首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

New light is shed on the derivation of the energy flux of the linear MHD waves. It is shown that, according to a suggestion of Lighthill, the usual perturbation procedure, which starts from the general expression for the energy flux, need not be supplemented by an averaging procedure. As a result, it is shown that to second order in the wave amplitude, a quantity identifiable as the wave energy flux is conserved. Some of the subtleties inherent in the derivation of the pertubation energy equation are discussed.  相似文献   

2.
Abstract

A derivation of two-point Markovian closure is presented in classical statistical field theory formalism. It is emphasized that the procedures used in this derivation are equivalent to those employed in the quantum statistical field theory derivation of the Boltzmann equation. Application of these techniques to the study of two-dimensional flow on a β-plane yields a quasi-homogeneous, quasi-stationary transport equation and a renormalized dispersion relation for Rossby waves  相似文献   

3.
Abstract

This paper is concerned with the derivation of the dispersion relation of a static fully ionized hydrogen plasma, at a temperature much smaller than 1010°K, interacting with radiation through electron scattering. The Fokker-Planck form of the transfer equation is first considered and the derivation of the dispersion relation is reduced to the resolution of a v-differential eigenvalue problem, which could be realized by numerical integration. In the second part, the dispersion relation is explicitly derived in the frame of an algebraic approximation of the transfer equation. This shows that the branches of this relation, which are obtained in the optically thick and in the optically thin limits, are continuously connected to each other in a somehow remarkable way.  相似文献   

4.
ABSTRACT

The extreme value type III distribution was derived by using the principle of maximum entropy. The derivation required only two constraints to be determined from data, and yielded a procedure for estimation of distribution parameters. This method of parameter estimation was comparable to the methods of moments (MOM) and maximum likelihood estimation (MLE) for the low flow data used.  相似文献   

5.
Abstract

Bed material load, which comprises bed load and suspended load, has been extensively studied in the past few decades and many equations have been developed, but they differ from each other in derivation and form. If a process can be related to various flow conditions on a general basis, a proper understanding of bed material load movement can be ascertained. As the process is extremely complex, obtaining a deterministic or analytical form of it is too difficult. Neural network modelling, which is particularly useful in modelling processes about which knowledge of the physics is limited, is presented here as a complimentary tool for modelling bed material load transport. The developed model demonstrated a superior performance compared to other traditional methods based on different statistical criteria, such as the coefficient of determination, Nash-Sutcliffe coefficient and discrepancy ratio. The significance of the different input parameters has been analysed in the present work to understand the influence of these parameters on the transport process.

Editor D. Koutsoyiannis

Citation Kumar, B., 2012. Neural network prediction of bed material load transport. Hydrological Sciences Journal, 57 (5), 956–966.  相似文献   

6.
Abstract

The effect of land-use change on the flood frequency curve (FFC) in a natural catchment is analysed. To achieve this, a simple methodology for the derivation of FFCs in land-use change scenarios is proposed. The adopted methodology, using a stochastic model in Monte Carlo simulation of FFCs, was found to provide a useful framework for detecting changes in flood magnitudes in both pre- and post-fire conditions. In particular, the importance of the antecedent soil moisture condition in the determination of the flood frequency distribution was analysed. The analysis of FFCs for pre- and post-fire conditions shows an increase in the average value of Curve Number and a decrease in the catchment time lag. The derivation of FFCs shows a clear increase in flood quantiles. For the post-fire conditions, the FFC exhibits higher quantiles of the peak discharges showing a reduction in frequency of occurrence. This variation is more significant for low-return period quantiles than for high-return period quantiles. The results of the catchment studies reported here support the hypothesis that the hydrological response of the watershed changes as a result of fire, especially during the first years following a fire event.  相似文献   

