipitation maps, limiting its application to spatially disconnected applications. Further research is needed for the development of spatial non-stationary NRSP models.  相似文献   

18.
 The need for high resolution rainfall data at temporal scales varying from daily to hourly or even minutes is a very important problem in hydrology. For many locations of the world, rainfall data quality is very poor and reliable measurements are only available at a coarse time resolution such as monthly. The purpose of this work is to apply a stochastic disaggregation method of monthly to daily precipitation in two steps: 1. Initialization of the daily rainfall series by using the truncated normal model as a reference distribution. 2.␣Restructuring of the series according to various time series statistics (autocorrelation function, scaling properties, seasonality) by using a Markov chain Monte Carlo based algorithm. The method was applied to a data set from a rainfall network of the central plains of Venezuela, in where rainfall is highly seasonal and data availability at a daily time scale or even higher temporal resolution is very limited. A detailed analysis was carried out to study the seasonal and spatial variability of many properties of the daily rainfall as scaling properties and autocorrelation function in order to incorporate the selected statistics and their annual cycle into an objective function to be minimized in the simulation procedure. Comparisons between the observed and simulated data suggest the adequacy of the technique in providing rainfall sequences with consistent statistical properties at a daily time scale given the monthly totals. The methodology, although highly computationally intensive, needs a moderate number of statistical properties of the daily rainfall. Regionalization of these statistical properties is an important next step for the application of this technique to regions in where daily data is not available.  相似文献   

19.
ABSTRACT

This study assesses the climate change impact on rainfall and drought incidents across Nigeria. Linear regression, Mann-Kendall tests and lag-1 serial correlation were adopted to analyse the trends and variability of rainfall and drought at 18 synoptic stations. Analysis of annual precipitation series indicates an increase in rainfall amounts at all stations, except Minna, Gusau and Yola. Seventeen of the 18 stations recorded at least one main drought period, between 1983 and 1987. A decreasing trend for the standardized precipitation index SPI-12 series was seen at Yola station, while the other stations showed an increasing trend. Also, Nigeria witnessed more annual rainfall totals but with high variability within the rainy months of the year in the first 15 years of the 21st century compared to the 20th century. Such variability in rainfall may have a significant effect on groundwater resources and the hydrology of Nigeria.  相似文献   

20.
Abstract

Rainfall is the most important water resource in central and western Sudan, a region affected by the recent drought in Africa. A general methodology for studying the annual rainfall process is presented and applied to data from central and western Sudan. It is assumed that certain time series models adequately describe the annual rainfall process in the region. Based on this assumption, the drought frequencies are calculated in the subregions with stationary series. The theory of runs is applied in calculating drought frequencies using a data generation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号