7.
Abstract

It is demonstrated that the steady tangential velocity vs at the closed surface δK of a perfect fluid conductor bounded by a rigid, impenetrable exterior can be uniquely determined from knowledge of the normal component of the time varying magnetic flux density B n, on δK. In the context of a simple earth model consisting of an electrically insulating mantle surrounding a perfectly conducting core, the assumption of steady flow provides enough extra information to eliminate the toroidal ambiguity in B nv and to allow derivation of a unique, global flow at the top of the core from a model of the geomagnetic field.  相似文献   

8.
Abstract

The equations for a relativistic perfect fluid result from the requirement that the total mass-energy be stationary with respect to variations δxα(a, b, c, s) in the space-time location of the fluid particle identified by Lagrangian labels (a, b, c) at the point s on its world-line. By considering variations of the Lagrangian labels that leave the specific volume and entropy unchanged, we obtain a general covariant statement of vorticity conservation. The conservation laws for circulation, potential vorticity, and helicity are simple corollaries. This Noether-theorem derivation shows that the vorticity laws have no analogues in particle mechanics, where the corresponding particle labels cannot be continuously vaned.  相似文献   

9.
Abstract

Quantitative assessment of the effects of climate change and human activities on runoff is very important for regional sustainable water resources adaptive management. In this study, the non-parametric Mann-Kendall test is used to identify the trends in and change points of the annual runoff with the aim of analysing the changing characteristics of the hydrological cycle. The study presents the analytical derivation of a method which combines six Budyko hypothesis-based water–energy balance equations with the Penman-Monteith equation to separate the effects of climate change and human activities. The method takes several climate variables into consideration. Results based on data from the Yongding River basin, China, show that climate change is estimated to account for 10.5–12.6% of the reduction in annual runoff and human activities contribute to 87.4–89.5% of the runoff decline. The results indicate that human activities are the main driving factors for the reduction in runoff.
Editor Z.W. Kundzewicz; Associate editor C.Y. Xu  相似文献   

10.
Abstract

A magnetohydrodynamic, dynamo driven by convection in a rotating spherical shell is supposed to have averages that are independent of time. Two cases are considered, one driven by a fixed temperature difference R and the other by a given internal heating rate Q. It is found that when q, the ratio of thermal conductivity to magnetic diffusivity, is small, R must be of order q ?4/3 and Q of order q ?2 for dynamo action to be possible; q is small in the Earth's core, so it is hoped that the criteria will prove useful in practical as well as theoretical studies of dynamic dynamos. The criteria can be further strengthened when the ohmic dissipation of the field is significant in the energy balance. The development includes the derivation of two necessary conditions for dynamo action, both based on the viscous dissipation rate of the velocity field that drives the dynamo.  相似文献   

11.
Abstract

Mathematical models are the means to characterize variables quantitatively in many groundwater problems. Recent advances in applied mathematics have perfected what is now called Adomian's decomposition method (ADM), a simple modelling procedure for practical applications. Decomposition exhibits the benefits of analytical solutions (i.e. stability, analytic derivation of heads, gradients, fluxes and simple programming). It also offers the advantages of traditional numerical methods (i.e. consideration of heterogeneity, irregular domain shapes and multiple dimensions). In addition, decomposition is one of the few systematic procedures for solving nonlinear equations. By far its greatest advantage is its simplicity of application. It may produce simple results for preliminary simulations, or in cases with scarce information. The method is described with simple applications to regional groundwater flow. Many applications in groundwater flow and contaminant transport are available in the literature.

Editor D. Koutsoyiannis; Associate editor Xi Chen

Citation Serrano, S.E., 2013. A simple approach to groundwater modelling with decomposition. Hydrological Sciences Journal, 58 (1), 1–9.  相似文献   

12.
The Navier–Stokes-α equation is a regularised form of the Euler equation that has been employed in representing the sub-grid scales in large-eddy simulations. Determined efforts have been made to place it on a secure deductive foundation. This requires two steps to be completed. The first is fundamental and consists of establishing from the equations governing the fluid flow, a relationship between two velocities called by Holm (Chaos, 2002a, 12, 518) the “filtered” and “unfiltered” velocities. The second consists of the relation between these two velocities. Until now, the preferred route to the first objective has been variational, by varying the action using Hamilton's principle. Soward and Roberts (J. Fluid Mech., 2008, 604, 297) followed that variational route and established the existence of an important but unwelcome term omitted by Holm in his derivation. It is shown here that the Soward and Roberts result may be derived from Euler's equation by a direct approach with considerably greater efficiency. Holm achieved the second objective by making a “Taylor hypothesis”, which we use here to evaluate the unwelcome term missing from his analysis of the first step. The resulting model equations differ from those of Holm's α model, and the attractive mean Kelvin's circulation theorem that follows from his α equations is no longer valid. For that reason, we call the term omitted by Holm unwelcome.  相似文献   

13.
14.
Abstract

Pooling of flood data is widely used to provide a framework to estimate design floods by the Index Flood method. Design flood estimation with this approach involves derivation of a growth curve which shows the relationship between XT and the return period T, where XT ?=?QT /QI and QI is the index flood at the site of interest. An implicit assumption with the Index Flood procedure of pooling analysis is that the XT T relationship is the same at all sites in a homogeneous pooling group, although this assumption would generally be violated to some extent in practical cases, i.e. some degree of heterogeneity exists. In fact, in only some cases is the homogeneity criterion effectively satisfied for Irish conditions. In this paper, the performance of the index-flood pooling analysis is assessed in the Irish low CV (coefficient of variation) hydrology context considering that heterogeneity is taken into account. It is found that the performance of the pooling method is satisfactory provided there are at least 350 station years of data included. Also it is found that, in a highly heterogeneous group, it is more desirable to have many sites with short record lengths than a smaller number of sites with long record lengths. Increased heterogeneity decreases the advantage of pooling group-based estimation over at-site estimation. Only a heterogeneity measure (H1) less than 4.0 can render the pooled estimation preferable to that obtained for at-site estimation for the estimation of 100-year flood. In moderately to highly heterogeneous regions it is preferable to conduct at-site analysis for the estimation of 100-year flood if the record length at the site concerned exceeds 50.

Editor Z.W. Kundzewicz; Associate editor A. Carsteanu

Citation Das, S. and Cunnane, C., 2012. Performance of flood frequency pooling analysis in a low CV context. Hydrological Sciences Journal, 57 (3), 433–444.  相似文献   

15.
Abstract

The quantification of the sediment carrying capacity of a river is a difficult task that has received much attention. For sand-bed rivers especially, several sediment transport functions have appeared in the literature based on various concepts and approaches; however, since they present a significant discrepancy in their results, none of them has become universally accepted. This paper employs three machine learning techniques, namely artificial neural networks, symbolic regression based on genetic programming and an adaptive-network-based fuzzy inference system, for the derivation of sediment transport formulae for sand-bed rivers from field and laboratory flume data. For the determination of the input parameters, some of the most prominent fundamental approaches that govern the phenomenon, such as shear stress, stream power and unit stream power, are utilized and a comparison of their efficacy is provided. The results obtained from the machine learning techniques are superior to those of the commonly-used sediment transport formulae and it is shown that each of the input combinations tested has its own merit, as they produce similarly good results with respect to the data-driven technique employed.
Editor Z.W. Kundzewicz  相似文献   

16.
Abstract

For the purpose of deriving an analytical parametrization, oceanic mesoscale eddies are represented as a horizontally propagating wave field in a non-uniform environment. The mathematical analysis rests upon the assumption of scale disparity between a short eddy scale and a long mean-flow scale. The novelty resides in the treatment of finite-amplitude eddies, which, moreover, form either a band-like or a cell-like pattern. A barotropic ocean is chosen as a first step to illustrate the mathematical analysis, but dissipation is included. The main result is an analytical derivation of a mesoscale-eddy parametrization: the mean-flow equation contains Reynolds-stress terms which are computed from parameters of the eddy field, which, in turn, are predicted by separate evolution equations. Due to restrictive assumptions (barotropy, orthogonal waves,…), the parametrization established here should be viewed only as a first step toward the design of a more practical parameterization for large-scale modelling.  相似文献   

17.
Abstract

The hydrodynamic derivation of a variable parameter Muskingum method and its solution procedure for estimating a routed hydrograph were presented in Part I of this series (Perumal, 1994a). In this paper, the limitations of the method, the criterion for its applicability and its accuracy are discussed based on the assumptions used. The method is verified by routing a given hypothetical inflow hydrograph through uniform rectangular cross-section channels and comparing the results with the corresponding numerical solutions of the St. Venant equations. The stage hydrographs as computed by the method are also compared with the corresponding St. Venant solutions. It is demonstrated that the method closely reproduces the St. Venant solutions for the discharge and stage hydrographs subject to the compliance of the assumptions of the method by the routing process.  相似文献   

18.
Abstract

Models on flow and transport in surface water sediments currently neglect compaction, although it is well understood that compaction is one of the major processes below the free fluid-sediment interface. Porosity changes in the sediment layers, as a result of compaction, are measured in almost all probes: porosity decreases with the distance from the surface water-sediment interface. This paper provides a rigorous derivation of basic flux terms for a frame of reference that is moving with the fluid-sediment interface. It is shown how burial rate, interface velocity, velocities of fluid and solid phase and porosity are connected—under steady-state conditions. It turns out that porosity and the velocities in a one-dimensional column can be directly computed from each other. These findings are important not only for the understanding of compaction-driven flow itself; they are crucial for all studies on storage and transport of chemical components in sediments. As mass fluxes across the sediment-water interface may be affected, there is an indirect link on surface water quality, making these findings relevant also for research on eutrophication of surface water bodies and/or on biogeochemical cycles.  相似文献   

19.
Abstract

We propose a method of derivation of global asymptotic solutions of the hydromagnetic dynamo problem at large magnetic Reynolds number. The procedure reduces to matching the local asymptotic forms for the magnetic field generated near individual extrema of generation strength. The basis of the proposed method, named here the Maximally-Efficient-Generation Approach (MEGA), is the assertion that properties of global asymptotic solutions of the kinematic dynamo are determined by the distribution of the generation strength near its leading extrema and by the number and distribution of the extrema.

The general method is illustrated by the global asymptotic solution of the α2-dynamo problem in a slab. The nature of oscillatory solutions revealed earlier in numerical simulations and the reasons for the dominance of even magnetic modes in slab geometry are clarified.

Applicability of the asymptotic solutions at moderate values of the asymptotic parameter is also discussed. We confirm this applicability using comparisons with complementary asymptotic expansions and numerical simulations. In particular, this justifies application of the MEGA solutions to estimation of the generation threshold.  相似文献   

20.
《水文科学杂志》2013,58(2):362-366
Abstract

Most commonly used biochemical oxygen demand (BOD) and dissolved oxygen (DO) models have been tested for their applicability in the River Kali, which is one of the most polluted rivers in India. A total of 732 field data sets were generated during field survey from March 1999 to February 2000. The modelling of BOD and DO in the River Kali involves derivation and solution of the governing equations that describe concentration change with time and space brought on by advective, decay, settling and loading functions. However, due to continuous discharges (e.g. from wastewater treatment plants) and steady-state flow conditions in the River Kali, the dispersion effects are found to be insignificant. In the analysis, the model parameters used in BOD-DO models were optimized using the Newton-Raphson technique and the performance of different models was evaluated using correlation statistics (r 2) and error estimation, viz. standard error (SE) and mean multiplicative error (MME). The results indicate that the BOD-DO models developed after Camp (1963) yielded the best agreement with the observed values as compared with several other approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号